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Abstract

In this paper we study data complexity of answering conjunctive queries over
Description Logic (DL) knowledge bases constituted by a TBox and an ABox.
In particular, we are interested in characterizing the FOL-rewritability and
the polynomial tractability boundaries of conjunctive query answering, depend-
ing on the expressive power of the DL used to express the knowledge base.
FOL-rewritability means that query answering can be reduced to evaluating
queries over the database corresponding to the ABox. Since first-order queries
can be expressed in SQL, the importance of FOL-rewritability is that, when
query answering enjoys this property, we can take advantage of Relational Data
Base Management System (RDBMS) techniques for both representing data,
i.e., ABox assertions, and answering queries via reformulation into SQL. What
emerges from our complexity analysis is that the Description Logics of the DL-
Lite family are essentially the maximal logics allowing for conjunctive query
answering through standard database technology. In this sense, they are the
first Description Logics specifically tailored for effective query answering over
very large ABoxes.

Keywords: Knowledge Representation, Description Logics, Ontologies,
Computational Complexity, Conjunctive Queries

1. Introduction

The idea of using ontologies as a conceptual view over data repositories
is becoming more and more popular. For example, in Enterprise Application
Integration [1], Data Integration [2], and the Semantic Web [3], the intensional
level of the application domain can be profitably represented by an ontology, so
that clients can rely on a shared conceptualization when accessing the services
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provided by the system. In these contexts, the set of instances of the concepts
in the ontology is to be managed in the data layer of the system architecture
(e.g., in the lowest of the three tiers of the Enterprise Software Architecture),
and, since instances correspond to the data items of the underlying information
system, such a layer constitutes a very large (much larger than the intensional
level of the ontology) repository, to be stored in secondary storage (see, e.g., [4]).

When clients access the application ontology, it is very likely that one of
the main services they need is the one of answering complex queries over the
extensional level of the ontology, which means computing the answers to the
queries that are logically implied by the whole ontology. Here, by ‘complex’
we mean that it does not suffice to ask for the instances of concepts, but we
need at least to express conjunctive conditions on the extensional level [5, 6,
7, 8, 9, 10, 11]. Given the size of the instance repository, when measuring
the computational complexity of query answering (and reasoning in general)
the most important parameter is the size of the data. In other words, we are
interested in the so-called data complexity of query answering [12].

In this paper we consider conjunctive queries (CQs) specified over ontologies
expressed in Description Logics (DL), and study the data complexity of the
query answering problem. Since an ontology in DL is essentially a knowledge
base (KB) constituted by a TBox and an ABox, the problem we address is
the one of computing the answers to a CQ that are logical consequences of the
TBox and the ABox, where complexity is measured with respect to the size of
the ABox only. Note that we borrow the notion of data complexity from the
database literature [12], on the premise that an ABox can be naturally viewed
as a relational database. Recently, data complexity has attracted the interest
of the DL community, first for reasoning over TBox and ABox (i.e., instance
checking, which is the simplest form of query answering) [13, 14], and then also
for answering full conjunctive queries [15, 16]. This gave rise to the study of
DLs for which query answering can be done efficiently in data complexity [17,
18, 19, 20], which is a key aspects of the present paper.

Specifically, we are interested in characterizing the FOL-rewritability and the
polynomial tractability boundaries of conjunctive query answering, depending
on the expressive power of the DL used to specify the KB. We say that query
answering is FOL-rewritable in a DL L, if for every conjunctive query q over an L
TBox T , one can effectively compute a first-order (FOL) query qr such that for
all ABoxes A the answers to q with respect to the KB 〈T ,A〉 are the same as the
answers to qr over the database corresponding to the ABox A. Since first-order
queries can be expressed in SQL, the importance of FOL-rewritability is that,
when query answering enjoys this property, we can take advantage of Relational
Data Base Management System (RDBMS) techniques for both representing
data, i.e., ABox assertions, and answering queries via reformulation into SQL1.
Notably, in this case, the data complexity of conjunctive query answering over

1We consider here the kernel of the SQL-92 standard, i.e., we see SQL as an implementation
of relational algebra.
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ontologies is the one of evaluating FOL queries over relational databases, i.e.,
AC0 [21], a complexity class strictly contained in LogSpace [22].

We are also interested in knowing for which DLs we go beyond FOL. For
this purpose, we single out those DLs for which query answering becomes
NLogSpace-hard and PTime-hard, respectively, thus not allowing for FOL-
rewritability. From the complexity characterization of query languages, it fol-
lows that those DLs require at least the power of linear recursive Datalog
(NLogSpace), and general recursive Datalog (PTime), respectively. Note that,
although very interesting and promising Datalog engines exist, query optimiza-
tion strategies for this query language are not sufficiently mature yet to deal
with complex applications with millions of instances in the extensional level.
Finally, we address the problem of going even beyond PTime, by exhibiting
DLs for which query answering is polynomially intractable.

More precisely, the contributions of the paper are the following.

• We discuss DLs for which conjunctive query answering is FOL-rewritable.
In this class, we essentially find the languages of the DL-Lite [18] fam-
ily2 . Notably, the two simplest DLs of this family (namely, DL-LiteR
and DL-LiteF ) are rich enough to express basic ontology languages, e.g.,
extensions of (the DL subset of) RDFS3 or fragments of OWL 24; con-
ceptual data models, e.g., Entity-Relationship [21]; and object-oriented
formalisms, e.g., basic UML class diagrams5. In fact, in the present paper
we consider a new DL of the DL-Lite family, called DLR-LiteA,u, which
generalizes both DL-LiteR and DL-LiteF by allowing for the use of n-ary
relations between (instances of) concepts, the specification of keys on re-
lations, combined together (in a controlled way) with inclusions between
(projections on) relations, and the use of conjunctions in the left-hand
side of the inclusion assertions constituting the knowledge base TBox. We
show that for such a DL query answering is FOL-rewritable.

• We show that minimal additions to the languages considered above make
the data complexity of conjunctive query answering NLogSpace-hard or
PTime-hard, thus losing the possibility of reformulating queries in first-
order logic. In spite of the fact that for such languages query answering is
polynomially tractable (in NLogSpace and PTime, respectively), these
hardness results tell us that for query answering we cannot take advantage
of state-of-the-art database query optimization strategies, and this might
hamper practical feasibility for very large ABoxes.

• Finally, we establish coNP-hardness of conjunctive query answering with
respect to data complexity for surprisingly simple DLs. In particular, we

2Not to be confused with the set of DLs studied in [20], which form the DL-Litebool family.
3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/owl2-overview/
5http://www.omg.org/uml/
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show that we get intractability as soon as the DL is able to express simple
forms of union.

What emerges from our complexity analysis is that the DLs of the DL-Lite
family are DLs that enjoy FOL-rewritability of conjunctive query answering and
that cannot be extended with any construct typical of DLs [23] without losing
this property6. In this sense, the DLs of the DL-Lite family studied here are the
maximal logics that allow for answering conjunctive queries through standard
database technology.

The paper is organized as follows. In Section 2 we introduce some prelimi-
nary notions on DLs and query answering, and present the DLs which we deal
with in this paper, including DLR-LiteA,u. In Section 3 we show that for this
DL query answering and KB satisfiability are FOL-rewritable. Then, in Sec-
tion 4 we deal with DLs for which query answering goes beyond LogSpace: we
first identify DLs for which query answering is NLogSpace-hard; then we char-
acterize DLs for which query answering is PTime-hard; and finally we identify
DLs for which query answering is coNP-hard. Finally, in Section 5 we overview
related work, and in Section 6 we draw some conclusions.

We point out that the present paper is an extended and revised version
of [25]. In particular, the logic DLR-LiteA,u studied in this paper generalizes
the DL-Lite logics considered in [25], since it allows for the use of n-ary relations
rather than binary roles (this case has been only briefly commented in [25]),
and for a (controlled) combination of keys on relations with inclusions between
relations (which have been studied separately in [25]). Furthermore, we show
here also computational complexity upper bounds for non-FOL-rewritable DLs,
which were not considered in [25]. Finally, in the present paper we provide
complete proofs of all the results, and a detailed related work analysis.

2. Preliminaries

Description Logics (DLs) [23] are logics that represent the domain of interest
in terms of objects, i.e., individuals, concepts, which are abstractions for sets of
objects, and relations among concepts. Relations are typically binary in DLs
(they are called roles), but in this paper we also consider n-ary relations, in the
spirit of the DL DLR [5, 9].

In the rest of the paper, we implicitly refer to a signature S, and therefore
we often omit to refer to it explicitly. The signature S includes symbols for con-
stants (also called individuals), unary predicates (also called atomic concepts),
binary predicates (also called atomic roles), n-ary (with n ≥ 2) predicates (also
called atomic relations). The arity of a relation R, denoted ar(R), is the number
of its arguments, also called its components.

A DL knowledge base (KB) K = 〈T ,A〉 over S is a pair formed by a set T
of assertions, called TBox, and a set A of assertions, called ABox. Intuitively, T

6Actually, our mandatory participation and functionality constructs can be extended to
unqualified number restrictions in a rather straightforward way [20, 24].
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contains intensional assertions, i.e., axioms specifying general properties of con-
cepts, roles, and relations, while A contains extensional assertions, i.e., axioms
about individual objects.

Definition 2.1 (Knowledge base). A DL knowledge base over a signature S is
a pair K = 〈T ,A〉, where:

• T , called the TBox of K, is a finite set of intensional assertions (also called
TBox assertions) over S;

• A, called the ABox of K, is a finite set of extensional assertions (also called
ABox assertions) over S of the form:

A(a1) (concept membership assertion),
P (a1, a2) (role membership assertion),
R(a1, . . . , an) (relation membership assertion),

with A, P , and R denoting respectively an atomic concept symbol, an
atomic role symbol, and an n-ary atomic relation symbol, for n ≥ 2, and
a1, . . . , an denoting constant symbols.

Informally, a concept membership assertion specifies that an object is an
instance of an atomic concept. Analogously, the other types of membership
assertions specify instances of atomic roles and relations.

Later in the paper, we will illustrate the form of TBox assertions. What is
important to note here about such assertions is that they are specified using
not only atomic concepts, roles, and relations, but also complex expressions.
Complex concept expressions are constructed starting from atomic concepts
by applying suitable operators. Analogously, for complex roles and complex
relations. Different DLs allow for both different concept and role expressions,
and different TBox intensional assertions. In other words, defining a specific
DL means providing a specification of both the language for building complex
expressions, and the language for specifying intensional assertions.

We start with the definition of the concept, role, and relation expressions
allowed in the various DLs considered in this paper. The whole set of relevant
constructs are shown in the following syntactic rules:

C −→ A | ¬C | C u · · · u C | C t · · · t C |
∃Q | ∃Q.C | ∀Q.C | ∃i:R

Q −→ P | P− | ¬P | ¬P−
V −→ R | ¬R | R[i1, . . . , ih] | ¬R[i1, . . . , ih],

where

• A denotes an atomic concept, P an atomic role, R an atomic relation,
C an arbitrary (i.e., either atomic or complex) concept, Q an arbitrary
role, and V an arbitrary relation. All these symbols will be used with
subscripts, when needed.
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• In an expression of the form ∃i:R, we have that i ∈ {1, . . . , ar(R)}.

• In an expression of the form R[i1, . . . , ih], we have that ij ∈ {1, . . . , ar(R)},
for each j ∈ {1, . . . , h}, and ij 6= i`, for j, ` ∈ {1, . . . , h} with j 6= `.
Such an expression denotes a relation of arity h whose components are
1, . . . , h, and such that the component ij of R corresponds to component j
of R[i1, . . . , ih]. Notice that, when R has arity n, then R[1, . . . , n] coincides
with R.

The semantics of a DL KB is given in terms of first-order interpretations,
where an interpretation I = 〈∆I , ·I〉 consists of a nonempty interpretation
domain ∆I , and an interpretation function ·I , assigning to each atomic concept
A a subset AI of ∆I , to each atomic role P a binary relation P I over ∆I (i.e., a
subset of ∆I×∆I), and to each n-ary relation R an n-ary relation RI over ∆I .
Also, ·I assigns to each constant a an object aI of ∆I . All the DLs discussed
in this paper follow the unique name assumption, and, therefore, if a1 and a2
are different constants, then the objects aI1 and aI2 are different as well.

In the following, we use ~o to denote an n-tuple of objects in ∆I , and ~o[i],
where i ∈ {1, . . . , n}, to denote the i-th component of ~o. Also, we will use
~o[i1, . . . , ih], where i1, . . . , ih ∈ {1, . . . , n} and ij 6= i`, for j, ` ∈ {1, . . . , h} with
j 6= `, as a shortcut for (~o[i1], . . . , ~o[ih]). Finally, for ~a = (a1, . . . , an), where
a1, . . . , an are constants, we use ~aI as a shortcut for (aI1 , . . . , a

I
n).

The semantics of all the constructs that are relevant for this article is shown
in Table 1. For each of the constructs, the table shows its name, its syntax, and
its semantics.

We now turn to the definition of TBox assertions. In this paper, we consider
three kinds of TBox assertions:

• Inclusion assertions between concepts, stating that all instances of one
concept are also instances of another concept. Analogous assertions specify
inclusions between roles, and inclusions between relations.

• Functional assertions, stating that a role is functional.

• Key assertions, stating that a set of components is a key for a relation.

