Linking Data to Ontologies

Antonella Poggi', Domenico Lembo', Diego Calvanese?,

Giuseppe De Giacomo', Maurizio Lenzerini!, and Riccardo Rosati®

! Dipartimento di Informatica e Sistemistica, Universitd di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy
poggt,degiacomo, lembo, lenzerinti,rosatt@dis.uniromal.it

2 Faculty of Computer Science, Free University of Bozen-Bolzano,
Piazza Domenicani 3, 1-39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract. Many organizations nowadays face the problem of accessing
existing data sources by means of flexible mechanisms that are both pow-
erful and efficient. Ontologies are widely considered as a suitable formal
tool for sophisticated data access. The ontology expresses the domain of
interest of the information system at a high level of abstraction, and the
relationship between data at the sources and instances of concepts and
roles in the ontology is expressed by means of mappings. In this paper
we present a solution to the problem of designing effective systems for
ontology-based data access. Our solution is based on three main ingre-
dients. First, we present a new ontology language, based on Description
Logics, that is particularly suited to reason with large amounts of in-
stances. The second ingredient is a novel mapping language that is able
to deal with the so-called impedance mismatch problem, i.e., the problem
arising from the difference between the basic elements managed by the
sources, namely data, and the elements managed by the ontology, namely
objects. The third ingredient is the query answering method, that com-
bines reasoning at the level of the ontology with specific mechanisms for
both taking into account the mappings and efficiently accessing the data
at the sources.

1 Introduction

In several areas, such as FEnterprise Application Integration, Data Integra-
tion [19], and the Semantic Web [13], ontologies are considered as the ideal
formal tool to provide a shared conceptualization of the domain of interest. In
particular, in many of the above areas, ontologies are advocated for realizing
what we can call ontology-based data access, that can be explained as follows: we
have a set of pre-existing data sources forming the data layer of our information
system, and we want to build a service on top of this layer, aiming at presenting
a conceptual view of data to the clients of the information system. Specifically,
the conceptual view is expressed in terms of an ontology, that will represent the
unique access point for the interaction between the clients and the system, and
the data sources are independent from the ontology. In other words, our aim is

2 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

to link to the ontology a collection of data that exist autonomously, and have not
been necessarily structured with the purpose of storing the ontology instances.

Therefore, in ontology-based data access, the ontology describes the domain
of interest at a high level of abstraction, so as to abstract away from how data
sources are maintained in the data layer of the system itself. It follows that the
conceptual view and the data sources are both at different abstraction levels, and
expressed in terms of different formalisms. For example, while logical languages
are nowadays used to specify the ontology, the data sources are usually expressed
in terms of the relational data model.

Taking into account these differences, the specific issues arising from the
interaction between the ontology and the data sources can be briefly summarized
as follows:

1. Ontologies exhibit to the client a conceptual view of the domain of interest,
and allow for expressing at the intensional level complex kinds of semantic
conditions over such domain. One of the main challenges in this respect
is to single out ontology languages that provide an acceptable compromise
between expressive power and computational complexity of reasoning over
both the ontology and the underlying sources storing data about the domain.

2. The amount of data stored at the sources can be very large. Therefore, one
needs to resort to a technology that is able to efficiently access very large
quantities of data. Nowadays, relational database technology is the best (if
not the only) one that fulfills such a requirement. Hence, in our context,
we are interested in determining how much one can push the expressive
power of the formalism used for expressing the conceptual layer, while still
maintaining the ability to answer queries by relying on a relational DBMS
to access data at the sources.

3. Since we assume that the data sources exist in the information system inde-
pendently of the conceptual layer, the whole system will be based on specific
mechanisms for mapping the data at the sources to the elements of the on-
tology. So, in ontology-based data access, the mapping is the formal tool by
which we determine how to link data to the ontology, i.e., how to reconstruct
the semantics of data stored in the sources in terms of the ontology.

4. In general, there is a mismatch between the way in which data is (and can be)
represented in a relational database, and the way in which the corresponding
information is rendered in an ontology. Specifically, while the database of a
data source stores data, instances of concepts in an ontology are objects,
each one denoted by an object identifier, not to be confused with a data
value. Such a problem is known as impedance mismatch. The language used
to specify the mappings between the data and the ontology should provide
specific mechanisms for addressing the impedance mismatch problem.

5. The main reason to build an ontology-based data access system is to pro-
vide high-level services to the clients of the information system. The most
important service is query answering. Clients express their queries in terms
of the conceptual view (the ontology), and the system should reason about
the ontology and the mapping and should translate the request into suitable
queries posed to the sources.

Linking Data to Ontologies 3

Recent research in the area of ontology languages for the Semantic Web has
addressed several important aspects regarding the issues mentioned above.

As for issue 1, an effort has been undertaken to understand which language
would be best suited for representing ontologies in a setting where an ontology
is used for accessing large quantities of data [7,26,17]. This work has shown
that most of the languages proposed so far are not really suited for this task.
Indeed, the most significant fragments of OWL [14]® that have been proposed
by the W3C (namely, OWL-DL and OWL-Lite) are actually coNP-hard in data
complexity [10, 7], i.e., when complexity is measured with respect to the size of
the data layer only, which is indeed the dominant parameter in this context [31].
This means that, in practice, computations over large amounts of data are pro-
hibitively costly. A way to overcome such a problem is to impose restrictions
on the ontology language, so as to guarantee that reasoning remains compu-
tationally tractable with respect to data complexity. Possible restrictions that
guarantee polynomial reasoning have been studied and proposed in the context
of description logics, such as Horn-SHZQ [17], E£ [3], and DLP [12]. Among
such fragments, of particular interest are those belonging to the DL-Lite fam-
ily [6, 7]. These logics allow for answering complex queries (namely, conjunctive
queries, i.e., SQL select-project-join queries, and unions of conjunctive queries)
in LOGSPACE with respect to data complexity. More importantly, after a prepro-
cessing phase which is independent of the data, they allow for delegating query
processing to the relational DBMS managing the data layer.

Hence, by adopting a technology based on logics of the DL-Lite family, we
also aim at a solution to issue 2 above. Specifically, according to [7] there are
two maximal languages in the DL-Lite family that allow for delegating query
processing to a DBMS. The first one, called DL-Liter in [7], allows for specify-
ing the main modeling features of conceptual models, including cyclic assertions,
ISA on concepts, inverses on roles, domain and range of roles, mandatory par-
ticipation to roles, and functional restrictions on roles. The second one, called
DL-Liter, is able to fully capture (the DL fragment of) RDFS, and has in addi-
tion the ability of specifying mandatory participation to roles and disjointness
between concepts and roles. The language obtained by unrestrictedly merging
the features of DL-Liter and DL-Liter, while quite interesting in general, is not
in LOGSPACE with respect to data complexity anymore [7], and hence looses the
most interesting computational feature for ontology-based data access. Hence,
to obtain a language whose expressive power goes beyond that of DL-Liter or
DL-Liter and that is still useful, we need to restrict how the features of both
languages are merged and can interact.

Regarding issues 3 and 4, i.e., the impedance mismatch between data items in
the data layer and objects at the conceptual level, we observe that such a problem
has received only little attention in the Semantic Web community. Some of the
issues that need to be addressed when putting into correspondence a relational
data source with an ontology, arise also in the context of ontology integration and
alignment, which is the topic of several recent research works. These works study

3 nttp://wuw.w3.org/TR/owl-features/

4 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

formalisms for specifying the correspondences between elements (concepts, rela-
tions, individuals) in different ontologies, ranging from simple correspondences
between atomic elements, to complex languages allowing for expressing complex
mappings. We now briefly discuss the most significant of such proposals found
in the literature.

C-OWL and DDLs (Distributed Description Logics) [30] are extensions of
OWL and DLs with so-called bridge rules, expressing simple forms of semantic
relations between concepts, roles, and individuals. At the semantic level, the
sets of objects in two ontologies are disjoint, but objects are related to each
other by means of domain relations, which model simple translation functions
between the domains. Reasoning in C-OWL is based on tableaux techniques.
MAFRA [23] is a system that allows one to extract mappings from ontologies,
and to use them for the transformation of data between ontologies. It does so
by providing a so-called Semantic Bridge Ontology, whose instantiation provides
the ontology mapping, and which can also be used as input for data transfor-
mations. The Ontology Mapping Language [29] of the Ontology Management
Working Group (OMWG)? is an ontology alignment language that is indepen-
dent of the language in which the two ontologies to be aligned are expressed.
The alignment between two ontologies is represented through a set of mapping
rules that specify a correspondence between various entities, such as concepts,
relations, and instances. Several concept and relation constructors are offered to
construct complex expressions to be used in mappings.

While the above proposals deal with the alignment between ontologies, none
of them addresses properly the problem of establishing sound mechanisms for
linking existing data to the instances of the concepts and the roles in the ontology.
This issue is studied in [11, 5], where specific mapping languages are proposed
for linking data to ontologies. Such approaches, however, do not deal with the
problem of the impedance mismatch between objects and values, which needs to
be addressed by defining suitable mechanisms for mapping the data values to
the objects in the ontology, and specifying how object identifiers can be built
starting from data values. Instead, such a problem has already been considered
in databases, and specifically in the context of declarative approaches to data
integration. For example, in [9], a mechanism is proposed for annotating the
mappings from the data to a global schema (which plays the role of an ontology).
Such annotations, together with specific conversion and matching predicates,
specify which attributes should be used to identify objects at the conceptual
level, and how data coming from different data sources should be joined. We
also mention the work done in deductive object-oriented databases on query
languages with invention of objects [15,16]. Such objects are created starting
from values specified in the body of a query, by applying suitable (Skolem)
functions.

We argue that the results of the above mentioned papers, although interesting
from several points of view, do not provide a clear and comprehensive solution
to the problem of designing effective and efficient tools for ontology-based data

4 http://www.omwg.org/

Linking Data to Ontologies 5

access. The goal of this paper is to present one such solution. Specifically, we
present three contributions towards this end:

— We propose a new logic of the DL-Lite family. By looking at the interaction
between the distinguishing features of DL-Liter and DL-Liter, we have been
able to single out an extension of both logics that is still LOGSPACE with
respect to data complexity, and allows for delegating the “data dependent
part” of the query answering process to the relational DBMS managing the
data layer. In devising this logic, called DL-Lite 4, we take seriously the dis-
tinction between objects and values (a distinction that is typically blurred
in description logics), and introduce, besides concepts and roles, also at-
tributes, which describe properties of concepts represented by values rather
than objects.

— We illustrate a specific language for expressing mappings between data at
the sources and instances of concepts and roles in the ontology. The map-
ping language has been designed in such a way to provide a solution to the
impedance mismatch problem. Indeed, with respect to previous proposals of
mapping languages, the distinguishing feature of our proposal is the possi-
bility to create new object identifiers by making use of values retrieved from
the database. We have borrowed this idea from the work mentioned above
on query languages with invention of objects [15, 16]. With respect to these
works, our approach looks technically simpler, since the mapping mecha-
nism used to create object terms does not allow for recursion. However, we
have to deal with the complex constructs presented in the ontology, which
significantly complicates matters.

— Our mapping mechanism also deals with the fact that the data sources and
the ontology O,, are based on different semantical assumptions. Indeed, the
semantics of data sources follows the so-called “closed world assumption”
[28], which intuitively sanctions that every fact that is not explicitly stored
in the database is false. On the contrary, the semantics of the ontology is
open, in the sense that nothing is assumed about the facts that do not appear
explicitely in the ABox.

— We devise a novel query answering method, which is able to fully take into
account both the ontology and the mappings from the data layer to the
ontology itself. The method extends the ones already presented in [7] for the
two sub-logics DL-Liter and DL-Liter. Similar to these, it works by first
expanding the query according to the constraints in the ontology. In this
case, however, the expanded query is not directly used to compute the result.
Rather, the expanded query is the input of a novel step, called unfolding,
that, taking into account the mappings, translates the expanded query in
terms of the relations at the sources. The unfolded query is then evaluated
at the sources, and the result is processed so as to conform to the concepts
and roles in the ontology. The unfolding step relies on techniques from partial
evaluation [21], and the whole query answering method runs in LOGSPACE
in data complexity, i.e., the complexity measured with respect to the size of
source data.

