Randomized Strategies for Sensor-Based Robot Exploration

Luigi Freda Giuseppe Oriolo Marilena Vendittelli

Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza" Roma, Italy

OUTLINE

- Introduction
- Exploration
- Integrated-Exploration
- Multi-robot Exploration
- Conclusions

INTRODUCTION

Randomized Strategies for Sensor-Based Robot Exploration

learning an environment model requires the fulfillment of **three** different tasks: **mapping**, **localization** and **planning**

in the field of robotic exploration, these tasks are integrated in different manners [Makarenko et *al.*, 2002]

EXPLORATION

exploration

- the process of moving through an unknown environment for building a map that can be used for subsequent navigation [Yamaouchi'97]
- from a **more general** perspective: the process of selecting actions in active learning [Thrun '95]

the central problem: how to select the next action?

many existing techniques fall into the class of **frontier-based exploration**: the criterion is the maximization of the action's (expected) utility

 \rightarrow the robot moves towards the frontier between known and unknown areas to maximize the information gain coming from new perceptions [Yamaouchi '97; Burgard *et al.*'00; Makarenko *et al.*'02; Gonzales-Banos and Latombe '02] another possibility is to use a random selection mechanism (random walk) pros/cons:

- **simple** (no deliberation)
- any action sequence will be executed eventually (\rightarrow completeness)
- pure random action selection may be very inefficient

in motion planning, randomized (RMP) techniques achieve high efficiency by adding **heuristics** to the basic random scheme

\Rightarrow our approach

design an exploration method based on the **random** generation of robot configurations within the local safe region detected by the sensors, with the addition of simple **heuristics** for validation

 \rightarrow can be considered as a **sensor-based** version of randomized planning techniques (in particular, RRT)

EXPLORATION VIA THE SRT METHOD

working assumptions

- 1. the workspace is planar, i.e., either \mathbb{R}^2 or a (connected) subset of \mathbb{R}^2
- 2. the robot is a **holonomic disk**
- 3. the robot always knows its configuration q
- 4. at each q, perception provides the Local Safe Region S, i.e., an estimate of the surrounding free space in the form of a star-shaped subset of \mathbb{R}^2

1, 2, 3 can be **relaxed**; in 4 the estimate may be conservative

- the LSR S is **star-shaped**; it is the current visibility region limited by the maximum measurable range
- the map is built in the form of a Sensor-based Random Tree (SRT): each node contains a configuration assumed by the robot and the associated LSR description

basic steps

- 1. LSR construction
- 2. local frontier computation
- 3. if the local frontier is not empty \rightarrow **forwarding**

frontier-based random generation of a new candidate configuration q_{cand}

4. if the local frontier is empty \rightarrow **backtracking**

return to the parent node

LOCAL FRONTIER COMPUTATION

- the boundary of the Local Safe Region S is partitioned in obstacle, free and frontier arcs
- arcs classification is straightforward from range readings

FRONTIER-BASED RANDOM GENERATION

generation of candidate configurations is **biased** towards the frontier arcs of the Local Safe Region:

- select a local frontier arc using a probability proportional to the arc length (the selected arc is represented by its angular width γ and the orientation θ_m of its bisectrix)
- generate direction θ_{rand} according to a normal distribution with mean value θ_m and standard deviation $\sigma = \gamma/6$
- displace a new configuration $q_{\rm new}$ along $\theta_{\rm rand}$ and inside the current LSR

forwarding/backtracking

simulation (performed in Webots)

- MagellanPro robot with laser range finder
- perfect sensing and localization
- depth-first
- homing

Exploration via the SRT-Method

the SRT method is a **general** paradigm:

the shape of the Local Safe Region S reflects the sensor characteristics and the adopted perception technique

 \Rightarrow the performance **changes** accordingly

SRT-BALL

- in **SRT-Ball**, *S* is a ball whose radius is the **minimum range reading** (the distance to the closest obstacle or, in wide open areas, the maximum measurable range)
- a conservative perception mode suitable for noisy/imprecise sensors

experiment with Khepera

SRT-STAR

- in SRT-Star, S is the union of different 'cones' whose radius is the corresponding range reading
- a perception mode suitable for ultrasonic/infrared range finders

experiment with Magellan Pro

INTEGRATED EXPLORATION

an **efficient exploration strategy** should take into account all these three tasks when selecting a new action:

- the energy or time cost (planning)
- the expected **information gain** (mapping)
- the associated **localization potential** (localization)

\Rightarrow existing approaches

a **utility function** is generally associated to each of these processes the minimization of a **mixed criterion** (the total utility) combining the individual utility functions is used to select the next action