Table 2 illustrates the various TBox assertions mentioned above, by describ-
ing their syntax and their semantics. In particular, the “Semantics” column of
the table specifies, for each assertion, which is the condition that an interpreta-
tion I must obey in order to satisfy the assertion. Note that:

• In the concept inclusion assertions, Cl (resp., Cr) denotes a concept used
in the left-hand side (resp., right-hand side) of the inclusion. The distinc-
tion between Cl and Cr is motivated by the fact that the constraints that
the various DLs put on the form of concept expressions appearing in one
side of the inclusion are often different with respect to those in the other
side. Analogous observation holds for both role and relation inclusions
assertions.
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Construct Syntax Semantics

atomic concept A AI ⊆ ∆I

atomic role P P I ⊆ ∆I ×∆I

atomic relation R RI ⊆ ∆I × · · · ×∆I

concept negation ¬C ∆I \ CI

concept conjunction C1 u · · · u Cn CI1 ∩ · · · ∩ CIn
concept disjunction C1 t · · · t Cn CI1 ∪ · · · ∪ CIn

universal
quantification

∀Q.C {o | ∀o′. (o, o′) ∈ QI → o′ ∈ CI}

unqualified existential
role quantification

∃Q {o | ∃o′. (o, o′) ∈ QI}

qualified existential
role quantification

∃Q.C {o | ∃o′. (o, o′) ∈ QI ∧ o′ ∈ CI}

unqualified existential
relation quantification

∃i:R {o′ | ∃~o ∈ RI.~o[i] = o′}

inverse role P− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q (∆I ×∆I) \QI

relation projection R[i1, . . . , ih] {~o[i1, . . . , ih] | ~o ∈ RI}
relation negation ¬V (∆I × · · · ×∆I) \ V I

Table 1: The DL constructs considered in this article with their semantics
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TBoxassertion Syntax Semantics

concept inclusion Cl v Cr ClI ⊆ CrI

role inclusion Ql v Qr QlI ⊆ QrI

relation inclusion Vl v Vr VlI ⊆ VrI

role functionality
assertion

(funct Q) ∀o1.∀o2.∀o3.
(o1, o2) ∈ QI ∧ (o1, o3) ∈ QI → o2 = o3

relation key
assertion

(key j1, . . . , j`:V ) ∀~o1 ∈ V I. ∀~o2 ∈ V I.
~o1[j1, . . . , j`] = ~o2[j1, . . . , j`]→ ~o1 = ~o2

Table 2: The TBox assertions considered in this article with their semantics

• In an expression of the form (key j1, . . . , j`:V ), we have that jk ∈
{1, . . . , ar(V )}, for each k ∈ {1, . . . , `}, and jk 6= jm for each k,m ∈
{1, . . . , `} with k 6= m. In particular, when R is a relation of arity n, in an
expression (key j1, . . . , j`:R[i1, . . . , ih]) we have that i1, . . . , ih ∈ {1, . . . , n}
and j1, . . . , j` ∈ {1, . . . , h}.

We are now ready to complete the definition of the semantics of KBs. For
this purpose, the basic definitions are as follows:

• An interpretation I is a model of a TBox assertion α if I satisfies α,
according to what reported in Table 2.

• An interpretation I is a model of (or equivalently satisfies) a membership
assertion A(a) if aI ∈ AI . It is a model of P (a1, a2) if (a1, a2) ∈ P I , and
it is a model of R(a1, . . . , an) if (aI1 , . . . , a

I
n) ∈ RI .

A model of a KB K = 〈T ,A〉 is an interpretation I that is a model of all
assertions in T and A. A KB is satisfiable if it has at least one model. A KB
K logically implies (an assertion) α, written K |= α, if all models of K are also
models of α.

Example 2.2. Let us assume that our signature includes the atomic concepts
Supplier , Customer , and Product , the ternary relation supply , and the binary
relation clientOf . The following is a TBox T :

∃1:supply v Supplier (1)

∃2:supply v Customer (2)

∃3:supply v Product (3)

Supplier v ¬Product (4)

Customer v ¬Product (5)

(key 2, 3: supply) (6)

Supplier u Customer v ∃1:supply (7)

Supplier u Customer v ∃2:supply (8)

supply [1, 2] v clientOf [2, 1] (9)

In the above TBox, inclusions (1)-(3) specify the domain respectively of the
first, second, and third component of the relation supply , with the intended
meaning that suppliers provide customers with products. Assertions (4) and
(5) impose that the set of products is disjoint from the set of customers and
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the set of suppliers, respectively. Assertion (6) imposes that position 2 and 3 in
supply constitute the key of supply , with the intended meaning that a customer
for a certain product has only one supplier. Assertions (7) and (8) specify that
those individuals that are both suppliers and customers must participate in both
the first and the second component of the relation supply . Finally, assertion (9)
says that each individual that is a supplier of a customer (for a certain product),
has such a customer as a client.

As an example of ABox A, consider

Customer(SmithInc)
Supplier(SmithInc)
clientOf (SmithInc,SmartCompany)

In the rest of this paper, each of the DLs that we will refer to will be
characterized by the following elements:

1. the form of the concept expressions Cl and Cr ,

2. the form of the role expressions Ql and Qr ,

3. the form of the relation expressions Vl and Vr , and

4. the type of TBox assertions allowed in the DL.

Note that, when in the description of a DL, the second item (resp., the third
item) is missing, this means simply that the DL includes only relations (resp.,
roles), and not roles (resp., n-ary relations).

2.1. The DL-Lite family

The DL-Lite family [18] is a family of DLs specifically tailored to cap-
ture knowledge representation and ontology languages, while allowing reasoning
tasks to be carried out efficiently. In particular, the distinguishing feature of the
DLs of this family is that query answering has the same computational complex-
ity as in relational databases, if one measures the complexity with respect to the
size of the ABox only. The goal of this subsection is to provide the definition of
the DLs of the DL-Lite-family.

Table 3 describes the basic members of the DL-Lite family, studied in detail
in [18, 26]. In all these DLs, only roles (i.e., binary relations) are allowed. Note
that the symbol (∗) associated to the TBox assertion (funct Q) of DL-LiteA
indicates that in this DL the following restriction on the use of such assertions
holds:

(∗) In a DL-LiteA KB K = 〈T ,A〉, for each role P such that in T there
is an assertion (funct P ) or (funct P−), in T there is no assertion of
the form Q v P and no assertion of the form Q v P−.
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DL-Litecore DL-LiteF DL-LiteR DL-LiteA

Cl A | ∃P | ∃P−

Cr Cl | ¬Cl

Ql − P | P−

Qr − Ql | ¬Ql

Vl , Vr −

TBox assertions

Cl v Cr Cl v Cr

(funct Ql)

Cl v Cr

Ql v Qr

Cl v Cr

Ql v Qr

(funct Ql)(∗)

Table 3: The basic DLs of the DL-Lite family

In other words, functional roles cannot be specialized in the TBox. This restric-
tion is crucial for keeping query answering efficient, as we will demonstrate in
Section 4.

We observe that DL-LiteA, as defined in [18, 26], is actually richer than
the DL described in Table 3, because it includes constructs for modeling con-
cept attributes, which are binary relations between concepts and value-domains.
However, from the technical point of view, attributes can be considered essen-
tially as roles, and therefore we ignore them here.

Although much of the technical work done so far on the DL-Lite family deals
with the basic members, in this paper we consider a new member of the family,
called DLR-LiteA,u, which is characterized by the following features:

• it allows for modeling a domain not only in terms of concepts and roles,
but also in terms of n-ary relations;

• it allows for the specification of inclusions between (projections of) n-ary
relations;

• it provides the possibility of specifying conjunctions in the left-hand side
of inclusions between concepts;

• it allows for the specification of key constraints on (projections of) n-ary
relations.

We provide the definition of DLR-LiteA,u in Table 4. In the following, we
say that the key assertion (key j1, . . . , j`: Vl) is on relation R if Vl is either R
or R[i1, . . . , ih].

Analogously to the case of DL-LiteA, the symbol (∗) associated to the TBox
assertion (key j1, . . . , j`: Vl) of DLR-LiteA,u indicates that in this DL the fol-
lowing restriction on the use of such assertions holds:

(∗) In a DLR-LiteA,u KB K = 〈T ,A〉, for each relation R such that in
T there is a key assertion on R, in T there is no assertion of the
form V v R and no assertion of the form V v R[i1, . . . , ih].

10



DLR-LiteA,u

Cl A | ∃i:R | Cl1 u · · · u Cln
Cr A | ∃i:R | ¬A | ¬∃i:R

Ql , Qr −
Vl R | R[i1, . . . , ih]

Vr Vl | ¬Vl

TBox assertions

Cl v Cr

Vl v Vr

(key j1, . . . , j`: Vl) (∗)

Table 4: The DL DLR-LiteA,u

In other words, relations occurring in key assertions in T cannot be specialized,
i.e., they cannot occur positively in the right-hand side of inclusion assertions
between relations. Observe that the KB discussed in Example 2.2 is a DLR-
LiteA,u KB.

Hereinafter, we call positive inclusions (PIs) assertions of the form Cl v
A, Cl v ∃i:R, Vl v R, and Vl v R[i1, . . . , ih]. Moreover, we call negative
inclusions (NIs) assertions of the form Cl v ¬A, Cl v ¬∃i:R, Vl v ¬R, and
Vl v ¬R[i1, . . . , ih].

Note that, analogously to DL-LiteA, DLR-LiteA,u includes concept at-
tributes, but we ignore them in this paper. It is immediate to verify that
DLR-LiteA,u is more expressive than all the basic members of the DL-Lite fam-
ily. Indeed, although DLR-LiteA,u does not include roles, they can obviously be
captured by relations of arity 2. Analogously, constructs like ∃R and P− can
be easily expressed in terms of the constructs of DLR-LiteA,u. We observe that
DLR-LiteA,u might also be enhanced with the capability of managing qualified
existential quantification on the right-hand side of inclusion assertions between
concepts, i.e., adding to Cr the construct

∃i:R.A1, . . . , Ai−1, Ai+1, . . . , An,

where R is an n-ary relation with no key constraint in T , and
A1, . . . , Ai−1, Ai+1, . . . , An are atomic concepts [25]. The semantics of the
above construct is defined as follows. Given an interpretation I, we have that
(∃i:R.A1, . . . , Ai−1, Ai+1, . . . , An)I is

{~o[i] | ~o ∈ RI and ~o[j] ∈ AIj , for j ∈ {1, . . . , i− 1, i+ 1, . . . , n}}.

This construct, however, can be simulated by suitably using inclusions between
relations and unqualified existential quantification on relations in inclusions
between concepts. More precisely, we can replace each assertion of the form
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Cl v ∃i:R.A1, . . . , Ai−1, Ai+1, . . . , An with the assertions

Cl v ∃i:R̂
R̂ v R

∃1:R̂ v A1

· · ·
∃i−1:R̂ v Ai−1
∃i+1:R̂ v Ai+1

· · ·
∃n:R̂ v An,

where R̂ is a fresh n-ary relation. Therefore, in the following we do not explicitly
consider qualified existential quantification. Other logics allowing for different
usages of qualified existential quantification will be analyzed in the next sections.

We conclude by emphasizing that DLR-LiteA,u is the first DL of the DL-Lite
family that allows for the use of (i) n-ary relations, rather than binary roles,
(ii) key assertions, rather than simple functionalities, and (iii) conjunctions in
the left hand side of inclusion assertions. Nonetheless, we will show in the next
section that for DLR-LiteA,u KBs, both query answering and KB satisfiability
are FOL-rewritable, i.e., such a DL presents the distinguishing fundamental
properties of the DLs of the DL-Lite family (cf. [18]).

2.2. Query Answering

By using queries, we can extract information from the extensional level of a
KB K expressed in a DL. We start with a general notion of queries in first-order
logic, and then we move to the definition of queries over a DL KB.

A query is an open formula of first-order logic with equalities (FOL, in the
following). Formally, A FOL query q is an expression of the form

{ ~x | φ(~x) },

where φ(~x) is a FOL formula with free variables ~x. We call the size of ~x the
arity of q. Given an interpretation I, qI is the set of tuples of domain elements
that, when assigned to the free variables, make the formula φ true in I [21].
A boolean query is a query that does not involve any free variable (i.e., φ is a
closed formula). Given an interpretation I, if a boolean query q is true in I
then qI consists only of the empty tuple, i.e., the tuple of arity 0; instead, if q
is false in I then qI is obviously empty. Finally, a ground query is a boolean
query that does not contain any variable.

We are interested in conjunctive queries and unions of conjunctive queries.
A conjunctive query (CQ) q is a query of the form

{ ~x | ∃~y.conj (~x, ~y) },

where conj (~x, ~y) is a conjunction of atoms and equalities, with variables ~x and
~y. A union of conjunctive queries (UCQ) Q, is a query of the form

{ ~x |
∨

i∈{1,...,n}

∃~yi.conj i(~x, ~yi) },
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where each conj i(~x, ~yi) is, as before, a conjunction of atoms and equalities with
free variables ~x and ~yi. Obviously, the class of unions of conjunctive queries
contains the class of conjunctive queries.

For convenience, we adopt the usual Datalog notation (see e.g., [21]).
Namely, a conjunctive query q = { ~x | ∃~y.conj (~x, ~y) } is denoted as

q(~x ′)← conj ′(~x ′, ~y ′),

where conj′(~x ′, ~y ′) is the list of atoms in conj (~x, ~y) obtained after having
equated the variables ~x, ~y according to the equalities in conj (~x, ~y). As a re-
sult of such equality elimination, we have that ~x ′ and ~y ′ can actually contain
constants and multiple occurrences of the same variable. We call q(~x ′) the head
of q, denoted head(q), and conj ′(~x ′, ~y ′) the body, denoted body(q). Moreover,
we call the variables in ~x ′ the distinguished variables of q and those in ~y ′ the
non-distinguished variables. If the query q is boolean, its Datalog notation is
q ← conj ′(~y ′).

A union of conjunctive queries

Q = { ~x |
∨

i∈{1,...,n}

∃~yi.conj i(~x, ~yi) }

is denoted in Datalog notation as

Q = {α1, . . . , αn },

where each αi is the conjunctive query { ~x | ∃~yi.conj i(~x, ~yi) } expressed in
Datalog notation. Notice that, for an interpretation I, we have that QI =⋃
i∈{1,...,n} α

I
i .

The size of a CQ q, denoted with size(q), is the number of atoms occurring
in its body when q is given in Datalog notation. The size, size(Q), of a UCQ Q
coincides with the maximum among the sizes of the CQs contained in Q.

We can now define queries over a DL KB. We will concentrate on conjunctive
queries and unions of conjunctive queries, only. A conjunctive query over a TBox
T is a conjunctive query whose atoms are of the form A(z) or R(z1, . . . , zn)
where A and R are respectively an atomic concept and a relation of T and z,
z1, . . . , zn are either constants or (possibly non-distinct) variables. Similarly,
we define unions of conjunctive queries over a TBox T . We also say that a
conjunctive query q is specified over a KB K = 〈T ,A〉 if q is a conjunctive
query over T .

The reasoning service we are interested in is (conjunctive) query answering :
given a satisfiable knowledge base K and a union of conjunctive queries Q(~x)
over K, return all tuples ~a of constants in K such that, when substituted to
the variables ~x in Q(~x), denoted q(~a), we have that K |= Q(~a), i.e., such that
~aI ∈ QI for every model I of K. We denote with ans(Q,K) the set of such
tuples. When the query Q is boolean, ans(Q,K) contains the empty tuple if
K |= Q, i.e., if QI is true in every model I of K, whereas ans(Q,K) = ∅,
otherwise.
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We point out that defining query answering only for satisfiable KBs is not
a simplification. Indeed, from the “ex falso quod libet” principle, it follows
that the answers to a query of arity n posed over an unsatisfiable KB K would
be trivially all possible tuples of constants in K whose arity is the one of the
query. Since we are not interested in getting such answers, we have defined
query answering only over satisfiable KBs, and we will perform query answering
only after a check on the satisfiability of the KB at hand.