6 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

The rest of the paper is organized as follows. In Section 2 we present the de-
scription logic we deal with, namely DL-Lite4. In Section 3 we present the frame-
work for linking external data sources to an ontology expressed in DL-Lites. In
Section 4 we provide an overview the query answering method, and in Sections 5
and 6 we provide the technical details of such method. Finally, Section 7 con-
cludes the paper.

2 The Description Logic DL-Lite4

Description Logics (DLs) [4] are logics that represent the domain of interest in
terms of concepts, denoting sets of objects, and roles, denoting binary relations
between (instances of) concepts. Complex concept and role expressions are con-
structed starting from a set of atomic concepts and roles by applying suitable
constructs. Different DLs allow for different constructs. A DL ontology is con-
stituted by a TBox and an ABox, where the first component specifies general
properties of concepts and roles, whereas the second component specifies the
instances of concepts and roles.

The study of the trade-off between expressive power and computational com-
plexity of reasoning has been traditionally one of the most important issues in
DLs. Recent research has shown that OWL, the W3C Web Ontology Language
for the Semantic Web®, if not restricted, is not suited as a formalism for repre-
senting ontologies with large amounts of instance assertions in the ABox [7, 26,
17], since reasoning in such a logic is inherently exponential (coNP-hard) with
respect data complexity, i.e., with respect to the size of the ABox.

On the contrary, the DL-Lite family [6-8] is a family of DLs specifically tai-
lored to capture basic ontology languages, conceptual data models (e.g., Entity-
Relationship [1]), and object-oriented formalisms (e.g., basic UML class dia-
grams®) while keeping the complexity of reasoning low. In particular, ontology
satisfiability, instance checking, and answering conjunctive queries in these logics
can all be done in LOGSPACE with respect to data complexity.

In this section, we present a new logic of the DL-Lite family, called DL-Lite 4.
Such a DL is novel with respect to the other DLs of the DL-Lite family, in
that it takes seriously the distinction between objects and values, and therefore
distinguishes:

— concepts from value-domains — while a concept is abstraction for a set of
objects, a value-domain, also known as concrete domain [22], denotes a set
of (data) values,

— attributes from roles — while a role denotes a binary relation between objects,
a (concept) attribute denotes a binary relation between objects and values.

We notice that the distinction between objects and values, although present
in OWL, is typically blurred in many DLs. In the following, we first illustrate

® http://www.w3.org/TR/owl-features/
S http://www.omg.org/uml/

Linking Data to Ontologies 7

the mechanisms provided by DL-Lite, for building expressions, and then we
describe how expressions are used to specify ontologies, and which is the form
of queries allowed in our logic. Finally, we conclude the section by describing
relevant reasoning tasks over DL-Lite4 ontologies.

2.1 DL-Lites expressions

Like in any other logics, DL-Lite4 expressions are built over an alphabet. In
our case, the alphabet comprises symbols for atomic concepts, value-domains,
atomic roles, atomic attributes, and constants.

The value-domains that we consider in DL-Litey are those corresponding
to the data types adopted by the Resource Description Framework (RDF)7.
Intuitively, these types represent sets of values that are pairwise disjoint. In the
following, we denote such value-domains by T1,...,T,.

Furthermore, we denote with I" the alphabet for constants, which we assume
partitioned into two sets, namely, I'y (the set of constant symbols for values),
and I'p (the set of constant symbols for objects). In turn, I'y is partitioned into
n sets I'v,,..., Iy, , where each I'y, is the set of constants for the values in the
value-domain Tj;.

In providing the specification of our logics, we use the following notation:

— A denotes an atomic concept, B a basic concept, C a general concept, and
T denotes the universal concept. An atomic concept is a concept denoted
by a name. Basic and general concepts are concept expressions whose syntax
is given at point 1 below.

— FE denotes a basic value-domain, i.e., the range of an attribute, F' a value-
domain expression, and T p the universal value-domain. The syntax of value-
domain expressions is given at point 2 below.

— P denotes an atomic role, Q a basic role, and R a general role. An atomic
role is simply a role denoted by a name. Basic and general roles are role
expressions whose syntax is given at point 3 below.

— Ue denotes an atomic attribute (or simply attribute), and Vo a general
attribute. An atomic attribute is an attribute denoted by a name, whereas
a general attribute is a concept expression whose syntax is given at point 4
below.

Given an attribute Ug, we call the domain of Ug, denoted by §(Uc), the set
of objects that Ue relates to values, and we call range of Ue, denoted by p(Uc),
the set of values that Uc relates to objects. Note that the domain 6(U¢) of an
attribute Ug is a concept, whereas the range p(U¢) of Ug is a value-domain.

We are now ready to define DL-Litey expressions.

1. Concept expressions:

A 3Q | 4(Uc)
Te | B | -B | 3Q.C

B
C

" http://www.w3.org/RDF/

8 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

2. Value-domain expressions:

E == p(Uc)
F .= TD | T1 | |Tn
3. Role expressions:
Q == P | P~
R == Q| -Q

4. Attribute expressions:
Vo = Ue | “Uc

The meaning of every DL-Lites expression is sanctioned by the semantics.
Following the classical approach in DLs, the semantics of DL-Litey is given
in terms of first-order logic interpretations. All such intepretations agree on
the semantics assigned to each value-domain T; and to each constant in I'y. In
particular, each T; is interpreted as the set val(T};) of values of the corresponding
RDF data type, and each ¢; € I'y is interpreted as one specific value, denoted
val(C;), in val(T;). Note that, for i # j, it holds that val(T;) Nval(T;) = 0.

Based on the above observations, we can now define the notion of interpre-
tation in DL-Litey. An interpretation is a pair I = (A?,-T), where

— A is the interpretation domain, that is the disjoint union of two non-empty
sets: Ad, called the domain of objects, and A}, called the domain of values.
In turn, Ay is the union of val(Ty),...,val(T,).

— T is the interpretation function, i.e., a function that assigns an element of
AT to each constant in I, a subset of A’ to each concept and value-domain,
and a subset of AT x A’ to each role and attribute, in such a way that

e for each a € I'y, a! = val(a),

e for each a € I'p, a! € AJ,

e for each a,b € I', a # b implies a! # b7,

e for each T}, T} = val(Ty),

e the following conditions are satisfied:
Te=4¢ (p(Uc))! ={ v |3o.(0,v) € UL }
] = 4/ (6(Uc))! = { o] Fo. (0,v) € UL }
Al cag (P) ={(0,0) [(,0) € P }
Pl Cc Ad x Ad B ={0|30.(0,0) €Q" }
Ut C Ag x Ay (

ﬂQ;I = (4g x Ag)\ Q'

Note that the above definition implies that different constants are interpreted
differently in the domain, i.e., DL-Lite4 adopts the so-called unique name as-
sumption.

2.2 DL-Lites ontologies

As usual when expressing ontologies in DLs, a DL-Lites ontology O = (T, A)
represents the domain of discourse in terms of two components: the TBox 7,

Linking Data to Ontologies 9

representing the intensional knowledge, and the ABox A, representing the exten-
sional knowledge. DL-Lite 4 TBoxes and ABoxes are defined as follows. DL-Lite4
intensional assertions are assertions of the form:

B C C (concept inclusion assertion)
Q C R (role inclusion assertion)
E C F (value-domain inclusion assertion)
Uc C Vo (attribute inclusion assertion)
(funct Q) (role functionality assertion)
(funct Ug) (attribute functionality assertion)

A concept (respectively, value-domain, role, and attribute) inclusion assertion
expresses that a basic concept B (respectively, basic value-domain FE, basic role
@, and atomic attribute U¢) is subsumed by a general concept C' (respectively,
value-domain F', role R, attribute V). A role functionality assertion expresses
the (global) functionality of a role. In the case where @ = P, the functionality
constraint is imposed on an atomic role, while in the case where @ = INV P,
it is imposed on the inverse of an atomic role. Analogously, an attribute func-
tionality assertion expresses the (global) functionality of an atomic attribute.
Concept (respectively, value-domain, and role) inclusions of the form B; C —B5
(respectively, E1 C —FEs, Q1 C —Q3) are called negative inclusion assertions.

Then, DL-Lite4 TBoxes are finite sets of DL-Lite4 intensional assertions
where suitable limitations in the combination of such assertions are imposed. To
precisely describe such limitations, we first introduce some preliminary notions.
An atomic attribute Uq (respectively, a basic role Q) is called an identifying
property in a TBox T, if T contains a functionality assertion (funct Uc) (respec-
tively, (funct @)). Let X be an atomic attribute or a basic role. We say that X
appears positively (respectively, negatively) in the right-hand side of an inclusion
assertion « if a has the form Y T X (respectively, Y T —X). Also, an atomic
attribute or a basic role is called primitive in a TBox 7T, if it does not appear
positively in the right-hand side of an inclusion assertion of 7, and it does not
appear in an expression of the form 3Q).C in 7. Then,

a DL-Litey TBox is a finite set T of DL-Litey intensional assertions
satisfying the condition that every identifying property in T is primitive
inT.

Roughly speaking, in a DL-Lite4 TBox, identifying properties cannot be spe-
cialized, i.e., they cannot appear positively in the right-hand side of inclusion
assertions.

We now specify the semantics of a TBox 7, again in terms of interpretations.
An interpretation I satisfies

— a concept (respectively, value-domain, role, attribute) inclusion assertion
B C C (respectively, EC F, QC R, Uc C V), if

Bl cc! (respectively, B C F1.QT C RIUL C V1)

10 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

— a role functionality assertion (funct Q), if for each o1, 02,03 € AJ
(01,02) € Q" and (01, 03) € Q implies 0y = 03

— an attribute functionality assertion (funct Uc), if for each o € AJ and
V1,V € AV!

(0,v1) € UL and (0,vs) € U}, implies vy = vy.

I is a model of a DL-Litey, TBox 7, or, equivalently, I satisfies T, written
I =T, if and only if T satisfies all intensional assertions in 7.

We next illustrate an example of a DL-Litey TBox. In all the examples of
this paper, we write concept names in lowercase, role names in UPPERCASE,
attribute names in sans serif font, and domain names in typewriter font.

Ezxample 1. Let 7 be the TBox containing the following assertions:

tempEmp C employee project C 6(ProjName) (9
1

manager C employee (funct ProjName)

(1)

(2) (

employee C person (3) p(ProjName) C xsd:string (

employee T IWORKS-FOR (4) tempEmp C §(until) (

IWORKS-FOR™ C project (5) o(until) © 3IWORKS-FOR (13

person C §(PersName) (6) (funct until) (
(7) (
(8) (

(funct PersName) p(until) C xsd:date

p(PersName) C xsd:string manager C =6 (until)

The above TBox 7 models information about employees and projects they
work for. Specifically, the assertions in 7 state the following. Managers and tem-
porary employees are two kinds of employees (2, 1), and employees are persons
(3). Each employee works for at least one project (4, 5), whereas each person
and each project has a unique name (6, 7, 9, 10). Both person names and project
names are strings (8, 11), whereas the attribute until associates objects with dates
(14, 15). In particular, any temporary employee has an associated date (which
indicates the expiration date of her/his contract) (12), and everyone having a
value for attribute until participates in the role WORKS-FOR (13). Finally, 7
specifies that a manager does not have any value for the attribute until (16),
meaning that a manager has a permanent position, Note that this implies that
no employee is simultaneously a temporary employee and a manager. ad

We now specify the form of DL-Litey ABoxes. A DL-Lite 4 ABox is a finite
set of assertions, called membership assertions, of the form:

A(a), P(a,b), Uc(a,b)

where a and b are constants in the alphabet I

Linking Data to Ontologies 11

As for the semantics of a DL-Litey, ABox A, we now specify when an inter-
pretation I = (A, -T) satisfies a membership assertion « in A, written I = . I
satisfies:

— A(a) if af € AL
— P(a,b) if (af,b!) € PI;
— Uc(a,b) if (al,b!) € UL.

I is model of A, or, equivalently, I satisfies A, written I = A, if I satisfies
all the membership assertions in A.
We next illustrate an example of a DL-Lite4 ABox. In the example, we use

the bold face font for constants in I'p, and the slanted font for constants in
Iy.