\Rightarrow our approach

a **SRT-based strategy** in which the optimization of information gain and navigation cost are automatically taken into account by the local randomized strategy which proposes candidate destinations

the algorithm relies on a **feature-based continuous localization** scheme

the new robot configuration is selected so as to guarantee a minimum localization potential (number of visible features)

SRT-BASED INTEGRATED EXPLORATION

working assumptions

- 1. the workspace is planar, i.e., either \mathbb{R}^2 or a (connected) subset of \mathbb{R}^2
- 2. the robot is a **holonomic disk**
- 3. an odometric estimate \hat{q} of the robot configuration is available
- 4. at each q, perception provides the Local Safe Region (LSR) S, i.e., an estimate of the surrounding free space in the form of a **star-shaped** subset of \mathbb{R}^2

basic steps

- 1. LSR construction and feature extraction
- 2. localization
- 3. local frontier computation
- 4. if the local frontier is not empty
 - frontier-based random generation of a new candidate configuration q_{cand}
 - validation: the localizability of q_{cand} must be above a minimum threshold otherwise a new candidate configuration is generated
- 5. if the local frontier is empty \rightarrow **backtracking** (return to the parent node)

FEATURE EXTRACTION

natural features are extracted from the LSR range readings

- **fixed features**: non-differentiable local minima/maxima or jump discontinuities; do not depend on the observation point
- moving features: differentiable local minima/maxima; depend on the observation point

LOCALIZATION

- 1. **local correction**: a local alignment recovers the feature consistency between the current and the previously visited LSRs
- 2. **global correction**: a globally consistent alignment of the LSRs is performed when loops are detected

local registration

with localization

without localization

- actual robot
- estimated robot

the **global registration** is executed whenever features of the current LSR can be associated to features in the global map that do not belong to the previously visited LSR

two approaches:

- 1. the local correction is performed between the current LSR and other overlapping LSRs (different from the previously visited LSR); the updated information is back-propagated along the path connecting the overlapping LSRs in order to preserve the global consistency
- 2. a network of pose relations is continuously updated; an energy function associated to this network is minimized [Lu and Milios, 1997]

VALIDATION

the **localizability** of a configuration q is defined as the number of features of the tree T that will be observable from q

a **localizability validation** is performed until a maximum number of trials is exceeded

 $l(q_{cand}) = 5$ $l(q'_{cand}) = 2$ $l_{min} = 3$

SIMULATIONS

without localization

integrated exploration

- actual robot
- estimated robot

Integrated Exploration

EXPERIMENTS

- MagellanPro robot: differential-drive robot
- onboard **SICK LMS 200** laser range finder with 1° angular resolution
- each LSR is built merging three different laser scans of 180° with orientations spaced at 120° increments (scans are merged using an ICP matching algorithm)

final maps in a typical experiment

without localization

integrated exploration

a typical localization process

odometric configuration estimate realigned

Integrated Exploration

MULTI-ROBOT EXPLORATION

Cooperative Exploration via the Multi-SRT Method

THE MULTI-SRT METHOD

- parallelization of the single-robot SRT method
- decentralized cooperation is used to improve exploration efficiency
- local coordination mechanisms avoid conflicts
- robots which complete their individual exploration proceed to support others

a typical simulation

DECENTRALIZED COOPERATION

- each robot builds its SRT and continuously broadcasts its knowledge
- the local frontier is defined cooperatively, i.e., taking into account the area explored by other robots as well

LOCAL COORDINATION

- each robot tends to move towards the frontier of its perceived Local Safe Region
- although the local frontiers of two robots are disjoint, two prospective paths may intersect
- a local coordination is achieved through the GPA/GEA construction

Cooperative Exploration via the Multi-SRT Method

- each robot synchronizes its perception with its GPA and it cooperatively plans its next configuration with its GEA
- a Group of Pre-engaged Agents (GPA) is a set of robots whose next LSRs may overlap with each other
- a Group of Engaged Agents (GEA) is a set of robots whose LSRs actually overlap (it is a subset of a GPA)

GPA

Group of Engaged Agents

GEA

Group of Pre-engaged Agents

Cooperative Exploration via the Multi-SRT Method

for robots belonging to the same GEA

- the prospective paths are **checked** for collisions
- a **coordination phase** takes place which may either confirm or modify the current target of the robots

GEA

simulation

simulation

different robots can build the same tree

Cooperative Exploration via the Multi-SRT Method

simulation results (garden-like environment, scattered start)

simulation results (office-like environment, clustered start)

CONCLUSIONS

- first randomized approach to sensor-based exploration
- natural extension to integrated exploration avoiding the problematic definition of mixed criteria
- parallelization and local cooperation/coordination mechanisms allow the extension to the multi-robot case
- the flexibility of the SRT-method allows the extension to the manipulator case
- many other extensions are possible: nonholonomic robots, mobile manipulators, snake-like robots