We observe that query answering (properly) generalizes two well known rea-
soning services in DLs. The first one is instance checking, i.e., logical implica-
tion of an ABox assertion, which can be expressed as the problem of answering
boolean ground queries whose body contains exactly one ground atom. The sec-
ond one is retrieval, i.e., determining all individuals that are logically implied to
be instances of a concept, which can be expressed as the problem of answering
a unary query whose body contains exactly one unary atom.

Finally, we refer to data complexity of query answering, which is a notion
borrowed from relational database theory [12], and in the context of DLs is
defined as follows. First, we note that there is a decision problem associated
with query answering: fixed a TBox T expressed in a DL L, and a query q, the
recognition problem associated to T and q is the decision problem of checking
whether, given an ABox A such that 〈T ,A〉 is satisfiable, and a tuple ~a of
constants, we have that 〈T ,A〉 |= q(~a). Note that neither the TBox nor the
query is an input to the recognition problem.

Let C be a complexity class. When we say that query answering for a certain
DL L is in C with respect to data complexity, we mean that the corresponding
recognition problem is in C. Similarly, when we say that query answering for
a certain DL L is C-hard with respect to data complexity, we mean that the
corresponding recognition problem is C-hard.

2.3. The notion of FOL-rewritability

We now introduce the notion of FOL-rewritability of query answering and
KB satisfiability. We start by giving the notion of Q-rewritability of query
answering and KB satisfiability, where Q is a given query language. To this
purpose, given an ABox A (of the kind considered above), we define the inter-
pretation db(A) = 〈∆db(A), ·db(A)〉 as follows:

• if A 6= ∅, then ∆db(A) is the set consisting of all constants occurring in A,
otherwise, if A = ∅, then ∆db(A) = {c} where c is some constant symbol,

• adb(A) = a, for each constant a,

• Adb(A) = {a | A(a) ∈ A}, for each atomic concept A, and

• Rdb(A) = {(a1, . . . , an) | R(a1, . . . , an) ∈ A}, for each n-ary atomic rela-
tion R.

Definition 2.3. Query answering in a DL L is Q-rewritable, if for every TBox
T expressed in L and every (conjunctive) query q over T , one can effectively
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compute a query qr over T , belonging to the query language Q, such that for
every ABox A, for which 〈T ,A〉 is satisfiable, and every tuple of constants ~a

occurring in A, 〈T ,A〉 |= q(~a) if and only if ~adb(A) ∈ qdb(A)
r . The query qr is

called the Q-rewriting of q w.r.t. T .

In other words, Q-rewritability of query answering captures the property
that we can reduce query answering to evaluating a query belonging to the
query language Q over the ABox A considered as a relational database, i.e.,
over db(A).

Analogously, we can define Q-rewritability of KB satisfiability

Definition 2.4. KB satisfiability in a DL L is Q-rewritable, if for every TBox
T expressed in L, one can effectively compute a boolean query qr, over T ,
belonging to the query language Q, such that for every ABox A, 〈T ,A〉 is

satisfiable if and only if qr evaluates to false in db(A), i.e., q
db(A)
r = ∅.

One of the most interesting classes of queries to be considered for Q is that
of FOL queries, since, from the practical point of view, FOL queries correspond
to queries expressed in relational algebra (i.e., in SQL). In other words, (the
SQL encoding of) FOL queries can be easily evaluated by an SQL engine over
a simple relational database defined by ABox assertions (i.e., the relational
database corresponding to the interpretation db(A) defined above), thus taking
advantage of well-established query optimization strategies supported by current
industrial strength relational technology.

Observe that every FOL query can be evaluated in AC0 with respect to data
complexity (see e.g., [21]). It follows that, if query answering (or KB satisfiabil-
ity) in L is FOL-rewritable, then query answering (resp., KB satisfiability) in L
is in AC0 wrt data complexity. Vice-versa, if query answering (or KB satisfia-
bility) is C-hard wrt data complexity for some complexity class C that strictly
contains AC0 (e.g., LogSpace, NLogSpace, PTime, coNP, etc.), then it is
not FOL-rewritable.

In the following, we study FOL-rewritability of KB satisfiability only in
those cases in which query answering is FOL-rewritable. Indeed, checking the
satisfiability of a KB is always needed before answering a query posed over it,
and establishing FOL-rewritability of both reasoning services guarantees the
possibility of completely relying on relational database technology to perform
them. In all the other cases, we analyze the computational complexity of query
answering only.

3. FOL-rewritability in DLR-LiteA,u

In this section we provide algorithms that reduce CQ answering and KB
satisfiability in DLR-LiteA,u to first-order logic query evaluation, thus showing
FOL-rewritability (and therefore membership in AC0) of both such reasoning
services.

We first study query answering and provide an algorithm, called PerfectRef,
that takes as input a DLR-LiteA,u TBox T and a union of conjunctive queries
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Q and returns a union of conjunctive queries Qr, which we show to be the FOL-
rewriting of Q w.r.t. T . In a nutshell, the algorithm compiles in Qr both the
query Q and the assertions of T that are relevant to compute the answers to Q.
Notably, we will show that, to obtain Qr, only the PIs explicitly asserted in T
have to be taken into account (see Theorem 3.9).

We then deal with KB satisfiability, which we in fact reduce to query an-
swering (of a suitable boolean query), and show that PerfectRef can be used to
solve this problem through rewriting into FOL.

From now on, we assume that both PIs and NIs are transformed as described
next. As for PIs, we substitute each occurrence of an atomic concept A with
A[1], and each occurrence of a concept of the form ∃i:R with R[i]. For example,
we transform the inclusion ∃3:R1 u A v ∃2:R2 in R1[3] u A[1] v R2[2]. In this
way, both positive concept inclusions and positive relation inclusions in T are
specified according to the following syntax:

S1[i1,1, . . . , i1,k] u · · · u Sh[ih,1, . . . , ih,k] v S[i1, . . . , ik], (10)

where each of S, S1, . . . , Sh may be an atomic concept or a relation, and k ≤
min(m,m1, . . . ,mh), with m,m1, . . . ,mh denoting the arities of S, S1, . . . , Sh,
respectively. Notice that, since conjunction in the left hand side of inclusions is
allowed only in concept inclusions, we have that k > 1 implies h = 1.

We adopt an analogous transformation also for NIs, and write them accord-
ing to the following syntax:

S1[i1,1, . . . , i1,k] u · · · u Sh[ih,1, . . . , ih,k] v ¬S0[i0,1, . . . , i0,k], (11)

where S0, S1, . . . , Sh, m0,m1, . . . ,mh, and k are defined as for positive inclu-
sions. Again, k > 1 implies h = 1.

In the following, we will always use S, possibly with subscripts, to denote
either an atomic concept or an atomic relation. In the former case, we always
have ar(S) = 1.

Example 3.1. The TBox given in Example 2.2 is transformed in the following
way:

supply [1] v Supplier [1] (12)

supply [2] v Customer [1] (13)

supply [3] v Product [1] (14)

Supplier [1] v ¬Product [1] (15)

Customer [1] v ¬Product [1] (16)

(key 2, 3: supply) (17)

Supplier [1] u Customer [1] v supply [1] (18)

Supplier [1] u Customer [1] v supply [2] (19)

supply [1, 2] v clientOf [2, 1] (20)
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3.1. FOL-rewritability of query answering

In the following, we illustrate PerfectRef from a technical point of view, and
show its termination and its correctness. We start our discussion with some
preliminary notions.

We point out that, for technical reasons, PerfectRef works on (unions of)
conjunctive queries specified in Datalog syntax (see Section 2). We say that
an argument of an atom in a query is bound if it corresponds either (i) to a
distinguished variable, or (ii) to a shared variable, i.e., a variable occurring at
least twice in the query body (including the case of a variable occurring more
than once in a single atom of the query), or (iii) to a constant. Instead, we say
that an argument of an atom is unbound if it corresponds to a non-distinguished
non-shared variable (we use the symbol ‘−’ to represent unbound variables).

Definition 3.2. Given a query atom g = S(x1, . . . , xn), where each xi is either
a bound term or a ‘−’, and a positive inclusion I ∈ T of the form (10), we
say that I is applicable to g (on xi1 , . . . , xik) if for each ` ∈ {1, . . . , n} such
that x` 6=−, there exists p ∈ {1, . . . , k} such that ip = `. We say also that the
arguments xi1 , . . . , xik are propagated by I (or that I propagates xi1 , . . . , xik).

Roughly speaking, an inclusion I is applicable to an atom g if all bound
arguments of g are propagated by I. For example, the positive inclusion
R′[2, 3] v R[1, 2], where R′ is of arity 3 and R is of arity 4, is applicable to
the atom R(x1, x2,− ,− ), where x1 and x2 are bound terms, but it is not appli-
cable to the atom R(x1, x2,− , x4), since it does not propagate the bound term
x4. We notice that the PIs of the form Cl v A are always applicable to an atom
of the form A(x), disregarding whether x is equal to − or not.

The algorithm PerfectRef is given in Figure 1. It is constituted by two main
steps, iteratively repeated until a fixpoint is reached, namely, the reduce step
(Step (a)), which realizes some unifications on the query, and the atom rewrite
step (Step (b)), which rewrites query atoms with respect to applicable PIs.
Roughly speaking, in the latter step, PIs are used as rewriting rules, applied
from right to left, which allow one to compile away in the reformulation the
intensional knowledge (represented by T ) that is relevant for answering the
query. Notice that each step produces a new CQ which is added to the set of
queries returned by the algorithm.

The algorithm is structurally similar to the PerfectRef algorithm presented
in [18] for computing the FOL-rewriting of a UCQ over either a DL-LiteR or a
DL-LiteF TBox. However, differently from [18], both the reduce and the atom
rewrite steps have now to deal with the presence of n-ary relations, both in the
query and in the inclusions, and the atom rewrite step has to properly manage
the presence of conjunctions in concept PIs. In particular, atom rewrite turns
out to be much more complicated than the analogous step of the algorithm
in [18]. Also, the proofs of termination and correctness of the algorithm, which
we will give later on, are now much more involved due to the presence of n-ary
relations and conjunctions in the left-hand side of inclusion assertions.. We now
describe more in detail the two steps of the algorithm.
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Algorithm PerfectRef (Q, T )
Input: UCQ Q of arity n and size k, DLR-LiteA,u TBox T
Output: UCQ Qr

Qr :=Q;
J := {z1, . . . zk}, with each zi not occurring in Q;
repeat

Qr
′ := Qr ;

for each CQ q ∈ Qr
′ do

(a) for each g1, g2 in q do
if g1 and g2 unify
then Qr := Qr ∪ { τ(reduce(q, g1, g2)) };

(b) for each g in q do
for each PI I in T do

if I is applicable to g
then Qr := Qr ∪ { atomRewrite(q, g, I, J) };

until Qr
′ = Qr ;

return Qr

Figure 1: The algorithm PerfectRef

The function reduce takes as input a CQ q and two atoms g1 and g2 occurring
in the body of q, and returns a conjunctive query q′ obtained by applying to
q the most general unifier between g1 and g2. We point out that, in unifying
g1 and g2, each occurrence of the − symbol has to be considered a different
unbound variable. The most general unifier substitutes each − symbol in g1 with
the corresponding argument in g2, and vice-versa (obviously, if both arguments
are −, the resulting argument is −). For example, given the query q(x,w) ←
R(x, y,− , z), R(w, y,− , z), A(y), the unification performed by reduce on the first
two atoms produces the query q(x, x) ← R(x, y,− , z), A(y). Notice that, by
virtue of the reduce step, variables that are bound in q may become unbound
in q′. The function τ is thus used to guarantee that each unbound variable
is represented by the symbol −. For instance, applied to the query in the
example above, τ substitutes the unbound variable z with − and returns the
query q(x, x)← R(x, y,− ,− ), A(y). Now, it may be the case that PIs that were
not applicable to atoms of the query q in the input to reduce, may become
applicable to atoms of τ(q′). For example, in our ongoing example, the PI
R′[2, 3] v R[1, 2] is applicable to the atom R(x, y,− ,− ), obtained through the
reduce step, but not to the atoms R(x, y,− , z) or R(w, y,− , z).

The function atomRewrite takes as input a CQ q, an atom g (belonging
to q), a PI I, and the set J of variables, and returns a new CQ in which the
atom g has been rewritten according to the PI I. Assume that g has the form
S(x1, . . . , xn), where S is either an atomic concept or an atomic relation symbol
(in the first case, n = 1), and that I is specified in the form (10). The function
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atomRewrite substitutes g with

S1(y1,1, . . . , y1,m1
), . . . , Sh(yh,1, . . . , yh,mh),

where, for each j ∈ {1, . . . , h}, mj is the arity of Sj , and for each yr,s different
cases are possible, depending on whether I is an inclusion without conjunctions
(either a role or a concept inclusion) (Case (i)), or I is a concept inclusion with
conjunctions that propagates a bound term (Case (ii)), or I is as in Case (ii),
but propagates an unbound term (Case (iii)). More precisely,

(i) if in Equation (10) we have that h = 1 (and therefore k may be greater
than 1), then for each p ∈ {1, . . . ,m1}, y1,p = xir if there exists r such
that i1,r = p, otherwise y1,p =−;

(ii) if in Equation (10) we have that k = 1 and h > 1, and in g we have that
xi1 6=−, then y1,i1,1 = · · · = yh,ih,1 = xi1 , and all others yr,s are −;

(iii) if in Equation (10) we have that k = 1 and h > 1 (as for Case (ii)), and
in g we have that xi1 =−, then y1,i1,1 = · · · = yh,ih,1 = z, where z is a
symbol from J that does not occur in q, and all other yr,s are −.

Informally, in Case (i), atomRewrite substitutes the input atom g with a
new atom g′, over the predicate S1, in which the terms of g propagated by
the inclusion I occur as arguments of S1 in the positions specified in the left-
hand side of I, whereas the other arguments of S1 are −. For example, if g =
R(x, y,− ,− ) and I = R′[2, 3] v R[1, 2], in the query returned by atomRewrite
g, is substituted by R′(−, x, y) (we assume that ar(R′) = 3).