Example 2. Consider the following ABox .A:

tempEmp(Palm) (17)
until(Palm, 25-09-05) (18)
ProjName(DIS-1212, QuOnto) (19)
manager(White) (20)
WORKS-FOR(White, FP6-7603) (21)
ProjName(FP6-7603, Tones) (22)

The ABox assertions in A state that the object (identified by the con-
stant) Palm denotes a temporary employee who works until the date 25-09-05.
Moreover, DIS-1212 and FP6-7603 are projects whose names are respectively
QuOnto and Tones. Finally, the object White is a manager. ad

Now that we have introduced DL-Lite4 TBoxes and ABoxes, we are able to
define the semantics of a DL-Lite 4 ontology, which is given in terms of interpreta-
tions which satisfy both the TBox and the ABox of the ontology. More formally,
an interpretation I = (A!,.1) is model of a DL-Litey ontology O = (T, A), or,
equivalently, I satisfies O, written I = O, if both I = 7 and I | A. We say
that O is satisfiable if it has at least one model.

Ezample 3. Let O = (T, A) be the DL-Lite4 ontology whose TBox 7T is the one
of Example 1, and whose ABox A is the one of Example 2. The first observation is
that O is satisfiable. Furthermore, it is easy to see that every model I = (Af,.1)
of A satisfies the following conditions:

Palm’ € tempEmp’

(Palm’, 25-09-05') € until’
(DI1S-12127, QuOnto’) € ProjName’
White’ € manager!

(White, FP6-7603') ¢ WORKS-FOR!
(FP6-7603", Tones') € ProjName’.

12 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

Furthermore, the following are necessary conditions for I to be a model of the
TBox 7 (we indicate in parenthesis the reference to the relevant axiom of 7):

Palm’ € employee’, to satisfy inclusion assertion (1)
White! ¢ employeeI7 to satisfy inclusion assertion (2)
Palm’ € person!, to satisfy inclusion assertion (3)

White’ € person!, to satisfy inclusion assertion (3)

Palm’ € 3WORKS-FOR', to satisfy inclusion assertion (4)
FP6-7603" ¢ project!, to satisfy inclusion assertion (5)
Palm’ € (§(PersName))’, to satisfy inclusion assertion (6)
White’ € (5(PersName))’, to satisfy inclusion assertion (6)

Notice that, in order for an interpretation I to satisfy the condition specified in
the fifth row above, there must be an object 0 € AJ such that (Palm’, o) €
WORKS-FOR'. According to the inclusion assertion (5), such an object o must
also belong to project! (indeed, in our ontology, every employee works for at
least one project). Similarly, the last two rows above derive from the property
that every person must have a name (inclusion (6)).

We note that, besides satisfying the conditions discussed above, an interpreta-
tion I’ may also add other elements to the interpretation of concepts, attributes,
and roles specified by I. For instance, the interpretation I’ which adds to I the
tuple

(White!', DIS-1212"") € WORKS-FOR"

is still a model of the ontology.

Note, finally, that there exists no model of O such that White is interpreted
as a temporary employee, since, according to (20), White is a manager and,
as observed in Example 1, the sets of managers and temporary employees are
disjoint. a

The above example clearly shows the difference between a database and an
ontology. From a database point of view the ontology O discussed in the example
might seem incorrect: for example, while the TBOx 7 sanctions that every person
has a name, there is no explicit name for White (who is a person, because he
has been asserted to be a manager, and every manager is a person) in the ABox
A. However, the ontology is not incorrect: the axiom stating that every person
has a name simply specifies that in every model of O there will be a name for
White, even if such a name is not known.

2.3 Queries over DL-Lite4 ontologies

We are interested in expressing queries over ontologies expressed in DL-Litey,
and similarly to the case of relational databases, the basic query class that we
consider is the class of conjunctive queries.

A conjunctive query (CQ) q over a DL-Lite 4 ontology is an expression of the
form

q(x) — conj(z, y)

Linking Data to Ontologies 13

where @ is a tuple of distinct variables, the so-called distinguished variables, y is
a tuple of distinct existentially quantified variables (not occurring in x), called
the non-distinguished variables, and conj(x,y) is a conjunction of atoms of the
form A(z), P(z,y), D(z), Uc(z,y), x =y, where:

— A,P,D, and Ug are respectively an atomic concept, an atomic role, an
atomic value-domain, and an atomic attribute in O,
— x,y are either variables in or in y, or constants in I

We say that g(x) is the head of the query whereas conj(x,y) is the body. More-
over, the arity of ¢ is the arity of «.

We will also refer to the notion of conjunctive query with inequalities (CQI),
that is simply a conjunctive query in which atoms of the z # y (called inequal-
ities) may appear. Finally, a union of conjunctive queries (UCQ) is a query of
the form:

Q@) — conjy (@, y3) U+ -+ U conj, ().

Unions of conjunctive queries with inequalities are obvious extensions of unions
of conjunctive queries. In the following, we use the Datalog notation for unions
of conjunctive queries. In this notation a union of conjuctive queries is written
in the form

Q(z) — conjy(x, y1)

Q(x) — conj,(,yn)

Given an interpretation I = (A’,.7), the query Q(x) «— ¢(x,y) (either a
conjunctive query or a union of conjunctive queries) is interpreted in I as the set
of tuples 0, € Al x .- x Al such that there exists o, € AT x - x Al such that
if we assign to the tuple of variables (z,vy) the tuple (04, 0y), then the formula
@ is true in I [1].

Ezxample 4. Let O be the ontology introduced in Example 3. Consider the fol-
lowing query asking for all employees:

q1(x) — employee(x).
If I is the model described in Example 3, we have that:
¢l = {(White'), (Palm’)}.

Note that we would obtain an analogous result by considering the model I’
introduced in Example 3. Suppose now that we ask for project workers, together
with the name of the project s/he works in:

q2(z,y) «— WORKS-FOR(x, z), ProjName(z, y).

Then we have the following (we assume that, according to I, p is the project for
which Palm’ works):

— g5 = {(White/, Tones"), (Palm’, p)};

14 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati
— qé/ = {(WhiteI’7 Tonesl/)7 (Whitell, QuOntoI/)}. O

Let us now describe what it means to answer a query over a DL-Lite, ontol-
ogy. Let O be a DL-Lite 4 ontology, @ a UCQ over O, and t a tuple of elements
of I'. We say that t is a certain answer to q over O, written t € ans(Q,O), if
for every model I of @, we have that t/ € Q. Answering a query Q posed to an
ontology O means exactly to compute the certain answers.

Ezxample 5. Consider again the ontology introduced in Example 3, and queries
q1, g2 of Example 4. One can easily verify that the set of certain answers to ¢; is
{White, Palm}, whereas the set of certain answers to ¢, is {(White, QuOnto)}.

2.4 Reasoning over DL-Lite4 ontologies

Our logic DL-Litey is equipped with traditional DL reasoning services, such
as concept and role subsumption, ontology satisfiability and instance checking.
Notably, it can be shown (cf. [8]), that all these services can be reduced to
satisfiability and query answering. In the following, we therefore briefly discuss
satisfiability and query answering for DL-Lite4 ontologies, and present some
important properties of such services. The technical results mentioned in this
subsection are easy extensions of analogous results presented in [8, 6, 27].
Before discussing the main properties of our reasoning method, we observe
that we assume that the ABox of a DL-Lite, ontology is represented by a rela-
tional database. More precisely, if O = (T, .A) is a DL-Lite4 ontology, then we
represent A in terms of the relational database db(.A), defined as follows:

— db(A) contains one unary relation T4 for every atomic concept A appearing
in 7. Such relation has the tuple ¢ in db(.A) if and only if the assertion A(¢)
isin A.

— db(A) contains one binary relation Tp for every atomic role P appearing in
7T . Such relation has the tuple ¢ in db(A) if and only if the assertion P(t) is
in A.

— db(A) contains one binary relation Ty for every atomic attribute U appearing
in 7. Such relation has the tuple ¢ in db(A) if and only if the assertion U (t)
is in A.

One notable property of DL-Litey is that, by virtue of the careful definition
of the expressive power of the logic, reasoning over the ontology O = (7, A) can
be reduced to answering suitable queries over db(A).

As for satisfiability, i.e., the problem of checking whether O = (7, A) is
satisfiable, it can be shown [8,27] that such a reasoning task can be reduced to
the task of evaluating a suitable query, called Violates(7). Intuitively, Violates(7)
is a first-order query that asks for all constants in A violating either:

— explicit constraints corresponding to the functionality and disjointness as-
sertions in 7, or

Linking Data to Ontologies 15

— implicit constraints, following from the semantics of 7, namely constraints
imposing that every concept is disjoint from every domain, and that, for
every pair 13,1} of rdfDataType, T; and T} are disjoint.

We denote with ViolatesDB(7) the function that transforms the query
Violates(7") by changing every predicate X in Violates(7) into T'x . Therefore, the
query ViolatesDB(7) is equivalent to Violates(7), but is expressed over db(.A).
Also, it is immediate to verify that ViolatesDB(7') can be expressed in SQL.

The correctness of this reduction is sanctioned by the results of [8,6,27],
summarized here by the following theorem.

Theorem 1. The DL-Litey4 ontology O = (T, .A) is satisfiable if and only if the
result of evaluating Violates(T) over O, is the empty set, if and only if the result
of evaluating ViolatesDB(T) over db(A) is the empty set.

Ezample 6. Consider the ontology introduced in Example 3. Then, Violates(7)
is a union of conjunctive queries including the following disjuncts (corresponding
to explicit constraints):

()
Q* ()
Q*(x) <« ProjName(z, 1), ProjName(z, 1), y1 # ¥2
Q (l‘) — until(xayl)v unt”(xayQ))yl 7é Y2

O

As for query answering, it can be shown that computing the certain answers
of a query with respect to a satisfiable DL-Lite4 ontology O = (7T, A) can be
reduced, through a process called perfect reformulation, to the evaluation over
db(A) of a suitable union of conjunctive queries. The crucial task of perfect
reformulation is carried out by the function PerfectRef. Informally, PerfectRef
takes as input a UCQ @ over O, and the TBox 7, and reformulates @ into a
new query @', which is still a UCQ and has the following property: the answers
to Q" with respect to (#, M, DB) coincide with the certain asnwers to Q with
respect to (7, M, DB). Thus, all the knowledge represented by the TBox 7 that
is relevant for computing the certain answers of the query @ is compiled into
PerfectRef(Q, 7).

We denote with PerfectRefDB(Q,7) the function that transforms the query
PerfectRef(Q,7) by changing every predicate X in PerfectRef(Q,7) into Tx.
Therefore, the query PerfectRefDB(Q, 7)) is equivalent to PerfectRef(Q,7), but
is expressed over db(A). Also, it is immediate to verify that PerfectRefDB(Q,7)
can be expressed in SQL.

From the results of [8,6,27], we have the following:

Theorem 2. If O = (7, A) is a satisfiable DL-Lites ontology, and Q is
a union of conjunctive queries over O, then t € ans(Q,0) if and only if
t € ans(PerfectReflQ,T), (0, A)), if and only if t is in the result of evaluating
PerfectRefDB(Q, T) over db(A).

16 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

Ezample 7. Consider again the ontology O of Example 3 and the query ¢ asking
for all workers, i.e., those objects which participate to the WORKS-FOR role:

q(x) — WORKS-FOR(z,y).

It can be shown that PerfectRef(q,7) is the following query QP (that is a
UCQ):
QP (z) «— WORKS-FOR(x,y)
QP (z) < until(z,y)
Qv () — tempEmp(x)
QP (z) «— employee(x)
QP(z) — manager(z).

By virtue of the above theorem, the result of evaluating QP over db(.A) coincides
with the set of certain answers to ¢ over 0. Roughly speaking, in order to
return all workers, QP looks in those concepts, relations, and attributes, whose
extensions in db(A) provide objects that are workers, according to the knowledge
specified by 7. In our case, the answer to the query is {White, Palm}. a

We finally point out that, from the properties discussed above, namely that
both ontology satisfiability and query answering are reducible to first-order query
evaluation over a suitable relational database, it follows that, after the reformu-
lation process, the task of computing the certain answers to a query can be dele-
gated to a standard relational DBMS [7]. In turn, this implies that all reasoning
tasks in DL-Lite4 can be done in LOGSPACE with respect to data complexity |8,
27].

3 Linking relational data to DL-Lite ontologies

The discussion presented in the previous section on DL-Lite 4 ontologies assumed
a relational representation for the ABox assertions. This is a reasonable assump-
tion only in those cases where the ontology is managed by an ad-hoc system,
and is built from scratch for the specific application.

We argue that this is not a typical scenario in current applications (e.g., in
Enterprise Application Integration). As we said in the introduction, we believe
that one of the most interesting real-world usages of ontologies is what we call
“ontology-based data access”. Ontology-based data access is the problem of ac-
cessing a set of existing data sources by means of a conceptual representation
expressed in terms of an ontology. In such a scenario, the TBox of the ontology
provides a shared, uniform, abstract view of the intensional level of the applica-
tion domain, whereas the information about the extensional level (the instances
of the ontology) reside in the data sources that are developed independently of
the conceptual layer, and are managed by traditional technologies (such as the
relational database technology). In other words, the ABox of the ontology does
not exist as an independent syntactic object. Rather, the instances of concepts
and roles in the ontology are simply an abstract and virtual representation of

Linking Data to Ontologies 17

some real data stored in existing data sources. Therefore, the problem arises of
establishing sound mechanisms for linking existing data to the instances of the
concepts and the roles in the ontology.

In this section we present the basic idea for our solution to this problem,
by presenting a mapping mechanism that enables a designer to link existing
data sources to an ontology expressed in DL-Lite4, and by illustrating a formal
framework capturing the notion of DL-Lite4 ontology with mappings. In the
following,we assume that the data sources are expressed in terms of the relational
data model. In other words, all the technical development presented in the rest
of this section assumes that the set of sources to be linked to the ontology is one
relational database. Note that this is a realistic assumption, since many data
federation tools are now available that are able to wrap a set of heterogeneous
sources and present them as a single relational database.

Before delving into the details of the method, a preliminary discussion on the
notorious impedance mismatch problem between values (data) and objects is in
order [24]. When mapping relational data sources to ontologies, one should take
into account that sources store values, whereas instances of concepts are objects,
where each object should be denoted by an ad hoc identifier (e.g., a constant in
logic), not to be confused with any data item. For example, if a data source stores
data about persons, it is likely that values for social security numbers, names,
etc. will appear in the sources. However, at the conceptual level, the ontology
will represent persons in terms of a concept, and instances of such concepts will
be denoted by object constants.

One could argue that data sources might, in some cases, store directly object
identifiers. However, in order to use such object identifiers at the conceptual
level, one should make sure that such identifiers have been chosen on the basis
of an “agreement” among the sources on the form used to represent objects.
This is something occurring very rarely in practice. For all the above reasons, in
DL-Lite 4, we take a radical approach. To face the impedance mismatch prob-
lem, and to tackle the possible lack of an a-priori agreement on identification
mechanisms at the sources, we keep data values appearing in the sources sep-
arate from object identifiers at the conceptual level. In particular, we consider
object identifiers formed by (logic) terms built out from data values stored at
the sources. The way by which these terms will be defined starting from the
data at the sources will be specified through suitable mapping assertions, to be
described later in this section. Note that this idea traces back to the work done
in deductive object-oriented databases [15].

To realize this idea from a technical point of view, we specialize the alphabets
of object constants in a particular way, that we now describe in detail.

We remind the reader that Iy, is the alphabet of value constants in DL-Lite 4.
We assume that data appearing at the sources are denoted by constants in I8,
and we introduce a new alphabet A of function symbols in DL-Lite 4, where each

8 We could also introduce suitable conversion functions in order to translate values
stored at the sources into value constants in Iy, but, for the sake of simplicity, we
do not deal with this aspect here.

18 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

function symbol has an associated arity, specifying the number of arguments it
accepts. On the basis of 'y and A, we inductively define the set 7(A, I'y) of all
terms of the form f(ds,...,d,) such that

- feAv
— the arity of f is n > 0, and
—dy,...,d, €Ty.

We finally sanction that the set I'o of symbols used in DL-Lite4 for denoting
objects actually coincides with 7(A, I'y). In other words, we use the terms built
out of I'yy using the function symbols in A for denoting the instances of concepts
in DL-Lite4 ontologies.

All the notions defined for our logics remain unchanged. In particular, an
interpretation I = (A7, 1) still assigns a different element of A’ to every element
of I', and, given that I'p coincides with 7(A, I'), this implies that different terms
in 7(A, I'v) are interpreted as different objects in A, i.e., we enforce the unique
name assumption on terms. Formally, this means that I is such that:

— for each a € I'y: aIEAVI,
— for each a € Iy, ie., for each a € 7(A, I'v): a! € AZ,
— for each a,b € I', a # b implies a’ # b’.

The syntax and the semantics of a DL-Lite4 TBox, ABox and UCQ), intro-
duced in the previous section, do not need to be modified. In particular, from
the point of view of the semantics of queries, the notion of certain answers is
exactly the same as the one presented in Section 2.4.

We can now turn our attention to the problem of specifying mapping as-
sertions linking the data at the sources to the objects in the ontology. In the
following, we make the following assumptions:

— As we said before, we assume that all value constants stored in DB belong
to Iy, and that the data sources are wrapped into a relational database DB
(constituted by the relational schema, and the extensions of the relations),
so that we can query such data by using SQL.

— As mentioned in the introduction, the database DB is independent from the
ontology; in other words, our aim is to link to the ontology a collection of
data that exist autonomously, and have not been necessarily structured with
the purpose of storing the ontology instances.

— ans(p, DB) denotes the set of tuples (of the arity of ¢) of value constants
returned as the result of the evaluation of the SQL query ¢ over the database
DB.

With these assumptions in place, to actually realize the link between the data
and the ontology, we adapt principles and techniques from the literature on data
integration [19]. In particular, we use the notion of mappings as described below.

A DL-Litey ontology with mappings is characterized by a triple O,, =
(T, M, DB) such that:

— T is a DL-Lite, TBox;

Linking Data to Ontologies 19

— DB is a relational database;
— M is a set of mapping assertions, partitioned into two sets, M; and My,
where:
o M, is a set of so-called typing mapping assertions, each one of the form

b~ T;

where @ is a query of arity 1 over DB denoting the projection of one
relation over one of its columns, and 7; is one of the DL-Litey data
types;

o M, is a set of data-to-object mapping assertions (or simply mapping
assertions), each one of the form

O~ U

where @ is an arbitrary SQL query of arity n > 0 over DB, ¥ is a conjunc-
tive query over 7 of arity n’ > 0 without non-distinguished variables,
that possibly involves wvariable terms. A variable term is a term of the
same form as the object terms introduced above, with the difference that
variables appear as argument of the function. In other words, a variable
term has the form f(z), where f is a function symbol in A of arity m,
and z denotes an m-tuple of variables.

We briefly comment on the assertions in M as defined above. Typing mapping
assertions are used to assign appropriate types to constants in the relations of
DB. Basically, these assertions are used for interpreting the values stored in the
database in terms of the types used in the ontology, and their usefulness is evident
in all cases where the types in the data sources do not directly correspond to
the types used in the ontology. Data-to-object mapping assertions, on the other
hand, are used to map data in the database to instances of concepts, roles, and
attributes in the ontology.

We next give an example of DL-Lite, ontology with mappings.

Ezxample 8. Let DB be the database constituted by a set of relations with the
following signature:

D, [sSN:STRING ,PROJ: STRING, D:DATE],
Ds[sSN:STRING,NAME: STRING],

Ds[CODE: STRING, NAME: STRING],

D4[CODE: STRING, $SN: STRING]

We assume that, from the analysis of the above data sources, the following mean-
ing of the above relations has been derived. Relation D; stores tuples (s, p, d),
where s and p are strings and d is a date, such that s is the social security number
of a temporary employee, p is the name of the project s/he works for (different
projects have different names), and d is the ending date of the employment. Re-
lation D5 stores tuples (s,n) of strings consisting of the social security number
s of an employee and her/his name n. Relation D3 stores tuples (¢, n) of strings

20 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

consisting of the code ¢ of a manager and her/his name n. Finally, relation Dy
relates managers’ code with their social security number.
A possible extension for the above relations is given by the following sets of

tuples:

D1 = {(20903, Tones, 25-09-05)}

= {(20903, Rossi), (55577, White) }
D3 = {(X11, White), (X12, Black)}
D, = {(X11,29767)}

Now, let A = {pers, proj, mgr} be a set of function symbols, where pers,
proj and mgr are function symbols of arity 1. Consider the DL-Lite4 ontology
with mappings O,, = (7, M, DB) such that 7 is the TBox of Example 1, and
M = M; UM,, where M, is as follows:

My, : SELECT SSN FROM D; ~» xsd:string
My, : SELECT SSN FROM Dy ~» xsd:string
M, : SELECT CODE FROM D3 ~» xsd:string

My, : SELECT CODE FROM D4y ~» xsd:string
My, : SELECT PROJ FROM D; ~» xsd:string
M, : SELECT NAME FROM Dj ~» xsd:string
M. : SELECT NAME FROM D3 ~» xsd:string
My, : SELECT SSN FROM Dy ~» xsd:string
M;, : SELECT D FROM D, ~» xsd:date

9 *

6

and M, is as follows:

M,,, : SELECT SSN,PROJ,D ~» tempEmp(pers(SsSN)),
FROM D, WORKS-FOR(pers(SSN), proj(PR0J)),
ProjName(proj(PROJ), PROJ),
until(pers(SSN), D)

M,,,, : SELECT SSN,NAME ~» employee(pers(SSN)),
FROM D, PersName(pers(SSN), NAME)
M,,, : SELECT SSN, NAME ~» manager(pers(SSN)),
FROM Ds, Dy PersName(pers(SSN), NAME)
WHERE Ds.CODE=D,.CODE
M,,, : SELECT CODE, NAME ~» manager(mgr(CODE)),
FROM Ds PersName(mgr(CODE), NAME)

WHERE CODE NOT IN
(SELECT CODE FROM Dy)

We briefly comment on the data-to-ontology mapping assertions in M,. My,
maps every tuple (s,p,d) in Dy to a temporary employee pers(s) with name p,
working until d for project proj(p). M,,, maps every tuple (s,n) in Dy to an
employee pers(s) with name n. M,,, and M,,, tell us how to map data in Ds
and D, to managers and their name in the ontology. Note that, if D, provides
the social security number s of a manager whose code is in D3, then we use the

Linking Data to Ontologies 21

social security number to form the corresponding object term, i.e., the object
term has the form pers(s). If D, does not provide such information, then we
use an object term of the form mgr(c) to denote the corresponding instance of
the concept manager. O

In order to define the semantics of a DL-Lite, ontology with mappings, we
need to define when an interpretation satisfies an assertion in M with respect
to a database DB. To this end, we make use of the notion of ground instance of
a formula. Let ¥(x) be a formula over a DL-Lite4 TBox with n distinguished
variables x, and let v a tuple of value constants of arity n. Then the ground
instance [z /v] of ¥(x) is the formula obtained by substituting every occurrence
of x; with v; (for ¢ € {1,..,n}) in ¥(x). We are now ready to define when an
interpretation satisfies a mapping assertion:

— Let m; be an assertion in M; of the form @ ~» T;. We say that the interpreta-
tion I satisfies m; with respect to a database DB, if for every v € ans(®, DB),
we have that v € val(T;).

— Let m, be an assertion in M, of the form

P(z) ~ ¥(ty)

where & and y are variables, y C x and t are variable terms of the form
f(z), feAdand z C x.
We say that I satisfies m, with respect to a database DB, if for every tuple of
values v such that v € ans(®,DB), and for each ground atom X in ¥[x/v],
we have that:

e if X has the form A(s), then s’ € AZ;

e if X has the form D(s), then s’ € D7;

e if X has the form P(sy,s2), then (sf,sl) € P;

e if X has the form Uc(s1,s2), then (si,sl) € UL.