In Case (ii), atomRewrite substitutes g with a conjunction of atoms over
the predicates S1, . . . , Sh, where each such atom contains the term xi1 in the
position specified in the left-hand side of the inclusion I. Other arguments in
these atoms are −. Notice that all such atoms are joined through the variable
xi1 . For example, if g = R(−, y,− ,− ) and I = R′[2]uR′′[1] v R[2], in the query
returned by atomRewrite, g is substituted by R′(−, y,− ), R′′(y,− ) (we assume
that ar(R′) = 3 and ar(R′′) = 2). R′ and R′′ are thus joined on y.

Case (iii) is as Case (ii), with the only difference that an unbound term
is now propagated. To express the join on the new atoms introduced by
atomRewrite, a new variable not occurring in the query q has to be used. For
example, if g = R(−,− ,− ,− ) and I = R′[2]uR′′[1] v R[2], in the query returned
by atomRewrite, g is substituted by R′(−, z,− ), R′′(z,− ), where z is a new vari-
able not occurring in the query q (to which g belongs). The procedure picks
up z from the fixed set J of variables, which contains only k variable symbols,
where k is the size of the query Q given as input to PerfectRef. Using only vari-
ables from J is sufficient, since it is possible to show that PerfectRef includes in
the final rewriting only CQs that may contain at most k new variable symbols,
other than the variables originally occurring in Q plus the − symbol. We will
prove this property in the proof of the termination of PerfectRef.
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Example 3.3. Let us consider the query q(x) ← supply(x, y, z),Product(z)
posed over the TBox T of Example 2.2 and Example 3.1. The algorithm applies
the PI (14) and generates the query q(x) ← supply(x, y, z), supply(w1, w2, z)

7.
Applying the reduce operator to the atoms contained in such a query, with
unifier {w1/x,w2/y}, we then obtain the query q(x)← supply(x, y, z), to which
the PI (18) can be applied, thus adding to the rewriting the query q(x) ←
Supplier(x),Customer(x). We notice that the use of the reduce function is
necessary to generate this query. The evaluation of the last query over the
ABox A produces the set {SmithInc}. Such a set constitutes in fact the set of
answers to the input query over the KB 〈T ,A〉.

Lemma 3.4. Let T be a DLR-LiteA,u TBox, and let Q be a union of conjunctive
queries over T . Then, the algorithm PerfectRef (Q, T ) terminates.

Proof. First of all, we notice that the set of terms that occur in the conjunctive
queries generated by the algorithm is equal to the set of variables and constants
occurring in Q, plus the symbol −, plus the k new variables of the set J (we recall
that k is the size of Q, i.e., the maximum number of atoms in a CQ contained
in Q). Indeed, a new variable is introduced in the rewriting by PerfectRef only
when it propagates, through atomRewrite, an unbound term by applying a con-
cept inclusion with conjunctions (Case (iii) of atomRewrite). This may happen
only if the atom to which such inclusion is applied is of the form S(−, . . . ,− ),
i.e., its arguments are all unbound, and k is the maximum number of atoms
of this form that may simultaneously occur in a query generated by PerfectRef
that takes as input a CQ q of size k. We prove this property by induction on
the size of the query taken as input by PerfectRef.

Base step: Let us assume that PerfectRef takes as input a query q of size
equal to 1, i.e., with exactly one atom, and show that 1 is the maximum number
of atoms of the form S(−, . . . ,− ) that can simultaneously occur in a query
generated by PerfectRef. Two cases are possible: (1) there is at least a bound
argument in the body of q. If such argument is a distinguished variable or a
constant, there is no hope to even generate a single atom of the form S(−, . . . ,− ),
since all bound arguments are always propagated by the function atomRewrite,
and distinguished variables or constants can never be transformed into unbound
arguments using the function reduce. If bound arguments are due to self-joins
on the only atom of q, then at least two bound arguments occur in such atom,
and therefore the algorithm cannot generate any query whose size is greater
than 1, since PIs with conjunctions can never be applied (i.e., Case (ii) and
Case (iii) of atomRewrite, which are the only cases that produce a query whose
size is greater than the size of the input query, cannot be executed). Therefore,
the claim easily follows. (2) the only atom g in the query is already of the form
S(−, . . . ,− ). The algorithm can generate queries whose size is greater than 1
only by applying Case (iii) of the function atomRewrite to g, or to an atom

7In the example, we use new symbols for indicating unbound variables introduced by
rewriting steps, rather than the symbol −.
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obtained from g by (possibly iteratively) applying Case (i) of atomRewrite. It
is easy to see that in each query of size greater than 1 produced by PerfectRef
all atoms are of the form S(−, . . . ,− , z,− , . . . ,− ), where z is a variable from J .
Therefore, a new atom of the form S(−, . . . ,− ) can be generated by PerfectRef
only after pairwise unifications of all such atoms through reduce steps, but this
means that the query that contains such atom cannot contain other atoms at
all, and therefore the claim follows.

Inductive step: In the following we denote with qj the query obtained at the
j-th iteration of PerfectRef which has taken as input a CQ q. Furthermore, a
conjunction c of atoms in the body of q is called an isolated component of q if
there are no variables that occur both in c and in another atom of q. With a
little abuse of notation, we denote with c the boolean query having c as its body,
and call it a sub-query of q. We also say that a (sub-)query qc is generated from
a (sub-)query qs if qc is in the set of queries produced by PerfectRef taking qs
as input. Given a query q and a sub-query qs of q, we denote with q − qs the
sub-query obtained by eliminating the atoms in qs from q.

We are now ready to face the inductive step of the proof. The inductive
hypothesis establishes that if PerfectRef takes as input a query whose size is at
most k, then it cannot generate a query in which more than k atoms of the form
S(−, . . . ,− ) occur. Let us now assume that PerfectRef takes as input a query q
of size k + 1, and that, by contradiction, PerfectRef generates a query qj with
more than k+ 1 atoms of such form. Without loss of generality we assume that
qj contains exactly k+ 2 atoms of such form and that it is generated from qj−1
that contains k + 1 atoms of such form. Therefore, qj = τ(reduce(qj−1, g1, g2)),
where g1 and g2 are atoms of qj−1 that are not in the form S(−, . . . ,− ), and qj
contains the atom g = S(−, . . . ,− ) which is obtained by the unification of g1 and
g2. This means that in g1 and g2 no constants or distinguished variables occur,
and no self-joins are possible (otherwise there should be arguments that cannot
be transformed in unbound arguments after the unification), and that, for the
same reason, qg = g1, g2 constitutes an isolated component of qj−1. We have
that qg is generated by an isolated component qs of q. Indeed, at each iteration
PerfectRef does not create atoms that are not obtained from the rewrite or the
reduce step, and therefore each sub-query in qj−1 must be generated from a sub-
query of q. Furthermore, qs cannot contain constants, distinguished variables
or variables occurring elsewhere in q − qs, otherwise they should occur also in
qg, and qg would no longer be an isolated component of qj−1. This implies that
qj−1 − qg is an isolated component generated by q − qs. Notice that PerfectRef
produces the FOL-rewriting of q if it takes as input either q or qs and q − qs
separately, and the queries in the results that it produces in this second case
are then combined together in all possible ways. Indeed, the only computation
that PerfectRef might execute in the former case, but not in the latter, is the
reduction of atoms having all arguments unbound and belonging to the two
different components, but this produces queries that are equivalent to other
queries in the rewriting generated in the former case. Now, since size(q−qs) = k
and qj−1−(g1, g2) contains k+1 atoms of the form S(−, . . . ,− ), we have reached
a contradiction.
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We can now prove termination of PerfectRef, for each q and T in input,
which indeed follows then from the following facts:

1. Let n be proportional to the size of the input query Q and to the number
of terms occurring in it. The cardinality of the set of terms that occur
in the conjunctive queries generated by the algorithm is then less than or
equal to 2n+ 1 (as shown above).

2. As a consequence of the above point, the number of different atoms that
may occur in a conjunctive query generated by the algorithm is less than
or equal to m · (2n + 1)h, where m is the number of predicate symbols
(concepts or relations) that occur in the signature of the TBox, and h is
the maximal arity among the arities of the relations in the signature.

3. The algorithm does not drop queries that it has generated.

Notice that the number of queries of any size that can be constructed using a
fixed number of different atoms is finite. Therefore, even if the size of queries
generated by the algorithm may grow, point 2 above implies that the number
of distinct conjunctive queries generated by the algorithm is finite, whereas
point 3 implies that the algorithm does not generate a query more than once,
and therefore PerfectRef terminates.

We now prove correctness of the algorithm PerfectRef. To this aim we need
to first introduce the notion of canonical interpretation. The canonical interpre-
tation of a DLR-LiteA,u KB is an interpretation constructed according to the
notion of chase [21]. In particular, we adapt here the notion of restricted chase
adopted by Johnson and Klug in [27]. In the following, we assume to have an
infinite set ΓN of constant symbols not occurring in A. We also denote with ΓA
the set of constants occurring in A. Then, our notion of chase is as follows.

Definition 3.5. Let K = 〈T ,A〉 be a DLR-LiteA,u KB. Let chase0(K) = A.
For every non-negative integer i, let chasei+1(K) be the set of membership
assertions obtained from chasei(K) by applying the following rule:

Chase Rule. Suppose that there is a PI I in T of the
form (10), and that there is a set of membership assertions F =
{S1(~a1), . . . , Sh(~ah)} ⊆ chasei(K) such that ~a1[i1,1, . . . , i1,k] =

· · · = ~ah[ih,1, . . . , ih,k] = ~b. If there is no membership as-

sertion S(~a) ∈ chasei(K) such that ~a[i1, . . . , ik] = ~b, then
chasei+1(K) = chasei(K) ∪ {S(~af )}, where ~af is an m-tuple such

that ~af [i1, . . . , ik] = ~b, and for each p ∈ {1, . . . ,m} \ {i1, . . . , ik},
~af [p] is a fresh constant from ΓN not occurring in chasei(K).

Then, we call chase of K, denoted chase(K), the set of membership assertions
obtained as the infinite union of all chasei(K), i.e.,

chase(K) =
⋃
i∈N

chasei(K).
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In the chase rule above, we also say that the PI I is applied in chasei(K) to
the set F of membership assertions.

We point out that in chasei(K) there might be several sets of membership
assertions to which a PI is applicable, and that several PIs might be applicable
to a set of membership assertions. Therefore, there might be several ways of
generating chasei+1(K) from chasei(K) via the chase rule above, and thus a
number of syntactically distinct chases might result from this process. It is
however possible to establish a suitable order on the application of the chase
rule, in such a way that the construction process results in a unique chase.
Notice that such an order must guarantee that each PI that becomes applicable
at a certain step of the construction of the chase is eventually applied in the
construction of the chase. In this paper, we do not discuss further this aspect,
and implicitly consider a fixed ordering on the execution of the chase rules that
guarantees the above properties. For more details on this aspect we refer the
reader to [27, 18].

With the notion of chase in place, we can introduce the notion of canonical
interpretation. We define the canonical interpretation can(K) as the interpre-
tation 〈∆can(K), ·can(K)〉, where:

• ∆can(K) = ΓA ∪ ΓN ,

• acan(K) = a, for each constant a occurring in chase(K),

• Scan(K) = {(a1, . . . , am) | S(a1, . . . , am) ∈ chase(K)}, where S as usual is
an atomic concept (in this case m = 1) or an atomic relation of arity m.

We also define cani(K) = 〈∆can(K), ·cani(K)〉, where ·cani(K) is analogous to
·can(K) but refers to chasei(K) instead of chase(K). From the fact that chase(K)
(and chasei(K)) is unique, it follows that also can(K) (resp., cani(K)) is unique.
Notice also that can0(K) is tightly related to the interpretation db(A). Indeed,
while ∆db(A) ⊆ ∆can(K), we have that ·db(A) = ·can0(K).

In line with similar results on the chase of TGDs, e.g., in database theory [21]
and data exchange [28], the following lemma shows that there is a homomor-
phism from can(K) to every model of K that preserves the assignment of objects
to concepts and relations.

Lemma 3.6. Let K = 〈T ,A〉 be a satisfiable DLR-LiteA,u KB, and let M =
〈∆M, ·M〉 be a model of K. Then, there is a function ψ from ∆can(K) to ∆M

such that for each predicate symbol S of arity m in K and each m-tuple of objects
o1, . . . , om ∈ ∆can(K), if (o1, . . . , om) ∈ Scan(K) then (ψ(o1), . . . , ψ(om)) ∈ SM.

Proof. The proof is by induction on the construction of chase(K), and it is
similar to the proof of Lemma 28 in [18], which states an analogous result for
DL-LiteR and DL-LiteF KBs. The main difference is here on the inductive step,
in which according to Definition 3.5, applicable PIs may present conjunctions of
atoms in their left-hand side for the case of concept inclusions and may involve
n-ary relations.
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The lemma below shows that whenever K is satisfiable, can(K) is a model
of K (and vice-versa).

Lemma 3.7. Let K = 〈T ,A〉 be a DLR-LiteA,u KB. Then, can(K) is a model
of K if and only if K is satisfiable.

Proof. “⇒” If can(K) is a model of K, then K is obviously satisfiable.
“⇐” We separately show that can(K) is (i) a model of A, (ii) a model of

all PIs in T , (iii) a model of all NIs in T , and (iv) a model of all key assertions
in T .

Point (i) easily follows by the construction of chase(K) (and in particular,
by the fact that A ⊆ chase(K)).

Point (ii) is proved by contradiction. Suppose that a PI (of the form (10))
is not satisfied in can(K). This means that there is a set of membership asser-
tions F = {S1(~a1), . . . , Sh(~ah)} ⊆ chase(K) such that ~a1[i1,1, . . . , i1,k] = · · · =

~ah[ih,1, . . . , ih,k] = ~b, and there is no membership assertion S(~a) ∈ chase(K)

such that ~a[i1, . . . , ik] = ~b. However, this would imply that we can apply the
chase rule and insert a new membership assertion S(~af ) in chase(K), where ~af
is an m-tuple such that ~af [i1, . . . , ik] = ~b, and for each p ∈ {1, . . . ,m} such that
p 6∈ {i1, . . . , ik}, ~af [p] is a fresh constant from ΓN not occurring in chasei(K).
Obviously, this makes the PI satisfied, thus leading to a contradiction.

Point (iii) is proved by contradiction. Suppose that a NI (of the form (11))
is not satisfied in can(K). This means that there is a set of membership asser-
tions F = {S0(~a0), S1(~a1), . . . , Sh(~ah)} ⊆ chase(K) such that ~a0[i0,1, . . . , i0,k] =
· · · = ~ah[ih,1, . . . , ih,k]. In other words, for each j ∈ {0, . . . , h}, we have that

~aj = (aj,1, . . . , aj,mj ) ∈ S
can(K)
j . By Lemma 3.6, it follows that, for each

j ∈ {0, . . . , h} and for each model I of K, (ψ(aj,1)I , . . . , ψ(aj,mj )
I) ∈ SIj . It

is easy to see that the NI is not satisfied in I, thus implying that no models
of K exists and therefore contradicting the assumption, which states that K is
satisfiable.