Finally, we say that an interpretation I = (A!,.T) is a model of O,, =
(T, M,DB) if:

— I is a model of 7T;
— I satisfies M with respect to DB, i.e., satisfies every assertion in M with
respect to DB.

We denote as Mod(O,,,) the set of models of O,,, and we say that a DL-Lites
ontology with mappings O,, is satisfiable if Mod(O,,) # 0.

Ezample 9. One can easily verify that the ontology with mappings O,, of Ex-
ample 8 is satisfiable. a0

Note that, as we said in the introduction, the mapping mechanism described
above nicely deals with the fact that the database DB and the ontology O,, are
based on different semantical assumptions. Indeed, the semantics of DB follows
the so-called “closed world assumption” [28], which intuitively sanctions that
every fact that is not explicitly stored in the database is false. On the contrary,

22 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

the semantics of O,, is open, in the sense that nothing is assumed about the
facts that do not appear explicitly in the ABox. In a mapping assertion of the
form @ ~» ¥, the closed semantics of DB is taken into account by the fact that @
is evaluated as a standard relational query over the database DB, while the open
semantics of O, is reflected by the fact that mappings assertions are interpreted
as “material implication” in logic. It is well known that a material implication
of the form & ~» ¥ imposes that every tuple of @ contribute to the answers to
¥, leaving open the possibility of additional tuples satisfying ¥.

Let @ denote a UCQ expressed in terms of the TBox 7 of O,,. We call
certain answers to Q posed over O,, the set of n-tuples of terms in I, denoted
Q%" , that is defined as follows:

QP ={t|t' € Q',VI € Mod(0,,)}

Clearly, given an ontology with mappings and a query @) posed in terms of 7,
query answering is the problem of computing the certain answers to Q.

4 Overview of the reasoning method

Our goal in the next sections is to illustrate a method for both checking sat-
isfiability, and query answering in DL-Lite4 ontologies with mappings. In this
section, we present an overview of our reasoning method, by concentrating in
particular on the task of query answering.

The simplest way to tackle reasoning over a DL-Lite, ontology with map-
pings is to use the mappings to produce an actual ABox, and then reasoning
on the ontology constituted by the ABox and the original TBox, applying the
techniques described in Section 2.4. We call such approach “bottom-up”. How-
ever, such a bottom-up approach requires to actually build the ABox starting
from the data at the sources, thus somehow duplicating the information already
present in the data sources. To avoid such redundancy, we propose an alternative
approach, called “top-down”, which essentially keeps the ABox virtual.

We sketch out the main ideas of both approaches below. As we said before,
we refer in particular to query answering, but similar considerations hold for sat-
isfiability checking too. Before delving into the discussion, we define the notions
of split version of an ontology and of wirtual ABoz, which will be useful in the
sequel.

4.1 Splitting the mapping

Let O, = (T, M,DB) be a DL-Lite4 ontology with mappings as defined in
the previous section. We show how to compute the split version of O,,, that
is characterized by a particularly “friendly form”. Specifically, we denote as
Split(O,,) = (T, M’, DB) a new ontology with mappings that is obtained from
O, by constructing M’ as follows:

1. all typing assertions in M are also in M’;

Linking Data to Ontologies 23

2. for each mapping assertion ¢ ~ ¥ € M, and for each atom X € ¥, the
mapping assertion @ ~» X is in M’ where @' is the projection of @ over the
variables occurring in X.

Ezample 10. Consider the ontology with mappings O,, = (7, M,DB) of Ex-
ample 8. By splitting the mappings as described above, we obtain the ontology
Split(Oy,) = (T, M!, DB) such that M’ contains all typing assertions in M and
contains furthermore the following split mapping assertions:

M,

=

m32

My,

Mo,

: SELECT SSN ~
FROM D

: SELECT SSN, PROJ ~
FROM D

: SELECT PROJ ~
FROM D

: SELECT SSN,D ~
FROM D,

: SELECT SSN ~
FROM D,

: SELECT SSN,NAME ~
FROM D,

: SELECT SSN ~
FROM Ds, D4

WHERE D3 .CODE=D,.CODE

: SELECT SSN, NAME ~
FROM D5, D4

WHERE D3 .CODE=D,.CODE
SELECT CODE ~
FROM Ds

WHERE CODE NOT IN
(SELECT CODE FROM D)

: SELECT CODE, NAME ~>

FROM Ds
WHERE CODE NOT IN
(SELECT CODE FROM D)

tempEmp(pers(SSN))
WORKS-FOR(pers(SSN), proj(PR0J))
ProjName(proj(PR0J), PROJ)
until(pers(SSN), D)
employee(pers(SSN))
PersName(pers(SSN), NAME)

manager(pers(SSN))

PersName(pers(SSN), NAME)

manager(mgr(CODE))

PersName(mgr(CODE), NAME)

a

The relationship between an ontology with mappings and its split version is
characterized by the following theorem.

Proposition 1. Let O,, = (T, M, DB) be a DL-Lite s ontology with mappings.
Then, we have that:

Mod(Split(O,,)) =

Mod(O,,).

Proof. The result follows straightforwardly from the syntax and the semantics
of the mappings.

O

24 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

The theorem essentially tells us that every ontology with mappings is logically
equivalent to the corresponding split version. Therefore, given any arbitrary
DL-Lite 4 ontology with mappings, we can always reduce it to its split version.
Moreover, such a reduction has PTIME complexity in the size of the mappings
and does not depend on the size of the data. This allows for assuming, from now
on, to deal only with split versions of DL-Lite4 ontologies with mappings.

4.2 Virtual ABox

In this subsection we introduce the notion of virtual ABox. Intuitively, given a
DL-Litey ontology with mappings O,, = (7, M, DB), the virtual ABox corre-
sponding to O,, is the ABox whose assertions are computed by “applying” the
mapping assertions starting from the data in DB. Note that in our method we
do not explicitly build the virtual ABox. However, this notion will be used in
the technical development presented in the sequel of the paper.

Definition 1. Let O,, = (7, M,DB) be a DL-Lites ontology with mappings,
and let M be a mapping assertion in M of the form M = & ~ X. We call
virtual ABox generated by M from DB the following set of assertions:

A(M,DB) ={X[z/v] | v € ans(P,DB)},

where v and @ are of arity n, and, as we said before, X [x/v] denotes the ground
atom obtained from X(x) by substituting the n-tuple of variables & with the
n-tuple of constants v € IY;. Moreover, the virtual ABox for O,,, denoted
A(M,DB), is the set of assertions

A(M,DB) = {A(M,DB) | M € M}.

Notice that A(M,DB) is an ABox over the constants I’ = I'y U T(A,), as
shown by the following example.

Ezample 11. Let Split(O,,) be the DL-Lites ontology with split mappings of
Example 10. Consider in particular the mappings M,,,,, Mpn,,. Suppose we
have Dy = {(20903, Rossi), (55577, White)} in the database DB. Then, the sets
of assertions A(M,,,, DB), A(M,,, DB) are as follows:

A(M,,,,, DB) = {employee(pers(20903)), employee(pers(55577)) }
A(M,,,,, DB) = {PersName(pers(20903), Rossi), PersName(pers(55577), White) }

O
By proceeding in the same way for each mapping assertion in M, we can
easily obtain the whole virtual ABox for O,,.

Virtual ABoxes allow for expressing the semantics of DL-Lite4 ontologies
with mappings in terms of the semantics of DL-Lite4 ontologies as follows:

Proposition 2. If O,, = (T, M,DB) is a DL-Lite4 ontology with mappings,
then
Mod(O,,) = Mod({T, A(M,DB))).

Linking Data to Ontologies 25

Proof. Trivial, from the definition. a

Now that we have introduced virtual ABoxes, we discuss in more detail both
the bottom-up and the top-down approach.

4.3 A bottom-up approach

The proposition above suggests an obvious, and “naive”, bottom-up algorithm
to answer queries over a satisfiable DL-Lite4 ontology O,, = (T, M, DB) with
mappings, which we describe next. First, we materialize the virtual ABox for
O, i.e., we compute A(M,DB). Second, we apply to the DL-Lite4 ontology
O = (T,A(M,DB)), the algorithms for query answering, briefly described in
Section 2.4.

Unfortunately, this approach has the following drawbacks. First, the time
complexity of the proposed algorithm is PTIME in the size of the database,
since the generation of the virtual ABox is by itself a PTIME process. Second,
since the database is independent of the ontology, it may happen that, during the
lifetime of the ontology with mappings, the data it contains are modified. This
would clearly require to set up a mechanism for keeping the virtual ABox up-to-
date with respect to the database evolution, similarly to what happens in data
warehousing. Thus, next, we propose a different approach (called “top-down”),
which uses an algorithm that avoids materializing the virtual ABox, but, rather,
takes into account the mapping specification on-the-fly, during reasoning. In
this way, we can both keep the computational complexity of the algorithm low,
which turns out to be the same of the query answering algorithm for ontologies
without mappings (i.e., in LOGSPACE), and avoid any further procedure for data
refreshment.

4.4 A top-down approach

While the bottom-up approach described in the previous subsection is only of
theoretical interest, we now present an overview of our top-down approach to
query answering.

Let O,, = (T, M,DB) be a DL-Lite4 ontology with split mappings, and let
Q@ be a UCQ over O,,. According to the top-down approach, query answering
is constituted by three steps, called reformulation, unfolding, and evaluation,
respectively.

— Reformulation. In this step, we compute the perfect reformulation Q' =
PerfectRef(Q,7) of the original query @, according to what we said in Sec-
tion 2.4.)’ is a first-order logic query satisfying the following property: the
certain answers to (Q with respect to O,, coincide with the set of tuples com-
puted by evaluating Q' over db(A(M,DB))?, i.e., the database representing
A(M,DB).

9 The function db is defined in Section 2.

26 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

— Unfolding. Instead of materializing A(M,DB)

and evaluating Q'

A(M,DB) (as in the bottom-up approach), we “unfold” @’ according to
M, i.e., we compute a new query Q" which is an SQL over the source rela-
tions. As we will show in Section 6, this computation is done by using logic
programming techniques, and allows us to get rid of M, in the sense that
the set of tuples computed by evaluating Q" over the sources coincides with
the set of tuples computed by evaluating Q" over db(A(M,DB)).

— Evaluation. The evaluation step consists simply in delegating the evaluation
of Q" over the database DB to the DBMS managing such database.

Ezample 12. Consider the ontology Split(O,,) of Example 10, and assume it is
satisfiable. The mapping assertions in M’ of Split(O,,,) can be encoded in the
following portion of a logic program (see Section 6):

tempEmp(pers(s))
WORKS-FOR(pers(s), proj(p))
ProjName(proj(p), p)
until(pers(s), d)

— Auzq1(s)
— Auzqa(s,p)
— Auz13(p)
— Aux14(s,d)

(
(
(
(
— Auzxa (s
(
(
(
(

employee(pers(s)))
PersName(pers(s),n) — Auzas(s,n)
manager(pers(s)) — Auzsi(s)
PersName(pers(s), n) — Auxzsa(s,n)
manager(mgr(c) — Auzy(c)

PersName(mgr(c), n)

— Auzga(c,n)

where Aux;; is a suitable predicate denoting the result of the evaluation over
DB of the query @,,,; in the left-hand side of the mapping M,,,; (note that for
different Auz;, and Aux;, we may have @,,,, equal to @,,.,). Now, let

q(x) — WORKS-FOR(z,y)

be the query discussed in Example 7. As we saw in Section 2, its reformulation

Q' = PerfectRef(q, 7) is:

(x) — WORKS-FOR(x,y)
(z) « until(z,y)

(z) — tempBmp(z)

(z) — employee(x)

Q' (z) — manager(zx)

In order to compute the unfolding of @', we unify each of its atoms in all possible
ways with the left-hand side of the mapping assertions in M’, and we obtain the
following partial evaluation of Q'

a(pers(s)) — Auzis(s,p)
q(pers(s)) «— Auxa(s,d)
a(pers(s)) — Auzyy (s)
g(pers(s)) — Auwa(s)
q(pers(s)) «— Auzxsyi(s,n)
q(mgr(c)) «— Auz4i(c,n)

Linking Data to Ontologies 27

From the above formulation, it is now possible to derive the corresponding SQL
query Q" that can be directly issued over the database DB:

SELECT CONCAT(CONCAT(’pers (’,SSN),’)?)

FROM D,

UNION

SELECT CONCAT (CONCAT(’pers (’,SSN),’)’)
FROM D,

UNION

SELECT CONCAT(CONCAT(’pers (’,SSN),’)’)
FROM D3, Dy

WHERE D3 .CODE=D,.CODE

UNION

SELECT CONCAT (CONCAT(’mgr (’,CODE),’)’)
FROM D3

WHERE CODE NOT IN (SELECT CODE FROM Dg)
O

In the next two sections we delve into the details of our top-down method for
reasoning about ontologies with mappings. In particular, in Section 5 we deal
with the unfolding step, whereas in Section 6 we present the complete algorithms
for both satisfiablity checking and query answering, and we discuss their formal
properties. In both sections, we assume to deal only with ontologies with split
mappings.

5 Dealing with mappings

As we saw in the previous section, the unfolding step is one of the ingredients of
our top-down method for reasoning about ontologies with mappings. The goal
of this section is to illustrate the technique we use to perform such a step.

Suppose we are given a DL-Litey ontology with split mappings O,, =
(T, M,DB) and an UCQ Q over O,,. The purpose of “unfolding” @ accord-
ing to M, is to compute a new query Q' satisfying the following properties:

1. @' is a query (in particular, an SQL query) over the source relations,
2. the set of tuples computed by evaluating @’ over the data sources coincides
with the set of tuples computed by evaluating @ over db(A(M, DB)).

From the above specification, it is clear that the unfolding step is crucial for
avoiding materializing the virtual ABox.

The method we use for carrying out the unfolding step is based on logic
programming notions [20]. The reason why we resort to logic programming is
that mapping assertions are indeed similar to (simple forms of) rules of a logic
program. The connection between data integration mappings and logic program-
ming has already been noticed in several papers (see, for example, [25]). Our case,
however, differs from those addressed in such papers, for two main reasons:

28 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

— while most of the above works use Datalog rules for modeling mappings, our
mapping assertions contain functional terms, and therefore they go beyond
Datalog;

— we do not want to use the rules for directly accessing data. Instead, we aim
at using the rules for coming up with the right queries to ship to the data
sources. In this sense, we use the rules only “partially”.

The fact that we use the rules only partially is the reason why we will make use of
the notion of “partial evaluation” of a logic program. This notion, together with
more general notions of logic programming, is introduced in the next subsection.

5.1 Relevant notions from logic programming

We briefly recall some basic notions from logic programming [20], upon which
we build our unfolding technique. In particular, we exploit some crucial results
on the partial evaluation [18] of logic programs given in [21], which we briefly
recall below.

Definition 2. A definite program clause is an expression of the form
A—W

where A is an atom, and W is a conjunction of atoms Ay, ..., A,. The left-hand
side of a clause is called its head, whereas its right-hand side is called its body.
Either the body or the head of the clause may be empty. When the body is empty,
the clause is called fact (and the «— symbol is in general omitted). When the
head is empty, the clause is called a definite goal. A definite program is a finite
set of definite program clauses.

Notice that A « W has a first-order logic reading, which is represented by
the following sentence:
Vo, -,V (AV W),

where 1, ...,z are all the variables occurring in W and A. This reading explains
why a logic program clause is also called a rule.

From now on, when we talk about programs, program clauses and goals, we
implicitly mean definite programs, definite program clauses and definite goals,
respectively.

A well-known property of logic programs is that every definite program P
has a minimal model, which is the intersection Mp of all Herbrand models for
P [20]. Intuitively, the minimal model of P is the set of all positive ground facts
(i.e., atomic formulae without variables) that are true in all the models of P. We
say that an atomic formula (or atom) containing no variable is true in a logic
program P if it is true in the minimal model of P.

Logic program clauses are used to derive formulae from other formulae. The
notion of derivation is formalized by the following definition.

Linking Data to Ontologies 29

Definition 3. If G is a goal of the form «— Ay,--- Ap, -+, Ag, and C is a
program clause A < Bn,---,By, then G’ is derived from G and C through
the selected atom A,, using the most general unifier'® (mgu) 0 if the following
conditions hold:

— 0 is an mgu of A, and A, and
— G is the goal

— (Al,...,Am,hBh...,Bq,Am+17...,Ak)6‘

where (A1, ,A,)0 = A10,--- , A0, and A0 is the atom obtained from A
applying the substitution 6.

Next we define the notion of resultant. We actually present a simplified def-
inition of this notion, which is sufficient for our purpose.

Definition 4. A resultant is an expression of the form
Q1 «— Qo

where Q1 s a conjunction of atoms, and Q2 (called the body of the resultant) is
either absent or a conjunction of atoms.

The possible derivations of a goal using a program are represented by a special
tree, called SLD-tree, which is defined next.

Definition 5. (SLD-Tree [21]) Let P be a program and let G' be a goal with body
G. Then, an SLD-Tree of PU{G'} is a tree satisfying the following conditions:

— each node is a resultant,

— the root node is Goby — Gq, where Gy = G, and 0 is the empty substitution,

— let GOy ---0; — G;'! be a node N at depth i > 0 such that G; has the form
Ay, .o A, Ak, and suppose that A,, is the atom selected in G;. Then,
for each program clause C' of the form A «— By,---, By in P such that Ay,
and A are unifiable with mgu 0,41, the node N has a child

GO0y -+ 0;41 — Giqa,

where the goal «— Giy1 is derived from the goal — G; and C through A,
usmg 01‘_._1, i.e., Gi+1 has the form (Al, ey Bl, ey Bq7 e 7Ak)0i+1;
— a node which is a resultant with an empty body has no children.

We say that a branch of an SLD-tree is failing if it ends in a node such that
the selected atom does not unify with the head of any program clause. Moreover,
we say that an SLD-Tree is complete if all its non-failing branches end in the
empty clause. An SLD-tree that is not complete is called partial.

Finally, given a node Q8y, . ..,0; — Q; at depth i, we say that the derivation
of Q; haslength ¢ with computed answer 6, where 6 is the restriction of 0y, - - - ,0;
to the variables in the goal G'.

10°A unifier of two expressions is a substitution of their variables that makes such
expressions equal. A most general unifer is a unifier with a minimal number of
substitutions.

11 The expression 610s - - - 0, denotes the composition of the substitutions 61,. .., 6.

30 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

Finally, we recall the definition of partial evaluation (PE for short) from [21].
The definition actually refers to two kinds of PE: the PE of an atom in a program,
and the PE of a program with respect to an atom. Intuitively, to obtain a PE of
an atom A in P, one considers an SLD-tree T for P U {« A}, and chooses a cut
in T. The PE of P with respect to A is defined as the union of the resultants
that occur in the cut and do not fail in 7.

Definition 6. Let P be a program, A an atom, and T an SLD-tree for P U {—
A}. Then,

— any set of nodes such that each non-failing branch of T' contains exactly one
of them is a PE of A in P;
— the logic program obtained from P by replacing the set of clauses in P whose

head contains A with a PE of A in P is a PE of P with respect to A.

Note that, by definition, a PE of A in P is a set of resultant, while the PE
of P with respect to A is a logic program.

Also, a well-known property of PE is that a program P and any PE of P
with respect to any atom are procedurally equivalent, i.e., the minimal model of
P and the minimal model of any PE of P with respect to any atom coincide.

5.2 The unfolding step

We are now ready to look into unfolding step for reasoning in DL-Lite 4 ontologies
with mappings. In particular, the goal is to define a function UnfoldDB, that, in-
tuitively, takes as input a DL-Lite4 ontology with mappings O,, = (T, M, DB),
and a UCQ (possibly with inequalities) @ over O,,, and returns a set of resul-
tants describing

1. the queries to issue to DB, and
2. the substitution to apply to the result in order to obtain the answer to Q.

In order to use logic programming based techniques for unfolding, we express
the UCQ @ and the relevant information about M and DB in terms of a logic
program, called the program for @ and Op,.

In all this subsection, unless otherwise stated, we consider O,,, = (T, M, DB)
to be a DL-Lite4 ontology with mappings, and @ to be a union of conjunctive
queries over O,,, possibly including inequalities.

Definition 7. The program for @ and O,,, denoted P(Q, M, DB), is the logic

program formed as follows:

1. for each conjunctive query (¢(x) «— Q') € Q, P(Q, M,DB) contains the
clause
q(x) < o(Q)
where o(a) denotes the query obtained by replacing each x # y in the body
of a with the atom Distinct(z,y), where Distinct is an auxiliary binary
predicate;

12 We assume that the alphabet of 7 does not contain the predicate Distinct, and, for
any 4, does not contain the predicate Auz;.

Linking Data to Ontologies 31

2. for each mapping assertion mi € M of the form Pp(x) ~ pi(t),
P(Q, M, DB) contains the clause

pr(t) — Auxy(x)

where Auzxy is an auxiliary predicate associated to my, whose arity is the
same as Py;

3. for each @y appearing in the left-hand side of a mapping assertion in M, for
each t € ans(Py, DB), P(Q, M, DB) contains the fact Auxy(t);

4. let I'pg be the set of all wvalues appearing in DB; then for each pair
t1,te of distinct terms in 7(A, I'pp) U I'pg, P(Q, M, DB) contains the fact
Distinct(ty,ts).

Intuitively, item (1) in the definition is used to represent the query @ in the
logic program P(Q, M, DB), with the proviso that all inequalities are expressed
in terms of the predicate Distinct. Ttem (2) introduces one auxiliary predicates
Auzx; for each @; appearing in the left-hand side of the mapping assertion in
m; € M, and item (3) states that the extension of Aux;(x) coincides with
ans(®;, DB). Finally, item (4) is used to enforce the unique name assumptionin
P(Q, M, DB).

The following two lemmas state formally the relationship between
P(Q, M,DB), O,, and Q. They essentially show that P(Q, M, DB) is a faithful
representation in logic programming of both O,, and Q.

Lemma 1. A(M,DB) coincides with the projection over the alphabet of T of
the minimal model of P(Q, M, DB).

Proof. We first show that, for each tuple ¢ of terms, if X (t) € A(M,DB), then
X(t) is true in the minimal model Mp of P(Q, M,DB). Consider a tuple ¢
such that X (¢) € A(M,DB). Thus, by construction of A(M, DB) we have that
there exists a mapping @i (x) ~ X («) in M, a tuple ¢’ of values in I'pp, and
a substitution 6 such that ¢’ € ans(®i, DB) and t = af. But then, since t' €
ans(Py, DB), we have that Auxy(t') € P(Q, M, DB). Moreover, since $(x) ~»
X (@) is a mapping in M, we have that X (a) <+ Auzy(x) € P(Q, M, DB). Thus,
6 is an mgu of Auxy(x) and Auxy(t'). Therefore, it is possible to derive X (t)
from Auzy(t') and X («) «— Auxy(x) by using 6, and, by a well-known property
of logic programming, X (¢) is true in Mp.

Conversely, let X (¢) be true in the minimal model Mp of P(Q, M, DB).
By following a similar line of reasoning as above, it can be easily shown that

X(t) € A(M,DB). O
Lemma 2. For each tuple t € 7(I'y, A) U I'y, we have that
t € ans(Q, db(A(M,DB))) if and only if P(Q, M, DB)U{— q(t)} is unsatisfiable.

Proof. The result follows directly from the previous lemma and the construction

of P(Q, M, DB). O

32 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

We now illustrate how to compute a specific PE of the program P(Q, M, D)
(where @ has the form ¢g(x) « () with respect to ¢(x), denoted PE(Q, M, DB).
Such a PE is crucial for our development.

We first define the function SLD-Derive(P(Q, M, DB)) that takes as input
P(Q, M,DB), and returns a set S of resultants constituting a PE of ¢(x) in
P(Q, M,DB), by constructs an SLD-Tree T for P(Q, M,DB) U {«— q(x)} as
follows:

— it starts by selecting the atom g(x),

— it continues by selecting the atoms whose predicates belong to the alphabet
of 7', as long as possible;

— it stops the construction of a branch when no atom with predicate in the
alphabet of 7 can be selected.