Point (iv) is proved by induction on the construction of the chase.
Base step: If K is satisfiable, then can0(K) satisfies all key assertions in

K. Indeed, if we assume by contradiction that can0(K) violates a key assertion
in K, i.e., an assertion of the form (key j1, . . . , j`:V ), where V is either an
atomic relation R or a projection R[i1, . . . , ih] over R, we get that there are
two membership assertions R(~a1) and R(~a2) in A such that ~a1[j1, . . . , j`] =
~a2[j1, . . . , j`]. Since every model has to satisfy both all ABox assertions and all
key assertions in K, this implies that no model of K exists (remember that we
adopt the unique name assumption for the interpretation of the constants of the
KB), thus contradicting the assumption that K is satisfiable.

Inductive step: By exploiting the inductive assumption that cani(K) satisfies
all key assertions in K, we show that cani+1(K) satisfies all key assertions in
K, where cani+1(K) corresponds to chasei+1(K), i.e., the chase that is obtained
from chasei(K) by application of the chase rule (cf. Definition 3.5). This means
that there exists a set of membership assertions F = {S1(~a1), . . . , Sh(~ah)} ⊆
chasei(K) such that ~a1[i1,1, . . . , i1,k] = · · · = ~ah[ih,1, . . . , ih,k] = ~b, and there
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does not exist a membership assertion S(~a) ∈ chasei(K) such that ~a[i1, . . . , ik] =
~b. Then chasei+1(K) = chasei(K) ∪ {S(~af )}, where ~af is an m-tuple such that

~af [i1, . . . , ik] = ~b, and for each p ∈ {1, . . . ,m} \ {i1, . . . , ik}, ~af [p] is a fresh
constant from ΓN not occurring in chasei(K). We show below that S(~af ) cannot
cause the violation of a key assertion in cani+1(K), considering all possible cases:

1. If S is an atomic concept, then no key is defined on S, and therefore the
claim trivially follows;

2. If S is a relation and k = 1, then key assertions may be specified on S,
since the PI applied in the chase rule is a concept inclusion. In the case
where there are no key assertions on S, the claim trivially follows. Let us
consider instead the case in which a key is specified on S. Since k = 1, the
membership assertion S(~af ) added to chasei+1(K) is such that ~af contains
only one non-fresh symbol. Let r be the position of such a symbol, i.e.,
~af [r] 6∈ ΓN . This means that only a key assertion of the form (key r:V ),
where V = S or V = S[i1, . . . , ih], can be violated by cani+1(K). How-
ever, a violation of this kind would imply that chasei+1(K) contains a
membership assertion S(~c) such that ~c[r] = ~af [r]. Since S(~c) belongs also
to chasei(K), then the chase rule would not have been applied and S(~af )
would not have been added to chasei(K) to obtain chasei+1(K). Hence,
the claim follows also in this case.

3. If S is a relation and k > 1, then the PI applied in the chase rule is a rela-
tion inclusion. According to the definition of DLR-LiteA,u (cf. Table 4), T
cannot contain key assertions involving S, and therefore the claim trivially
follows.

Exploiting Lemma 3.7 and Lemma 3.6, it is possible to prove the follow-
ing theorem, which is in turn crucial to establish correctness of the algorithm
PerfectRef.

Theorem 3.8. Let K be a satisfiable DLR-LiteA,u KB, and let Q be a union
of conjunctive queries over K. Then, ans(Q,K) = Qcan(K).

Proof. The proof is analogous to the proof of Theorem 29 in [18], which states
an analogous result for DL-LiteR and DL-LiteF KBs.

We are now able to prove that for every DLR-LiteA,u TBox T and UCQ Q
over T , the algorithm PerfectRef is well suited for computing the FOL-rewriting
of Q w.r.t. T .

Theorem 3.9. Let T be a DLR-LiteA,u TBox, Q a union of conjunctive queries
over T , and Qr the union of conjunctive queries returned by PerfectRef(Q, T ).
Then, for every DLR-LiteA,u ABox A such that 〈T ,A〉 is satisfiable, we have

that ans(Q, 〈T ,A〉) = Qr
db(A).

25



Proof. We first introduce the preliminary notion of witness of a tuple of con-
stants with respect to a conjunctive query. Given a DLR-LiteA,u knowledge
base K = 〈T ,A〉, a conjunctive query q(~x) ← conj (~x, ~y) over K, and a tuple ~t
of constants occurring in K, a set G of membership assertions is a witness of
~t w.r.t. q if there exists a substitution σ from the variables ~y in conj (~t, ~y) to
constants in G such that the set of atoms in σ(conj (~t, ~y)) is equal to G. In
particular, we are interested in witnesses of a tuple ~t w.r.t. a query q that are
contained in chase(K). Intuitively, each such witness corresponds to a subset of
chase(K) that is sufficient in order to have that the formula ∃~y.conj (~t, ~y) eval-
uates to true in the canonical interpretation can(K), and therefore the tuple
~t = ~tcan(K) belongs to qcan(K). More precisely, we have that ~t ∈ qcan(K) iff there
exists a witness G of ~t w.r.t. q such that G ⊆ chase(K). The cardinality of a
witness G, denoted by |G|, is the number of membership assertions in G.

Since K = 〈T ,A〉 is satisfiable, by Theorem 3.8, ans(Q,K) = Qcan(K). Fur-

thermore, Qr
db(A) =

⋃
q̂∈Qr

q̂db(A), where Qr is the union of conjunctive queries
returned by PerfectRef(Q, T ). Consequently, to prove the claim it is sufficient
to show that Qcan(K) =

⋃
q̂∈Qr

q̂db(A).

“⇐” To prove that
⋃
q̂∈Qr

q̂db(A) ⊆ Qcan(K), we have to prove that q̂db(A) ⊆
Qcan(K), for each q̂ ∈ Qr . In fact, since q̂db(A) ⊆ q̂can(K), we will show that
q̂can(K) ⊆ Qcan(K). We proceed by induction on the construction of Qr , which
is generated by iteratively applying, as long as they are applicable, Step (a) and
Step (b) of the algorithm PerfectRef (starting from the CQs constituting the
query Q).

Base step: It is trivial to see that for each q̂ ∈ Q, it holds that q̂can(K) ⊆
Qcan(K).

Inductive step: Given qi ∈ Qr , by inductive hypothesis we assume that

q
can(K)
i ⊆ Qcan(K), and show that q

can(K)
i+1 ⊆ Qcan(K) by distinguishing between

(i) the case in which qi+1 is obtained from qi by means of Step (a) of the
algorithm PerfectRef, and (ii) the case in which qi+1 is obtained from qi by
means of Step (b) of the algorithm. In both cases, given a tuple ~t of constants

occurring in K such that ~t ∈ qcan(K)i+1 , we have that there exists a witness G of
~t w.r.t. qi+1 such that G ⊆ chase(K). As for Case (i), we have that qi+1 =
τ(reduce(qi, g1, g2)), where g1, g2 are two atoms belonging to qi such that g1 and
g2 unify. It is easy to see that in such a case G is also a witness of ~t w.r.t. qi, and

therefore ~t ∈ qcan(K)i . As for Case (ii), it is easy to see that there exists a set
of membership assertions in G to which a PI is applicable (cf. Definition 3.5),
which implies that there exists a witness of ~t w.r.t. qi contained in chase(K).

Therefore, ~t ∈ qcan(K)i .

“⇒” We now prove that Qcan(K) ⊆
⋃
q̂∈Qr

q̂db(A), i.e., that for each tuple

~t ∈ Qcan(K) there exists q̂ ∈ Qr such that ~t ∈ q̂db(A). First, since ~t ∈ Qcan(K),
it follows that there exists a CQ q0 ∈ Q and a finite number k such that there
is a witness Gk of ~t w.r.t. q0 contained in chasek(K). Moreover, without loss
of generality, we can assume that every chase rule used in the construction of
chasek(K) is necessary in order to generate such a witness Gk, i.e., chasek(K)
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can be seen as a (non necessarily connected) directed acyclic graph where: (i)
nodes represent all membership assertions in chasek(K), and (ii) there is an edge
from a node f1 to a node f2 if f1 belongs to the set of membership assertions
to which a PI is applied to produce f2 (via the chase rule). Notice also that, in
such a graph, source nodes (i.e., nodes with only outgoing edges) correspond to
membership assertions in A, whereas target nodes (i.e., nodes with only ingoing
edges) correspond to membership assertions in Gk. In the following, we say
that a membership assertion f is an ancestor of a membership assertion f ′ in
a set S of membership assertions, if there exist n sets of membership assertions
F1, . . . ,Fn such that Fi ⊆ S for i ∈ {1, . . . , n}, f ∈ F1, Fn = {f ′}, and for
each i ∈ {2, . . . , n}, one element belonging to Fi can be generated by applying
a chase rule to Fi−1, and every element in Fi−1 is necessary for such a chase
rule to be applicable. We also say that f ′ is a successor of f . Furthermore, for
each i ∈ {0, . . . , k}, we denote with Gk−i the pre-witness (of depth i) of ~t w.r.t.
q0 in chasek(K), defined as follows:

Gk−i = { f ∈ chasek−i(K) | there exists f ′ ∈ Gk s.t. f is an ancestor of f ′

in chasek(K) and there exists no successor of f in chasek−i(K)
that is an ancestor of f ′ in chasek(K) }

Now we prove by induction on i that, starting from Gk (i.e., i = 0), we can “go
back” through the chase rule applications and find a query q̂ in Qr such that
the pre-witness Gk−i of ~t w.r.t. q0 in chasek(K) is also a witness of ~t w.r.t. q̂
(such a witness is obviously in chasek−i(K)). To this aim, we prove that there
exists q̂ ∈ Qr such that Gk−i is a witness of ~t w.r.t. q̂ and size(q̂) = |Gk−i|. The
claim then follows for i = k, since chase0(K) = A, and therefore G0 ⊆ A.

Base Step: There exists q̂ ∈ Qr such that Gk is a witness of ~t w.r.t. q̂ and
size(q̂) = |Gk|. This is an immediate consequence of the fact that: (i) q0 ∈ Qr ,
and (ii) Qr is closed with respect to Step (a) of the algorithm PerfectRef. Indeed,
if |Gk| < size(q0) then there exist two atoms g1, g2 in Q and a membership
assertion f in Gk such that f and g1 unify and f and g2 unify, which implies
that g1 and g2 unify. Therefore, by Step (a) of the algorithm, it follows that
there exists a query q1 ∈ Qr (with q1 = reduce(q0, g1, g2)) such that Gk is a
witness of ~t w.r.t. q1 and size(q1) = size(q0) − 1. Now, if |Gk| < size(q1), we
can iterate the above argument, thus we conclude that there exists q̂ ∈ Qr such
that Gk is a witness of ~t w.r.t. q̂ and size(q̂) = |Gk|.

Inductive step: suppose that there exists q̂ ∈ Qr such that Gk−i+1 is a wit-
ness of ~t w.r.t. q̂ and size(q̂) = |Gk−i+1|. Let I be the PI of form (10) applied
to a set of membership assertions in chasek−i(K) to obtain chasek−i+1(K), i.e.,
chasek−i+1(K) = chasek−i(K) ∪ {S( ~af )}, where S( ~af ) is as in Definition 3.5.
Since non-propagated positions in S, i.e., positions that are outside i1, . . . , ik,
contain new constants, i.e., constants not occurring elsewhere in Gk−i+1, and
since size(q̂) = |Gk−i+1|, it follows that the variables in q̂ that match with such
constants are unbound (notice that this might not hold without the assump-
tion size(q̂) = |Gk−i+1|). Therefore, by Step (b) of the algorithm, it follows
that there exists a query q1 ∈ Qr such that q1 is obtained via atomRewrite
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by substituting the atom S(~x) in q̂ with its rewriting according to the applied
PI, where S(~x) is the atom in q0 to which I is applicable, and Gk−i, i.e., the
pre-witness of depth i of ~t w.r.t. q̂, is a witness of ~t w.r.t. q1. Notice that
Gk−i = Gk−i+1 \ {S(~af )} ∪ {S1(~a1), . . . , Sh(~ah)}, where each Si(~ai) is as in
Definition 3.5.

Now, there are two possible cases: either size(q1) = |Gk−i|, and in this case
the claim is immediate; or size(q1) > |Gk−i|. This last case arises if and only
if some of the membership assertions S1(~a1), . . . , Sh(~ah) occur both in Gk−i
and in Gk−i+1. Without loss of generality we assume that such assertions are
S1(~a1), . . . , Sj(~aj) (notice that size(q1) = |Gk−i|+ j), and that this implies that
there exist j pairs of atoms, denoted gp,1, gp,2, with p ∈ {1, . . . , j}, in q1 such
that Sp(~ap) and gp,1 unify and Sp(~ap) and gp,2 unify, hence gp,1 and gp,2 unify.
Therefore, by Step (a) of the algorithm iteratively applied to q1 for j times, it
follows that there exists q2 ∈ Qr such that Gk−i is a witness of ~t w.r.t. q2 and
size(q2) = |Gk−i+1|, which proves the claim.

The following corollary is an immediate consequence of the above theorem.

Corollary 3.10. Let K = 〈Tp ∪ Tn ∪ Tk,A〉 be a satisfiable DLR-LiteA,u
KB, where Tp, Tn, and Tk respectively denote PIs, NIs, and key assertions
in the TBox of K, and let Q be a union of conjunctive queries over K. Then
ans(Q,K) = ans(Q, 〈Tp,A〉).

Since the evaluation of a FOL query is in AC0 in data complexity, the
following result is an obvious consequence of Theorem 3.9.

Theorem 3.11. Query answering in DLR-LiteA,u is in AC0 with respect to
data complexity.

3.2. FOL-rewritability of KB Satisfiability

We now consider KB satisfiability in DLR-LiteA,u, and provide a mechanism
to solve it via FOL query evaluation, thus showing its FOL-rewritability. We
start by considering the special case in which no NIs and no key assertions are
specified over a DLR-LiteA,u TBox, and get the following notable result.

Lemma 3.12. Let K = 〈T ,A〉 be a DLR-LiteA,u KB such that T contains only
PIs. Then, K is satisfiable.