Note that the above definition implies that SLD-Derive(P(Q, M, DB)) returns
the set S of resultants obtained by cutting 7" only at nodes whose body contains
only atoms with predicate Aux; or Distinct.

Second, we use SLD-Derive(P(Q, M, DB)) to define PE(Q, M, DB), a specific
PE of P(Q, M,DB) with respect to ¢(x). PE(Q, M, DB) is obtained simply
by dropping the clauses for ¢ in P(Q, M, DB), and replacing them by S =
SLD-Derive(P(Q, M, DB)).

Obviously, since PE(Q, M, DB) is a PE of P, the two programs are procedu-
rally equivalent, i.e., for every atom A, A is true in PE(Q, M, DB) if and only
if A is true in P(Q, M, DB).

Let Q a UCQ of the form g(x) « 3. We now define the function spready
that takes as imput a resultant ¢(z)f — Q' in PE(Q, M, DB), and returns an
extended form of resultant ¢(x)0 <« Q" such that Q" is a first-order query over
DB, which is obtained from @’ by proceeding as follows. At the beginning, Q"
has an empty body. Then, for each atom A in @Q’,

— if A = Auxg(x), it adds to Q' the query @, (x); note that, by hypothesis,
& (x) is an arbitrary first-order query with distinguished variables x, that
can be evaluated over DB;

— if A = Distinct(x,x2), where 21, zo have resp. the form f1(y1) and fo(y2),
then:

e if fi # fo, then it does nothing,
e otherwise, it adds to @’ the following conjunct:

\/ Y1, 7é Y2,

where w is the arity of fi.
Note that in this case we obtain a disjunction of variables, which, again, can
be obviously evaluated over a set of data sources DB.

The next lemma establishes the relationship between the answers to the
program PE(Q, M, DB), and the tuples that are answers in the queries over the
data sources that are present in the mapping assertions. It essentially sayss that

Linking Data to Ontologies 33

every answer to the program PE(Q, M, DB) is “generated” by tuples in the data
sources.

This lemma and the next theorems make use of a new notion, that we now
introduce. We say that an atom ¢(t) is obtained from q(x) and 0 through t' if
q(x)0 = q(t), and all constants used in 6 appear in t'. For example, ¢(f(2,3),4)
is obtained from ¢(z1,x2) and the substitution {z1/f(2,3), 22,4} through the
tuple (2, 3,4).

Lemma 3. Let Q a UCQ of the form q(x) — (. For each tuple t € T7(I'y, A) U
I'v, q(t) is true in PE(Q, M, DB) if and only if there is a resultant q(x)0 «— Q'
in PE(Q, M, DB) and a tuple t' in Iy such that q(x)0 = q(t), q(t) is obtained
from q(x) and 0 through t', spready (q(x)0 — Q') = (q(x)0 — Q"), and
t' € ans(Q",DB).

Proof. The if-direction is easy to prove. For the only-if-direction, if ¢(t) is true
in PE(Q, M, DB), q(t) can be derived using a resultant in PE(Q, M, DB). Let
q(x)8 — Q' be such a resultant in PE(Q, M, DB), and let Q" have the form
Ai(x1), -, An(zy). By construction, A;(x;) is either

— Auxy, (x;), or
— Distinct(x;), where x; = (2;,, T,).

Suppose that A; has predicate Auxy, for each i < j whereas it has predicate
Distinct for j < i < n. By construction, spreado, (q(x)0 «— Q') = (q(x)0 —
Q"), with Q" of the form:

{m’ e yill 7yi21 o .yilwi ’yizwi e
| Prey (®1), - Pry (®5), (Vs Vieqr,. iy Yin,, 7 Yiz,)}

where (Vj,c1, wi} Yir, 7 Yia,) OcCcurs together with the corresponding distin-
guished variables y;, ,y;,, if there is an atom Distinct(x;,,x;,) in g such that
Liy = f(yi1)7xi2 = f(yzz) where f has arity w;.

Now, let t be a tuple in 7(I'y, A) U I'y. We show next that if ¢(¢) is true
in PE(Q, M, DB), then there is a tuple ¢ in Iy such that ¢(x)f = Q(¢),
q(t) is obtained from ¢(x) and 6 through ¢, and ¢’ € ans(Q"”,DB). Suppose
that ¢(t) is true in PE(Q, M,DB). Then there exists 67 such that ¢(t) =
(Ai(x1), -+, Ap(y))0? is true in PE(Q, M, DB). This implies that there ex-
ist n facts F; in PE(Q, M, DB) such that F; = 4,07 is true in PE(Q, M, DB)
for each ¢ = 1,--+ ;n. But then, by construction:

— if 4 < j, then F; has the form Auzy,(¢;), which by construction means that
t; € ans(Py, DB);

— otherwise, F; has the form Distinct(t;), where t; = (t;1,ti2) and t;1,t;5 are
such that t;; # t;9.

By the above observations, one can easily verify that t' € ans(Q”, DB). Indeed,
for ¢ < j we have trivially that @y, (¢]) is true, whereas for j < i < k, we have
that if f; = fo, then v;, # v;,. Thus, since g(x)#? belongs to PE(Q, M, DB),
then ¢(t) is obtained from g(x) and 6P through ¢', and we have proved the claim.

O

34 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

Before presenting the function UnfoldDB, we need to make a further obser-
vation. The program P(Q, M,DB), being a faithful representation of @ and
O, contains also the facts regarding the predicates Aux; and Distinct. Since
we use partial evaluation techniques for computing the queries to issue to the
data sources, we are interested in the program obtained from P(Q, M, DB) by
ignoring such facts. Formally, we define P(Q, M) to be the program obtained
from P(Q, M, DB) by eliminating all facts Aux(t) and Distinct(t). Notice that
while P(Q, M, DB) depends on the DB, P(Q, M) does not. The next theorem
shows that the programs P(Q, M, DB) and P(Q, M) are equivalent with respect
to partial evaluation.

Lemma 4. SLD-Derive(P(Q, M, DB)) = SLD-Derive(P(Q, M)).

Proof. The proof follows from the observation that SLD-Derive(P(Q, M, DB))
constructs an SLD-Tree for P(Q, M, DB)U{«— ¢(x)} by selecting only the atoms
in the alphabet of 7, and that P(Q, M, DB) and P(Q, M) coincide in the clauses
containing atoms in the alphabet of 7. a

Now we are finally able to come back to the definition of UnfoldDB. As usual
in this subsection, O,, = (7, M, DB) is an ontology with mappings, and @
a union of conjunctive queries (possibly with inequalities) over O,,. We define
UnfoldDB(@, O,,) as the function that takes as input @ and O,,, and returns a
set S’ of resultants by proceeding as shown in Fig. 1.

Algorithm UnfoldDB(Q, O,)
Input: DL-Lites ontology with mappings O, = (7, M, DB)
UCQ (possibly with inequalities) @ over Oy,
Output: set of resultants S’
build the program P(Q, M);
compute the set of resultants S = SLD-Derive(P(Q, M));
for each ansf — g € S do
S" — spread, (ansd — q);
return S’

Fig. 1. The Algorithm UnfoldDB

The next theorem shows the correctness of UnfoldDB, i.e., termination,
soundeness and completeness.

Theorem 3. For every UCQ Q of the form q(x) — [and for every O,
UnfoldDB(@, O,,) terminates, and for each tuple of constants t in 7(I'y, A)U Ty
we have that:

t € ans(Q, db(A(M, DB))) if and only if
A(g(x)0 — Q") € UnfoldDB(Q, O,,) such that q(x)f = q(t),
q(t) is obtained from q(x) and 0 through t', and t' € ans(Q", DB).

Linking Data to Ontologies 35

Proof. Termination of UnfoldDB is immediate. Soundness and completeness can
be directly proved by using the lemmas presented in this section. a

Note that the algorithm UnfoldDB described in Fig. 1 returns a set of resul-
tants, called S’. This form of the algorithm was instrumental for proving the
correctness of our method. However, from a practical point of view, the best
choice is to translate these set of resultants into a suitable SQL query that can
be issued on the data sources. Indeed, this is exactly what our current imple-
mentation does. In particular, in the implementation, the final for each loop in
the algorithm is replaced by a step that, starting from S, builds an SLQ query
that, once evaluated over the data sources, computes directly the answers of the
original query Q. For the sake of space, we do not describe such a step here. We
only note that the kind of SQL queries obtained with this method can be seen
by looking at example 12 in Section 4.

We end this section by observing that UnfoldDB allows for completely forget-
ting about the mappings during query evaluation, by compiling them directly
in the queries to be posed over the underlying database. Next we show that
this crucial property allows for devising reasoning procedures that exploit, on
one hand, the results on reasoning over DL-Lite4 ontologies, and, on the other
hand, the ability of the underlying database of answering arbitrary first-order
queries.

6 Reasoning over DL-Lite, ontologies with mappings

Now that we have described the unfolding step, we are ready to illustrate the
complete algorithms for both satisfiablity checking and query answering, and
to discuss their formal properties. We deal with satisfiability checking first, and
then we address query answering.

Both algorithms make use of several functions that were introduced in the
previous sections, and that we recall here. In what follows, we refer to a DL-Lite 4
ontology O,, = (7, M, DB) with split mappings.

— The boolean function Violates takes as input the TBox 7, and computes a
first-order query over O,,, that intuitively looks for violations of functionality
and disjointness assertions specified in the TBox 7.

— The function PerfectRef takes as input a UCQ @ over O,,, and the TBox 7,
and reformulates) into a new query @Q’, which is still a UCQ and has the
following property: answering Q" with respect to (), M, DB) is the same as
answering () with respect to (7, M, DB).

— The function UnfoldDB is the one discussed in Section 5.

6.1 Satisfiability checking

In Fig. 2 we present the Algorithm Sat that checks the satisfiability of a DL-Lite 4
ontology with mappings. More precisely, Sat(O,,) issues the call Violates(7)
to compute the query @Q°, asking, for each functionality assertion in 7 and

36 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

each negative inclusion assertion in ¢ln(7), whether db(A(M, DB)) violates the
assertion. Then, by calling UnfoldDB(Q?, O,,), that allows for “compiling” the
knowledge represented by the mapping assertions, Sat(O,,) computes the set of
resultants S’ as discussed in the previous section. After extracting from S’ the
union of queries @', Sat(O,,,) evaluates Q' over DB, and returns true, if and only
if ans(Q', DB) = false.

Algorithm Sat
Input: DL-Lites ontology with mappings O, = (7, M, DB)
Output: true or false

Q° «— Violates(7T);

S’ « UnfoldDB(Q*, O,);

Q' — false;

for each ansf «— ¢’ € S’ do

Q —QU{d};
return not(ans(Q’, DB))

Fig. 2. The Algorithm Sat

We next show the correctness of Algorithm Sat.

Theorem 4. Let O,, = (T, M,DB) be a DL-Litey ontology with mappings.
Then, Sat(O,,) terminates, O,, is satisfiable if and only if Sat(O,,) = true.

Proof. The termination of the algorithm follows from the termination of
UnfoldDB.

Concerning the soundness and the completeness of the algorithm, by Propo-
sition 2, we have that O, is satisfiable if and only if O = (7, db(A(M,DB)))
is unsatisfiable. Moreover, as discussed in Section 2.4, we have that O =
(T, db(A(M,DB))) is unsatisfiable if and only if ans(Q*, db(A(M,DB))) = true
where QQ° = Violates(7'). Thus, in order to prove the theorem, it suffices to prove
that:

(x)ans(Q*, db(A(M,DB))) = true if and only if ans(Q’, DB) = true,

where Q' is such that Q" =,y cs ¢ and §" = UnfoldDB(Q*, On).
Clearly, this concludes the proof, since (x) follows straightforwardly from the
correctness of UnfoldDB. a

6.2 Query answering

In Fig. 3 we present the algorithm Answer to answer UCQs posed over a DL-Lite4
ontology with mappings. Informally, the algorithm takes as input a DL-Litey4
ontology O,, with mappings and a UCQ Q over O,,. If the ontology is not
satisfiable, then it returns the set of all possible tuples of elements in Iy U Iy,

Linking Data to Ontologies 37

denoted AllTup(Q, O,,), whose arity is the one of the query Q. Otherwise, it
computes the perfect reformulation QP of @, and then unfold QP by calling
UnfoldDB(QP, O,,) to compute the set of resultants S’. Then, for each resultant
Q' in &', it extracts the conjunctive query in its body, evaluates it over DB and
further processes the answers according to the substitution occurring in the head

of Q.