Proof. In the proof of Lemma 3.7 (Point (ii)) we have shown that can(K) satis-
fies all PIs asserted in a DLR-LiteA,u KB. The same proof can be used to show
that for each K whose TBox consists of PIs only, can(K) is a model of K, and
therefore K is satisfiable.

Let us now consider generic DLR-LiteA,u KBs, i.e., KBs with PIs, NIs, and
key assertions. In order to show that KB satisfiability for KBs expressed in
such a language is FOL-rewritable, we first introduce the preliminary notions of
(boolean) query associated to a key assertion and of (boolean) query associated
to a NI. For ease of exposition, from now on we assume that a key assertion over
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a relation R of arity m is always written in the form (key j1, . . . , j`:R[1, . . . ,m]),
i.e., we exploit the fact that R[1, . . . ,m] is equivalent to R to consider only key
assertions over projections of atomic relations. In the following, we make use of
CQs and UCQs enriched with inequalities, and express them in Datalog nota-
tion, analogously to what we have done for CQs and UCQs without inequalities.

Definition 3.13. Let F = (key j1, . . . , j`:R[i1, . . . , ih]) be a DLR-LiteA,u key
assertion, where R is an atomic relation or arity m, i1, . . . , ih ∈ {1, . . . ,m},
and j1, . . . , j` ∈ {1, . . . , h} (cf. Section 2). Then, the query associated
to F is the boolean union of conjunctive queries with inequalities qF =⋃
k∈{i1,...,ih}\{ij1 ,...,ij`}

{qk}, where each qk is as follows

qk ← R(x1, . . . , xm), R(y1, . . . , ym), xk 6= yk,

where xij1 = yij1 , . . . , xij` = yij` .

For example, given a relation R of arity 4 and the key assertion
F = (key 2, 3:R[2, 3, 4]), the query associated to F is qF = {q ←
R(x1, x2, x3, x4), R2(y1, y2, x3, x4), x2 6= y2}. It is easy to see that a query
associated to a key assertion F is a boolean query whose evaluation over an
interpretation I is true if and only if I is not a model of F .

Definition 3.14. Given a DLR-LiteA,u negative inclusion N in the form (11),
the query associated to N is a boolean conjunctive query qN of the form

qN ← S0(z0,1, . . . , z0,m0
), . . . , Sh(zh,1, . . . , zh,mh),

where for j ∈ {0, . . . , h}, and for ` ∈ {1, . . . ,mj}, we have that zj,` = yr if there
exists r ∈ {1, . . . , k} such that ij,r = `, otherwise zj,` is a variable not occurring
elsewhere in qN .

For example, given the negative exclusion N = R1[1] u R2[2] v ¬R3[1],
where R1 is a binary relation and both R2 and R3 are ternary relations, the
query associated to N is qN ← R1(y1, y2), R2(y3, y1, y4), R3(y1, y5, y6). It is easy
to see that a query associated to a negative inclusion N is a boolean query whose
evaluation over an interpretation I is true if and only if I is not a model of N .

Example 3.15. The queries associated to the NIs (4) and (5) in Example 3.1
are qN,4 ← Supplier(x),Product(x) and qN,5 ← Customer(x),Product(x),
whereas the query associated to the key assertion (6) is qF,6 ←
supply(x1, x2, x3), supply(y1, x2, x3), x1 6= y1.

The following lemma states that satisfiability for a DLR-LiteA,u KB K =
〈T ,A〉, where T contains only PIs and key assertions, can be reduced to an-
swering a union of conjunctive queries with inequalities over the Abox A.

Lemma 3.16. Let K = 〈Tp ∪ Tk,A〉 be a DLR-LiteA,u KB where Tp is the set
of PIs in K and Tk the set of key assertions in K (i.e., K does not contain NIs),
and let Qk =

⋃
F∈Tk{qF }. Then, K is satisfiable if and only if A 6|= Qk.
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Proof. “⇐” From A 6|= Qk it easily follows that A |= Tk. Then, analogously to
the proof of Lemma 3.7 (part (iv)), it can be shown that chase(〈Tp,A〉) |= Tk
and therefore K = 〈Tp ∪ Tk,A〉 is satisfiable, since chase(〈Tp,A〉) is a model of
K.

“⇒” From A |= Qk it follows that there exists a key assertion F ∈ Tk such
that A |= qF , and therefore A∪ {F} is unsatisfiable. It is then easy to see that
〈Tp ∪ Tk,A〉 is unsatisfiable (indeed, every interpretation satisfying the ABox
necessarily violates the key assertion F ).

Notably, since answering Qk over the Abox A simply amounts to evaluating
Qk over db(A), the above lemma actually says that satisfiability of a DLR-
LiteA,u KB without NIs is FOL-rewritable. We notice that in each such knowl-
edge base K every key assertion can be processed independently, and that there
is no interaction between key assertions and PIs that has to be taken into ac-
count to check if K is satisfiable. Actually, this holds by virtue of the controlled
combination of key assertions and inclusions between relations established for
DLR-LiteA,u (cf. Section 2).

Let us now consider the impact of NIs on the satisfiability check. The follow-
ing lemma states that satisfiability of a satisfiable DLR-LiteA,u KB K extended
with a set of NIs can be reduced to query answering over K.

Lemma 3.17. Let 〈T ,A〉 be a satisfiable DLR-LiteA,u KB, let Tn be a set of
DLR-LiteA,u NIs, and let Qn =

⋃
N∈Tn{qN}. Then, 〈T ∪Tn,A〉 is satisfiable if

and only if 〈T ,A〉 6|= Qn.

Proof. “⇐” We show that if K = 〈T ∪Tn,A〉 is unsatisfiable then 〈T ,A〉 |= Qn.
Consider the FOL formula φ obtained as the conjunction of all the assertions in
K, each specified in FOL, i.e.,

φ =
∧
α∈T

α ∧
∧
β∈Tn

β ∧
∧
γ∈A

γ.

Obviously, if K is unsatisfiable then φ is unsatisfiable, and, by the deduction
theorem, it follows that ∧

α∈T
α ∧

∧
γ∈A

γ |=
∨
β∈Tn

¬β.

It is easy to see that, due to Theorem 3.8, this holds if and only if there exists
a NI N ∈ Tn such that 〈T ,A〉 |= qN and therefore 〈T ,A〉 |= Qn.

“⇒” We show that if 〈T ,A〉 |= Qn then 〈T ∪Tn,A〉 is unsatisfiable. Again,
due to Theorem 3.8, if 〈T ,A〉 |= Qn then there exists N ∈ Tn such that 〈T ,A〉 |=
qN . This implies that in every model of 〈T ,A〉 (which is satisfiable by the
assumption) there exist some tuples of objects that contradict the NI N , i.e., we
have that 〈T ,A〉 |= ¬N . By the deduction theorem, it follows that 〈T ∪{N},A〉
is unsatisfiable, and therefore 〈T ∪ Tn,A〉 is unsatisfiable.
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Algorithm Consistent (K)
Input: DLR-LiteA,u KB K = 〈T ,A〉, with set of PIs Tp ⊆ T
Output: UCQ Qc
Qn = ∅;
for each NI N ∈ T do
Qn = Qn ∪ {qN};

Qn = PerfectRef(Qn, Tp);
Qk = ∅;
for each key assertion F ∈ T do
Qk = Qk ∪ {qF };

return Qc = Qn ∪Qk

Figure 2: The algorithm Consistent

As a consequence of Lemma 3.17 and Lemma 3.12, we have that to establish
satisfiability of a DLR-LiteA,u KB K with no key assertions, it is possible to
resort to query answering over satisfiable KBs. Indeed, let Tp be the set of PIs in
K, and Tn the set of NIs in K. We have by Lemma 3.12 that 〈Tp,A〉 is satisfiable,
and therefore by Lemma 3.17 we get that K is satisfiable if and only if 〈Tp,A〉 6|=
Qn. Notice that this means that each NI can be processed independently, and its
interaction with PIs can be considered separately. Notably, by Theorem 3.9, we
have that the algorithm PerfectRef can be used to establish whether 〈Tp,A〉 6|=
Qn. This actually implies that KB satisfiability for DLR-LiteA,u KBs with no
key assertions is FOL-rewritable.

Now we are ready to show how to reduce satisfiability of generic DLR-LiteA,u
KBs to FOL query evaluation, constructing on the results given in Lemma 3.12,
Lemma 3.16, and Lemma 3.17. To this aim, we make use of the algorithm
Consistent, described in Figure 2. This algorithm calls the algorithm PerfectRef
to compute the FOL-rewriting of the query Qn, representing the union of all
the queries associated to NIs in the KB, and then adds the query Qk to the
result of PerfectRef, where Qk is the union of all the queries associated to key
assertions in the KB. The theorem below uses the algorithm Consistent to state
FOL-rewritability of KB satisfiability in DLR-LiteA,u KBs.

Theorem 3.18. Let K = 〈Tp∪Tn∪Tk,A〉 be a DLR-LiteA,u KB, where Tp, Tn,
and Tk respectively denote the set of PIs, NIs, and key assertions of the TBox,
and let Qc be the UCQ with inequalities returned by the algorithm Consistent(K).

Then, K is satisfiable if and only if A 6|= Qc, i.e., Q
db(A)
c = ∅.

Proof. “⇐” Let Qc = Qk ∪ QNR, where QF is the union of all the queries
associated to key assertions in Tf , and Qrn is the output of PerfectRef(Qn, Tp),
where Qn is the union of all the queries associated to NIs in Tn. From A 6|=
Qc it follows that A 6|= Qk and A 6|= Qrn. From A 6|= Qk it follows that
〈Tp ∪ Tk,A〉 is satisfiable (cf. , Lemma 3.16). Also, from A 6|= Qrn it follows
that 〈Tp,A〉 6|= Qn (according to Lemma 3.12 stating that 〈Tp,A〉 is satisfiable,
and to Theorem 3.9), and since 〈Tp ∪ Tk,A〉 is satisfiable, from Corollary 3.10
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it follows that 〈Tp ∪ Tk,A〉 6|= Qn. Then, from Lemma 3.17 it follows that
K = 〈Tp ∪ Tn ∪ Tk,A〉 is satisfiable.

“⇒” Suppose by contradiction that A |= Qc. This means that A |= Qk
or that A |= Qrn, where Qk and Qrn are as above. In the former case, from
Lemma 3.16 it follows that 〈Tk,A〉 is unsatisfiable, thus getting a contradiction.
In the latter case, from Theorem 3.9 and Lemma 3.17 it follows that 〈Tp∪Tn,A〉
is unsatisfiable, thus getting again a contradiction.

As an immediate consequence of Theorem 3.18, we obtain the following
result.

Theorem 3.19. KB satisfiability in DLR-LiteA,u is in AC0 with respect to
data complexity.

4. Going beyond FOL-rewritability

In the previous section, we have pointed out the importance of languages for
which query answering and KB satisfiability are FOL-rewritable. In this sec-
tion, we show that, as soon as we consider further, minimal extensions of DLR-
LiteA,u, we cross the boundary of AC0 data complexity. Going beyond AC0

data complexity means actually that we lose the property of FOL-rewritability
and therefore query answering requires more powerful engines than those avail-
able in standard relational database technology. An immediate consequence of
this fact is that we cannot take advantage anymore of data management tools
and query optimization techniques of current DBMSs.

We point out that the extensions of DLR-LiteA,u that we consider in the
following present the same behavior also if we restrict relations to be binary, i.e.,
if we have only roles. Moreover, such extensions make query answering harder
even if we apply them to the core of DL-Lite. Therefore, in the following, we
consider DLs with roles rather than n-ary relations, and analyze extensions of
DL-Litecore , the core language of the DL-Lite family (cf. Section 2). Specif-
ically, we study the computational complexity of instance checking and query
answering for extensions of DL-Litecore in which the ABox of a KB is as de-
scribed in Section 2, while the TBox consists of (i) concept inclusion assertions
of the form Cl v Cr , where the syntax of Cl and Cr is defined case by case,
and (ii) possibly, key (actually, functionality) assertions on roles.

We remark that all lower bounds given below hold under LogSpace-
reductions.

4.1. NLogSpace-hard DLs

We consider now extensions of DL-Litecore in which the concept inclusion
assertions may contain forms of qualified existential quantification or universal
quantification on roles, possibly combined with functionality assertions.

Theorem 4.1. Instance checking (and hence query answering) is NLogSpace-
hard with respect to data complexity for the cases where
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1. Cl −→ A | ∃P .A
Cr −→ A
TBox assertions: Cl v Cr

2. Cl −→ A
Cr −→ A | ∀P .A
TBox assertions: Cl v Cr

3. Cl −→ A
Cr −→ A | ∃P .A
TBox assertions: Cl v Cr , (funct P )

Proof. For Case 1, the proof is by a LogSpace reduction from reachability in
directed graphs, which is NLogSpace-complete. Let G = (N,E) be a directed
graph, where N is a set of nodes and E ⊆ N ×N is the set of edges of G, and
let s, d be two nodes in N . Reachability is the problem of checking whether
there is a path in G from s to d.

We define a KB K = 〈T ,A〉, where the TBox T is constituted by a single
inclusion assertion

∃P .A v A

and the ABox A has as constants the nodes of G, and is constituted by the
membership assertion A(d), and by one membership assertion P (n, n′) for each
edge (n, n′) ∈ E. It is easy to see that K can be constructed in LogSpace
from G, s, and d. We show that there is a path in G from s to d if and only if
K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of K
such that sI 6∈ AI . Consider the interpretation I with ∆I = N , nI = n for each
n ∈ N , P I = E, and AI = {n | there is a path in G from n to d }. We show
that I is a model of K. By construction, I satisfies all membership assertions
P (n, n′) and the membership assertion A(d). Consider an object n ∈ (∃P .A)I .
Then there is an object n′ ∈ AI such that (n, n′) ∈ P I . Then, by definition of
I, there is a path in G from n′ to d, and (n, n′) ∈ E. Hence, there is also a path
in G from n to d and, by definition of I, we have that n ∈ AI . It follows that
also the inclusion assertion ∃P .A v A is satisfied in I.

“⇒” Suppose there is a path in G from a node n to d. We prove by induction
on the length ` of such a path that K |= A(n). Base case: ` = 0, then n = d,
and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path
in G of length `− 1 from n′ to d and (n, n′) ∈ E. By the inductive hypothesis,
K |= A(n′), and since by definition P (n, n′) ∈ A, we have that K |= ∃P .A(n).
By the inclusion assertion in T it follows that K |= A(n).

For Case 2, the proof follows from Case 1 and the observation that an asser-
tion ∃P .A1 v A2 is logically equivalent to the assertion A1 v ∀P−.A2, and that
we can get rid of inverse roles by inverting the edges of the graph represented
in the ABox.