Algorithm Answer
Input: DL-Lites ontology with mappings O, = (7, M, DB),
UCQ Q over O,
Output: set of tuples R®
if O,, is not satisfiable
then return AllTup(Q, Om)
else
Q" — U, cq PerfectRef(q;, T);
S’ « UnfoldDB(Q?, O.,);
R® — 0;
for each ansf «— ¢’ € S’ do
R* «— R* U ans(q’',DB)Y;
return R’

Fig. 3. Algorithm Answer(Q, O..)

We next show the correctness of Algorithm Answer.

Theorem 5. Let O,, = (T, M, DB) be a DL-Lite4 ontology with mappings, and
Q@ a union of conjunctive queries over O,,. Then, Answer(Q,O,,) terminates.
Moreover, let R® be the set of tuples returned by Answer(Q, O,,), and let t be a
tuple of elements in Iy UTy,. Then, t € ans(Q,O.,) if and only if t € R®.

Proof. The termination of the algorithm follows from the termination of the
Algorithm PerfectRef and the function UnfoldDB.

Concerning the soundness and completeness of the Algorithm Answer,
by Proposition 2, we have that: Mod(O,,) = Mod(O), where O =
(T, db(A(M,DB))). Moreover, given a union of conjunctive queries @, as dis-
cussed in Section 2.4, we have that ans(Q, O) = ans(Q?, db(A(M, DB))), where
(QP) = PerfectRef(Q). Then, since by definition, we have that:

— ans(Q,0) ={t |t € Q1,1 € Mod(0)}, and
— Q9 ={t|t' € Q1€ Mod(O,,)},

it is easy to see that:

ans(Q, On,) = ans(QF, db(A(M, DB))).

38 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

On the other hand, by construction, we have that:
R ={t'0|t € ans(q,DB),anst — ¢ € S’}

where S’ is such that S’ = UnfoldDB(Q?, O,,). Then, clearly, by the correctness
of UnfoldDB, we obtain the claim. a

Note that the algorithm Answer reconstructs the result starting from the re-
sults obtained by evaluating the SQL queries ¢’ over the database DB. However,
from a practical point of view, we can simply delegate such a reconstruction step
to the SQL engine. Indeed, this is exactly what our current implementation does.
In particular, in the implementation, the final for each loop in the algorithm
is replaced by a step that, starting from S’, builds an SQL query that, once
evaluated over the data sources, computes directly the answers of the original

query Q.

6.3 Computational complexity

We first study the complexity of UnfoldDB. Note that, in this section, we assume
that the mappings in M involve SQL queries over the underlying database DB,
and such SQL queries belong to the class of first-order logic queries. So, queries
in the left-hand side of our mapping assertions, are LOGSPACE with respect to
the size of the data in DB.13

Lemma 5. Let O, = (T, M,DB) be a DL-Lites ontology with mappings, and
Q a UCQ over O,,. The function UnfoldDB(Q, O,,) runs in exponential time
with respect to the size of Q, and in polynomial time with respect to the size of

M.

Proof. Let QQ be a UCQ, and let n be the total number of atoms in the body
of all ¢’s in Q. Moreover, let m be the number of mappings and let m, be
the maximum size of the body of mappings. The result follows immediately by
considering the cost of each of the three steps of UnfoldDB(Q, O,,):

1. The construction of P(Q, M) is clearly polynomial in n and m.

2. The computation of SLD-Derive(P(Q, M)) builds first a tree of depth at
most n such that each of its nodes has at most m children, and, second,
it processes all the leaves of the tree to obtain the set S of resultants. By
construction, this set has size O,,(m™). Clearly, the overall computation has
complexity O,,(m").

3. Finally, the application of the function spreade, =~ to each element in S has
complexity O,,(m" - my,). O

13 The assumption of dealing with SQL queries that are first-order logic queries al-
lows for using the most common SQL constructs (except for few of them, e.g., the
“groupby” construct). Obviously, our approach works also for arbitrary SQL queries.
In such a case, the complexity of the overall approach is the complexity of evaluating
such queries over the underlying database.

Linking Data to Ontologies 39

Based on the above property, we are able to establish the complexity of check-
ing the satisfiability of a DL-Lite4 ontology with mappings and the complexity
of answering UCQ over it.

Theorem 6. Given a DL-Lites ontology with mappings O, = (T, M,DB),
Sat(O,,) runs LOGSPACE in the size of DB (data complexity). Moreover, it
runs in polynomial time in the size of M, and in polynomial time in the size of

7.

Proof. The claim is a consequence of the results discussed in Section 2.4, i.e.,
the fact that O,, is satisfiable if and only if ans(Violates(7), db(A(M,DB))):

1. Violates(7) returns a union of queries Q° over db(A(M, D)) whose size is
polynomial in the size of 7

2. each query @) contains two atoms and thus, by Lemma 5, the application of
UnfoldDB to each @ is polynomial in the size of the mapping M and constant
in the size of the data sources;

3. the evaluation of a union of SQL queries over a database can be computed
in LOGSPACE with respect to the size of the database (since we assume that
the SQL queries belong to the class of first-order logic queries). a0

Theorem 7. Given a DL-Lites ontology with mappings O, and a UCQ Q
over O, Answer(Q, O,,) runs LOGSPACE in the size of DB (data complexity).
Moreover, it runs in polynomial time in the size of M, in exponential time in
the size of Q, and in polynomial time in the size of T .

Proof. The claim is a consequence of the results discussed in Section 2.4, i.e.,
the fact that ans(Q, Op,) = ans(PerfectRef(Q,T), db(A(M,DB))):

1. the maximum number of atoms in the body of a conjunctive query generated
by the Algorithm PerfectRef is equal to the length of the initial query Q;

2. by Lemma 5, the algorithm PerfectRef (Q),7) runs in time polynomial in the
size of T ;

3. by Lemma 5, the cost of applying UnfoldDB to each conjunctive query in
the union generated by PerfectRef has cost exponential in the size of the
conjunctive query and polynomial in the size of M; which implies that the
query to be evaluated over the data sources can be computed in time expo-
nential in the size of @), polynomial in the size of M and constant in the size
of DB (data complexity);

4. the evaluation of a union of SQL queries over a database can be computed
in LOGSPACE with respect to the size of the database. a0

7 Conclusions

We have studied the issue of ontology-based data access, under the fundamental
assumption of keeping the data sources and the conceptual layer of an infor-
mation system separate and independent. The solution provided in this paper

40 A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

is based on the adoption of the DL-Lite 4 description logic, which distinguishes
between objects and values, and allows for connectingto external databases via
suitable mappings. Notably, such a description logic admits advanced forms of
reasoning, including satisfiability and query answering (with incomplete infor-
mation), that are LOGSPACE in the size of the data at the sources. Even more
significant from a practical point of view, DL-Lite 4 allows for reformulating such
forms of reasoning in terms of the evaluation of suitable SQL queries issued over
over the sources, while taking into account and solving the impedance mismatch
between data and objects.

We are currently implementing our solution on top of the QuOnto sys-
tem! [2], a tool for reasoning over ontologies of the DL-Lite family. QuOnto was
originally based on DL-Liter, a DL that does not distinguish between data and
objects. By enhancing QuOnto with the ability of reasoning both over DL-Lite4
ontologies and mappings, we have obtained a complete system for ontology-based
data access.

While the possibility of reducing reasoning to query evaluation over the
sources can only be achieved with description logics that are specifically tai-
lored for this, such as DL-Litey, we believe that the ideas presented in this
paper on how to map a data layer to a conceptual layer and how to solve the
impedance mismatch problem are of general value and can be applied to virtually
all ontology formalisms.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley Publ. Co., 1995.

2. Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Mattia Palmieri, and Riccardo Rosati. QUONTO: QUerying
oNTOlogies. In Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pages 1670-1671, 2005.

3. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the ££ envelope. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
364-369, 2005.

4. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

5. Jesus Barrasa, Oscar Corcho, and Asuncion Gomez-Perez. R20, an extensible and
semantically based database-to-ontology mapping language. In Proc. of the 7th
Int. Workshop on the Web and Databases (WebDB 2004), 2004.

6. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable description logics for ontologies. In Proc.
of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pages 602-607, 2005.

7. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Data complexity of query answering in description logics.
In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2006), pages 260-270, 2006.

" http://www.dis.uniromal.it/~quonto/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Linking Data to Ontologies 41

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in descrip-
tion logics: The DL-Lite family. J. of Automated Reasoning, 2007. To appear.
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Data integration in data warehousing. Int. J. of Cooperative
Information Systems, 10(3):237-271, 2001.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. De-
duction in concept languages: From subsumption to instance checking. J. of Logic
and Computation, 4(4):423-452, 1994.

Francois Goasdoue, Veronique Lattes, and Marie-Christine Rousset. The use of
CARIN language and algorithms for information integration: The Picsel system.
Int. J. of Cooperative Information Systems, 9(4):383-401, 2000.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
logic programs: Combining logic programs with description logic. In Proc. of the
12th Int. World Wide Web Conf. (WWW 2003), pages 48-57, 2003.

Jeff Heflin and James Hendler. A portrait of the Semantic Web in action. IEEE
Intelligent Systems, 16(2):54-59, 2001.

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHZQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7-26, 2003.

Richard Hull. A survey of theoretical research on typed complex database objects.
In J. Paredaens, editor, Databases, pages 193-256. Academic Press, 1988.
Richard Hull and Masatoshi Yoshikawa. ILOG: Declarative creation and manip-
ulation of object identifiers. In Proc. of the 16th Int. Conf. on Very Large Data
Bases (VLDB’90), pages 455-468, 1990.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in
very expressive description logics. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005), pages 466-471, 2005.

H. J. Komorowski. A specification of an abstract Prolog machine and its application
to partial evaluation. Technical Report LSST 69, Linkoping University, 1981.
Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233-246, 2002.

John W. Lloyd. Foundations of Logic Programming (Second, Extended Edition,).
Springer, Berlin, Heidelberg, 1987.

John W. Lloyd and John .C. Shepherdson. Partial evaluation in logic programming.
J. of Logic Programming, 11:217-242, 1991.

Carsten Lutz. Description logics with concrete domains: A survey. In Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors,
Advances in Modal Logics, volume 4. King’s College Publications, 2003.
Alexander Mé&dche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA - a
mapping framework for distributed ontologies. In Proc. of the 13th Int. Conf. on
Knowledge Engineering and Knowledge Management — Ontologies and the Seman-
tic Web (EKAW 2002), pages 235-250, 2002.

José Meseguer and Xiaolei Qian. A logical semantics for object-oriented databases.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 89-98,
1993.

Jack Minker. A logic-based approach to data integration. Theory and Practice of
Logic Programming, 2(3):293-321, 2002.

42

26.

27.

28.

29.

30.

31.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati

Maria Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Characterizing data
complexity for conjunctive query answering in expressive description logics. In
Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 2006), 2006.
Antonella Poggi. Structured and Semi-Structured Data Integration. PhD thesis,
Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
2006.

Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker,
editors, Logic and Databases, pages 119-140. Plenum Publ. Co., 1978.

Francois Scharffe and Jos de Bruijn. A language to specify mappings between
ontologies. In Proc. of the 1st Int. Conf. on Signal-Image Technology and Internet-
Based Systems (SITIS 2005), pages 267271, 2005.

Luciano Serafini and Andrei Tamilin. DRAGO: Distributed reasoning architec-
ture for the Semantic Web. In Proc. of the 2nd Furopean Semantic Web Conf.
(ESWC 2005), volume 3532 of Lecture Notes in Computer Science, pages 361-376.
Springer, 2005.

Moshe Y. Vardi. The complexity of relational query languages. In Proc. of the
14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pages 137-146,
1982.