For Case 3, the proof is again by a LogSpace reduction from reachability
in directed graphs, and is based on the idea that an assertion ∃P .A1 v A2 can
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be simulated by the assertions A1 v ∃P−.A2 and (funct P−). Moreover, the
graph can be encoded using only functional roles, and we can again get rid of
inverse roles by inverting edges.

More precisely, let G = (N,E) be a directed graph and consider the problem
of reachability in G between nodes s and d. We define the KB K = 〈T ,A〉, where
the TBox T is constituted by the assertions

A v ∃P1.B B v ∃P1.B B v ∃P2.A (funct P1) (funct P2)

and the ABox A makes use of the nodes in N and the edges in E as constants.
Consider a node n of G, and let e1, . . . , ek be all edges of G that have n as their
target (i.e., such that ei = (ni, n) for some node ni), taken in some arbitrarily
chosen order. Then the ABox A contains the following membership assertions:

• P1(n, e1), and P1(ei, ei+1) for i ∈ {1, . . . , k − 1},

• P2(ei, ni), where ei = (ni, n), for i ∈ {1, . . . , k}.

Additionally, A contains the membership assertion A(d). Notice that the as-
sertions in the ABox do not violate the functionality assertions in the TBox.
Again, it is easy to see that K can be constructed in LogSpace from G, s, and
d. We show that there is a path in G from s to d if and only if K |= A(s).

“⇐” Suppose there is no path in G from s to d. We construct a model I of
K such that sI 6∈ AI . Consider the interpretation I with ∆I = {o} ∪ N ∪ E,
and in which each constant of the ABox is interpreted as itself, P I1 and P I2
contain all pairs of nodes directly required by the ABox assertions, AI contains
each node n such that there is a path in G from n to d, and BI contains all
edges (i, j) such that there is a path in G from j to d. To satisfy the assertion
A v ∃P1.B for those objects n ∈ AI that have no outgoing P1 edge forced by
the ABox (i.e., that have no incoming edge in G), we set o ∈ BI , (n, o) ∈ P I1 ,
and (o, o) ∈ P I1 . We use o in a similar way to satisfy the assertions B v ∃P1.B
and B v ∃P2.A, by setting (o, o) ∈ P I2 and o ∈ AI . Note that in this way the
functionality assertions are not violated. It is easy to see that I is a model of
K, and since there is no path in G from s to d, we have that s 6∈ AI .

“⇒” Suppose there is a path in G from a node n to d. We prove by induction
on the length ` of such a path that K |= A(n). Base case: ` = 0, then n = d,
and the claim follows from A(d) ∈ A. Inductive case: suppose there is a path
in G of length ` − 1 from j to d and (n, j) ∈ E. Let n1, . . . , nh be the nodes
of G such that (ni, j) ∈ E, up to nh = n and in the same order used in the
construction of the ABox. By the inductive hypothesis, K |= A(j), and by the
assertion A v ∃P1.B, functionality of P1, and the ABox assertion P1(j, (n1, j)),
we obtain that K |= B((n1, j)). Exploiting B v ∃P1.B, functionality of P1,
and the ABox assertion P1((ni, j), (ni+1, j)), we obtain by induction on h that
K |= B((nh, j)). Finally, by B v ∃P2.A, functionality of P2, and the ABox
assertion P2((nh, j), nh), we obtain that K |= A(nh), i.e., K |= A(n).

Note that all the above “negative” results already hold for instance checking,
i.e., for the simplest possible queries. Also, note that in all three cases, we
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are considering extensions to a minimal subset of DL-Litecore in order to get
NLogSpace-hardness.

Notably, the above result says that restriction (∗) imposed on DL-LiteA and
DLR-LiteA,u (cf. Section 2.1) is crucial in order to guarantee FOL-rewritability
of instance checking and query answering. Indeed, consider the DL DL-LiteF,R
that is identical to DL-LiteA, except that restriction (∗) is not enforced. We
observe that, using a transformation analogous to the one shown in Section 2.1
to deal with qualified existential quantification, a concept inclusion assertion of
the form A1 v ∃P .A2 can be rewritten equivalently into A1 v ∃PA2

, PA2
v P ,

∃P−A2
v A2, where PA2

is a newly introduced role. Hence, the KB used in the
proof of Case 3 of Theorem 4.1 can be rewritten into DL-LiteF,R, and in the
resulting KB functional roles are also specialized, i.e., such a KB is not a DL-
LiteA KB. It follows that, if restriction (∗) does not hold, instance checking is
NLogSpace-hard, and hence not FOL-rewritable. An analogous observation
holds for DLR-LiteA,u.

Theorem 4.2. Conjunctive query answering is NLogSpace-complete with re-
spect to data complexity for the DLs of Case 1 and Case 2 of Theorem 4.1.

Proof. NLogSpace-hardness was already proved in Theorem 4.1. It remains
to show membership in NLogSpace. For Case 1, it follows from the fact that
the DL considered is a sub-logic of the DL called DL-Lite+ in [29], and that
conjunctive query answering in such a DL is NLogSpace-complete with respect
to data complexity [29]. For Case 2, membership in NLogSpace immediately
follows from the fact that, as already shown, this case can be reduced to Case 1.

We conjecture that also for Case 3 of Theorem 4.1, conjunctive query an-
swering can be done in NLogSpace, and hence the established lower-bound is
tight.

4.2. PTime-hard DLs

Next we show that if we consider further extensions to the logics mentioned in
Theorem 4.1, we get even stronger complexity results. In particular, we consider
four different cases where query answering (actually, instance checking already)
becomes PTime-hard in data complexity. Note that the PTime-hardness result
basically means that we need at least the power of full Datalog to answer queries
in these cases.

We start by considering DLs obtained by adding conjunction in the left-
hand side of inclusion assertions for the DLs considered in Theorem 4.1. Such
an addition makes instance checking a PTime-hard problem.

Theorem 4.3. Instance checking (and hence query answering) is PTime-
complete with respect to data complexity for the cases where

1. Cl −→ A | ∃P .A | A1 uA2

Cr −→ A
TBox assertions: Cl v Cr
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2. Cl −→ A | A1 uA2

Cr −→ A | ∀P .A
TBox assertions: Cl v Cr

3. Cl −→ A | A1 uA2

Cr −→ A | ∃P .A
TBox assertions: Cl v Cr , (funct P )

Proof. We first show PTime-hardness.
For Case 1, the proof is by a LogSpace reduction from Path System Acces-

sibility, which is PTime-complete [30]. An instance of Path System Accessibility
is defined as PS = (N,E, S, t), where N is a set of nodes, E ⊆ N ×N ×N is an
accessibility relation (we call its elements edges), S ⊆ N is a set of source nodes,
and t ∈ N is a terminal node. PS consists in verifying whether t is accessible,
where a node n ∈ N is accessible if n ∈ S or if there exist accessible nodes n1
and n2 such that (n, n1, n2) ∈ E.

We define the KB K = 〈T ,A〉, where the TBox T is constituted by the
inclusion assertions

∃P1.A v B1 ∃P2.A v B2 B1 uB2 v A ∃P3.A v A

and the ABox A makes use of the nodes in N and the edges in E as constants.
Consider a node n ∈ N , and let e1, . . . , e` be all edges in E that have n as
their first component, taken in some arbitrarily chosen order. Then the ABox
A contains the following membership assertions:

• P3(n, e1), and P3(ei, ei+1) for i ∈ {1, . . . , `− 1},

• P1(ei, j) and P2(ei, k), where ei = (n, j, k), for i ∈ {1, . . . , `}.

Additionally, A contains one membership assertion A(n) for each node n ∈ S.
Again, it is easy to see that K can be constructed in LogSpace from PS . We
show that t is accessible in PS if and only if K |= A(t).

“⇐” Suppose that t is not accessible in PS . We construct a model I of K
such that tI 6∈ AI . Consider the interpretation I with ∆I = N ∪ E, and in
which each constant of the ABox is interpreted as itself, P I1 , P I2 , and P I3 consist
of all pairs of nodes directly required by the ABox assertions, BI1 consists of all
edges (i, j, k) such that j is accessible in PS , BI2 consists of all edges (i, j, k)
such that k is accessible in PS , and AI consists of all nodes n that are accessible
in PS union all edges (i, j, k) such that both j and k are accessible in PS . It is
easy to see that I is a model of K, and since t is not accessible in PS , we have
that t 6∈ AI .

“⇒” Suppose that t is accessible in PS . We prove by induction on the
structure of the derivation of accessibility that if a node n is accessible, then
K |= A(n). Base case (direct derivation): n ∈ S, hence, by definition, A contains
the assertion A(n) and K |= A(n). Inductive case (indirect derivation): there
exists an edge (n, j, k) ∈ E and both j and k are accessible. By the inductive
hypothesis, we have that K |= A(j) and K |= A(k). Let e1, . . . , e` be the edges
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in E that have n as their first component, up to e` = (n, j, k) and in the same
order used in the construction of the ABox. Then, by P1(e`, j) in the ABox
and the assertions ∃P1.A v B1 we have that K |= B1(e`). Similarly, we get
K |= B2(e`), and hence, by B1 uB2 v A, we get K |= A(e`). By exploiting the
ABox assertion P3(ei, ei+i) and the TBox assertions ∃P3.A v A, we obtain by
induction on ` that K |= A(e1). Finally, by P3(n, e1), we obtain that K |= A(n).

For Cases 2 and 3, the proof of PTime-hardness follows from Case 1 and
observations analogous to the ones for Theorem 4.1.

Finally, membership in PTime immediately follows from the fact that all
the three DLs considered are sub-logics of the DL Horn-SHIQ, and that data
complexity of conjunctive query answering in Horn-SHIQ is in PTime with
respect to data complexity [31].

In the presence of inverse roles, already the use of qualified existential restric-
tion on the left-hand side of inclusion assertions is sufficient to obtain PTime-
hardness, as shown by the following theorem.

Theorem 4.4. Instance checking (and hence query answering) is PTime-
complete with respect to data complexity for the case where

Cl −→ A | ∃R.A
Cr −→ A | ∃P
R −→ P | P−
TBox assertions: Cl v Cr

Proof. The hardness part is a consequence of Theorem 4.3, together with the
observation that an inclusion assertion of the form A1uA2 v A3 can be encoded
by introducing a fresh atomic concept A123 and a fresh atomic role P123, and
adding to the TBox the following inclusion assertions:

A1 v ∃P123 ∃P−123.A2 v A123 ∃P123.A123 v A3

Indeed, consider an interpretation I that is a model of a TBox enriched with
the above assertions, and an object o ∈ AI1 ∩ AI2 . By assertion A1 v ∃P123,
since o ∈ AI1 , there is an object o′ ∈ ∆I such that (o, o′) ∈ P I123. By assertion
∃P−123.A2 v A123, since o ∈ AI2 , we have that o′ ∈ AI123. Hence, by assertion
∃P123.A123 v A3, we have that o ∈ AI3 . On the other hand, it is easy to see that
if in an interpretation I we have that o /∈ AI1 ∩ AI2 , then the above assertions
are satisfied in I even if o /∈ AI3 .

Membership in PTime immediately follows from the fact that the consid-
ered DL is a sub-logic of the DL Horn-SHIQ, and that data complexity of
conjunctive query answering in Horn-SHIQ is in PTime with respect to data
complexity [31].

4.3. coNP-hard DLs

Finally, we show three cases where the TBox language becomes so expressive
that the data complexity of query answering goes beyond PTime (assuming
PTime 6= NP).
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Theorem 4.5. Query answering is coNP-complete with respect to data com-
plexity for the cases where

1. Cl → A
Cr → A | A1 tA2

TBox assertions: Cl v Cr

2. Cl → A | ¬A
Cr → A
TBox assertions: Cl v Cr

3. Cl → A | ∀P .A
Cr → A
TBox assertions: Cl v Cr

Proof. Let us start from coNP-hardness. In all three cases, the proof is an adap-
tation of the proof of coNP-hardness of instance checking for ALE presented
in [13]. We first consider Case 1.

coNP-hardness of query answering is proved by a reduction from 2 + 2-CNF
unsatisfiability (which is showed to be coNP-complete in [13]). A 2 + 2-CNF
formula on an alphabet P is a CNF formula in which each clause has exactly four
literals: two positive ones and two negative ones, where the propositional letters
are elements of P ∪{true, false}. Given a 2+2-CNF formula F = C1∧· · ·∧Cn,
where Ci = Li1+ ∨Li2+ ∨¬Li1− ∨¬Li2−, we associate with it the knowledge base
KF = 〈TF ,AF 〉 defined as follows:

TF = { O v At tAf }
AF = { At(true), Af (false),

O(`11+), O(`12+), O(`11−), O(`12−),
· · ·
O(`n1+), O(`n2+), O(`n1−), O(`n2−),
P1(c1, `

1
1+), P2(c1, `

1
2+), N1(c1, `

1
1−), N2(c1, `

1
2−),

· · ·
P1(cn, `

n
1+), P2(cn, `

n
2+), N1(cn, `

n
1−), N2(cn, `

n
2−) }

Intuitively, KF has one constant `ij± for each literal Lij± in F , one constant ci
for each clause Ci, and two constants true and false for the corresponding
propositional constants. The atomic roles of KF are P1, P2, N1, and N2, used
to connect ci to the constants corresponding to the two positive and to the two
negative literals of Ci. The atomic concepts of KF are O, At, and Af , where
O represents all the literals of F , while At and Af represent the literals that
are true and false, respectively. Note that the ABox AF contains the assertions
At(true) and Af (false) in order to guarantee that in each model I of KF the
constants true and false are interpreted respectively as members of AIt and
AIf (possibly of both).

Then, we consider the following boolean query q:

q ← P1(x, y), Af (y), P2(x, z), Af (z), N1(x,w1), At(w1), N2(x,w2), At(w2)
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Intuitively, checking whether KF |= q (i.e., whether the query evaluates to
true in KF ) corresponds to checking whether in every truth assignment for the
formula F there exists a clause whose positive literals are interpreted as false and
whose negative literals are interpreted as true, i.e., a clause that is not satisfied.
Next we show that the formula F is unsatisfiable if and only if KF |= q.

“⇒” Suppose that F is unsatisfiable. Consider a model I of KF (which
always exists since KF is always satisfiable), and let δI be the truth assignment
for F such that δI(L) = true iff `I ∈ AIt , for every literal L in F (and cor-
responding constant ` in KF ). Since F is unsatisfiable, there exists a clause
Ci that is not satisfied by δI , and therefore δI(Li1+) = false, δI(Li2+) = false,
δI(Li1−) = true, and δI(Li2−) = true. By definition of δI , it follows that in KF
the interpretation of the constants related to ci through the roles P1 and P2 is
not in AIt , and consequently is in AIf , and the interpretation of the constants

related to ci through the roles N1 and N2 is in AIt . Thus, there exists a substi-
tution σ that assigns variables in q to constants in KF in such a way that σ(q)
evaluates to true in I (notice that this holds even if the propositional constants
true or false occur in F ). Therefore, since this argument holds for each model
I of KF , we can conclude that KF |= q.

“⇐” Suppose that F is satisfied by some truth assignment δ, and let Iδ
be the interpretation for KF defined as follows, where we use L to denote the
literal in F corresponding to constant `:

• OIδ = {`Iδ | L occurs in F},

• AIδt = {`Iδ | δ(L) = true} ∪ {true},

• AIδf = {`Iδ | δ(L) = false} ∪ {false},

• ρIδ = {(aIδ , bIδ) | ρ(a, b) ∈ AF }, for ρ ∈ {P1, P2, N1, N2}.

It is easy to see that Iδ is a model of KF . On the other hand, since F is
satisfiable, for every clause in F there exists a positive literal interpreted as true
or a negative literal interpreted as false. It follows that for every constant ci,
either one of the roles P1 or P2 relates ci to a constant whose interpretation is in
AIδt , or one of the roles N1 or N2 relates ci to a constant whose interpretation
is in AIδf . It follows that the query q evaluates to false in Iδ, and therefore
KF 6|= q.

Proofs for the Cases 2 and 3 are obtained by analogous reductions from
2 + 2-CNF unsatisfiability. More precisely, for Case 2 the knowledge base KF =
〈TF ,AF 〉 has the same constants and the same atomic roles as for Case 1, and
has only the atomic concepts At and Af . Then, TF = {¬At v Af} and AF is
as for Case 1 but without the assertions involving the concept O. Finally, the
query q is as for Case 1.

For Case 3, KF is similar to the one for Case 2. It has the same constants,
the same atomic roles plus an extra atomic role P , and the atomic concepts A
and Af . The TBox is TF = {∀P.A v Af}. The ABox AF is as for Case 2, but
without the assertion At(true), which is substituted by the assertion P (true, d),
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where d is a new constant not occurring elsewhere in KF . Finally, the query q
is as follows

q ← P1(x, y), Af (y), P2(x, z), Af (z), N1(x,w1), P (w1, w2), N2(x,w2), P (w3, w4)

Soundness and completeness of the above reductions can be proved as done for
the reduction of Case 1.

We point out that the intuition behind the above reductions is that in all
three cases it is possible to require a reasoning by case analysis, caused by
set covering assertions. Indeed, whereas in Case 1 we have explicitly asserted
O v AttAf , for the other cases this can be seen by considering that At and Af ,
and ∀P.A and ∃P cover the entire domain in Case 2 and Case 3, respectively.

Finally, membership in coNP follows immediately from the fact that each of
the DLs above considered is a sub-logic of the DLALCNR, and that conjunctive
query answering in ALCNR is coNP-complete with respect to data complexity
[32].

5. Related work

The first results on decidability of conjunctive query answering over DL
knowledge bases in expressive DLs appeared in [33, 5, 9]. In particular, [5]
proves a 2ExpTime-upper bound in combined complexity for the ALCI and
DLR families of DLs. This upper bound has been extended in [11] to conjunctive
query answering in SHIQ. In [34] an analogous result is presented for the DL
SHOQ, which differs from SHIQ since it does not allow for inverse roles,
while it allows for nominals. A 2ExpTime lower bound for conjunctive query
answering has been shown for ALCI, while for ALC, i.e., dropping inverse
roles, the problem is ExpTime-complete [10]. These results are complemented
in [16], which shows that also for SH, i.e., the DL that includes transitive roles
but no inverses, conjunctive query answering is 2ExpTime-hard (and hence
2ExpTime-complete).

The first main data complexity results for DLs appeared in [13], where a
coNP lower bound for data complexity of instance checking in the DL ALE
was shown. [33] gives a coNP upper-bound with respect to data complexity for
conjunctive query answering in a DL with arbitrary inclusion assertions, but
lacking inverse roles. In the last decade, there has been a renewed interest in
data complexity of conjunctive query answering, both for expressive and novel
DLs specifically designed to have low data complexity.

A coNP upper bound for data complexity of instance checking in the ex-
pressive DL SHIQ has been shown by making use of a reduction to disjunctive
Datalog and then exploiting resolution [35, 14, 36]. It remains open whether
such a technique can be extended to deal efficiently with conjunctive queries for
expressive DLs.

In [14], a fragment of SHIQ, called Horn-SHIQ, which subsumes both DL-
LiteF and DL-LiteR, is studied and a PTime upper bound in data complexity
for instance checking is shown. Our results, in particular, Theorem 4.4, tell us
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that instance checking in Horn-SHIQ is also PTime-hard. Indeed, Horn-SHIQ
allows for qualified existential quantification ∃P .A in both sides of inclusion
assertions and (an extended form) of functionality restrictions.

Building on the techniques presented in [33], coNP-completeness in data
complexity of answering conjunctive queries in SHIQ, which includes inverse
roles and number restrictions (which generalize functionality) has been shown
in [15]. It is interesting to observe that the results presented here, in particular,
Theorem 4.5, tell us that we get coNP-completeness already for very small
fragments of SHIQ.

Concerning less expressive DLs, [37, 19] show that conjunctive query answer-
ing in the DL EL is tractable, i.e., PTime, with respect to data complexity. The
PTime lower bound follows from Theorem 4.3, which was originally presented
in [25]. Instead, conjunctive query answering in the DL EL++ is undecidable, as
independently shown in [19, 38, 37]. Complexity results and algorithms for query
answering in the DL-Lite family of DLs (as described in Section 1) are presented
in [18]. This investigation has been extended to DLs whose concepts are built
as boolean combinations of atomic concepts and projections on roles (actually
considered in the more general form of minimal number restrictions) [20]. In
particular [20] studies extensions of the DLs of the DL-Lite family with number
restrictions, role constructs such as (ir)reflexivity and (a)symmmetry, different
forms of concept inclusions (corresponding to horn, krom, and boolean formu-
las), and establishes both upper and lower bounds for such logics. The FOL-
rewritability results rely on a correspondence with first-order logic with unary
predicates, and they cover the DL-Lite-variants presented in [18] (over binary
relations) extended with number restrictions, (a)symmetry and (ir)reflexivity of
roles, and horn inclusions (which correspond to role conjunction as in [25]). The
paper studies also DLs that are not FOL-rewritable and establishes some lower
bound results that are incomparable to those presented here. We also observe
that [39] advocates a new perspective on data complexity of conjunctive query
answering in DLs, by considering the complexity of query answering for TBoxes
with specific properties, as opposed to considering a specific TBox language.
This allows one, e.g., to rephrase some of the results established in Section 4 on
the border between tractability and intractability.

A technique for optimizing conjunctive query answering in DL-Lite is shown
in [40], and in [41, 42, 43, 44] algorithms for optimizing conjunctive query rewrit-
ing in DL-Lite are presented.

A recent line of research follows the idea of extending Datalog rules with
existential variables in rule heads [45, 46, 47, 48, 49, 44, 50]. Among these
approaches, the Datalog± family described in [45, 51, 52] is closely related to
the present paper. Actually, Datalog± is inspired by the work on DL-Lite,
and may be seen as an attempt to generalize the DL-Lite approach to more
expressive ontology languages based on logical rules. In this framework, a lot
of attention has been devoted to define FOL-rewritable fragments of Datalog±

programs (see, e.g., [49]). In particular, [53] presents a detailed study of the
relationship between the Datalog± family and the DL-Lite family of languages.
This paper shows that a particular class of Datalog± programs, called multi-
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linear, is actually able to capture the DL DLR-LiteA,u presented in Section 2.
Observe also that DL-LiteR captures (the DL-subset of) RDFS extended

with participation constraints (i.e., inclusion assertions with ∃R on the right-
hand side). Hence, query answering over an RDFS ontology, even extended with
participation constraints, is FOL-rewritable. Finally, if we move from RDFS to
DLP [54], query answering becomes PTime-hard, since DLP is a superset of
the DL in case 1 of Theorem 4.3.

As for the management of conjunctive queries in implemented DL systems:
all the DLs studied in this paper are fragments of expressive DLs with assertions
and inverses studied in the 90’s (see [23] for an overview), which are at the base
of current ontology languages such as OWL, and for which optimized automated
reasoning systems such as RacerPro8, Pellet9, Hermit10, and Fact++11, have
been developed. Indeed, one could use, off-the-shelf, a system like RacerPro or
Pellet to perform instance checking in such DLs. However, none of these systems
fully supports conjunctive query answering. Some of the above systems actually
allow users to pose conjunctive queries, but such queries are evaluated under
an approximation of the classical first-order semantics of conjunctive queries:
in the approximated semantics, existential variables can only be assigned to
explicit individuals of the knowledge base, rather than to arbitrary objects of
the interpretation domain.

While the implementation of systems for answering conjunctive queries in
DLs under the “real” first-order semantics has been accomplished for DLs of
the DL-Lite family [55, 56, 57, 41, 40, 58, 59] and of the EL family [60, 61],
for more expressive DLs the current technology seems not mature yet. Unfor-
tunately, the known reasoning algorithms for answering conjunctive queries in
these DLs, which have been used to characterize computational complexity, are
not tailored towards obtaining efficient implementations, and more research on
this is needed.

6. Conclusions

We have presented fundamental results on the data complexity (complexity
with respect to the size of the ABox only) of query answering in DLs. In partic-
ular, we have concentrated on the FOL-rewritability boundary of the problem,
based on the observation that, when we go above this boundary, query answer-
ing is no longer expressible as a first-order logic formula (and hence an SQL
query) over the data. The results provided in this paper are summarized in
Table 5.

We are currently following several directions to continue the work reported
in this paper. In particular, although here we focused on data complexity only,

8http://www.racer-systems.com/
9http://clarkparsia.com/pellet/

10http://www.comlab.ox.ac.uk/projects/HermiT/
11http://owl.cs.manchester.ac.uk/fact++/
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Cl Cr F R Data complexity
of query answering

DLR-LiteA,u
√

(*)
√

(*) in AC0

A | ∃P .A A − − NLogSpace-complete
A A | ∀P .A − − NLogSpace-complete
A A | ∃P .A

√
− NLogSpace-hard

A | ∃P .A | A1 uA2 A − − PTime-complete
A | A1 uA2 A | ∀P .A − − PTime-complete
A | A1 uA2 A | ∃P .A

√
− PTime-complete

A | ∃P .A | ∃P−.A A | ∃P − − PTime-complete
A A | A1 tA2 − − coNP-complete

A | ¬A A − − coNP-complete
A | ∀P .A A − − coNP-complete

Legenda: A (possibly with subscript) = atomic concept, P = atomic role,
Cl/Cr = left/right-hand side of inclusion assertions, F = functionality/key
assertions allowed, R = role/relation inclusions allowed. NLogSpace and
PTime hardness results hold already for instance checking.
(*) With the proviso that relations involved in key assertions are not
specialized.

Table 5: Data Complexity of Query Answering in Description Logics

we are also working on characterizing the complexity of query answering with
respect to the size of the TBox, with respect to the size of the query, and with
respect to combined complexity. Furthermore, while in this paper we considered
conjunctive queries, our general goal is to come up with a clear picture of how
the complexity of query answering is influenced not only by different TBox
languages, but also by different query languages.

Acknowledgements. This work has been partially supported by the EU under
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tion), grant n. FP7-257593.

References

[1] J. Lee, K. Siau, S. Hong, Enterprise integration with ERP and EAI, Com-
munications of the ACM 46 (2) (2003) 54–60.

[2] M. Lenzerini, Data integration: A theoretical perspective., in: Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS 2002), 2002, pp. 233–246.

[3] J. Heflin, J. Hendler, A portrait of the Semantic Web in action, IEEE
Intelligent Systems 16 (2) (2001) 54–59.

43



[4] A. Borgida, R. J. Brachman, D. L. McGuinness, L. A. Resnick, CLASSIC:
A structural data model for objects, in: Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, 1989, pp. 59–67.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, On the decidability of query
containment under constraints, in: Proc. of the 17th ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems (PODS’98), 1998,
pp. 149–158.

[6] I. Horrocks, S. Tessaris, A conjunctive query language for description
logic ABoxes, in: Proc. of the 17th Nat. Conf. on Artificial Intelligence
(AAAI 2000), 2000, pp. 399–404.

[7] R. Fikes, P. Hayes, I. Horrocks, OWL-QL: A language for deductive query
answering on the semantic web, J. of Web Semantics 2 (1) (2005) 19–29.

[8] D. Calvanese, T. Eiter, M. Ortiz, Answering regular path queries in ex-
pressive description logics: An automata-theoretic approach, in: Proc. of
the 22nd AAAI Conf. on Artificial Intelligence (AAAI 2007), 2007, pp.
391–396.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, Conjunctive query contain-
ment and answering under description logics constraints, ACM Trans. on
Computational Logic 9 (3) (2008) 22.1–22.31.

[10] C. Lutz, The complexity of conjunctive query answering in expressive de-
scription logics, in: Proc. of the 4th Int. Joint Conf. on Automated Rea-
soning (IJCAR 2008), Vol. 5195 of Lecture Notes in Artificial Intelligence,
Springer, 2008, pp. 179–193.

[11] B. Glimm, I. Horrocks, C. Lutz, U. Sattler, Conjunctive query answering
for the description logic SHIQ, J. of Artificial Intelligence Research 31
(2008) 151–198.

[12] M. Y. Vardi, The complexity of relational query languages, in: Proc. of the
14th ACM SIGACT Symp. on Theory of Computing (STOC’82), 1982, pp.
137–146.

[13] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Deduction in concept
languages: From subsumption to instance checking, J. of Logic and Com-
putation 4 (4) (1994) 423–452.

[14] U. Hustadt, B. Motik, U. Sattler, Data complexity of reasoning in very
expressive description logics, in: Proc. of the 19th Int. Joint Conf. on Ar-
tificial Intelligence (IJCAI 2005), 2005, pp. 466–471.

[15] M. Ortiz, D. Calvanese, T. Eiter, Data complexity of query answering in
expressive description logics via tableaux, J. of Automated Reasoning 41 (1)
(2008) 61–98.

44



[16] T. Eiter, C. Lutz, M. Ortiz, M. Šimkus, Query answering in description
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