
6 – Variables and Images in Processing

Francesco Leotta, Andrea Marrella

Last update : 12/4/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

Variables

 A variable is like a storage locker.

 You put something in the locker where it can live safely,

and retrieve it whenever you need it.

 Technically speaking, a variable is a named pointer

to a location in the computer’s memory (“memory

address”) where data is stored.

2 Interaction Design 17/18 6 – Variables in
Processing

 Since computers only process information one instruction at a

time, a variable allows a programmer to save information from one

point in the program and refer back to it at a later time.

 Variables can keep track of information related to shapes, color, size…

 The power of a variable does not simply rest with the ability to

remember a value, but on the fact that its value varies over time, and

a programmer periodically alters that value.

Variables in Scrabble game

3 Interaction Design 17/18 6 – Variables in
Processing

 Consider a game of Scrabble between Billy and Jane.

 To keep track of the score, Jane takes out paper and pencil, and scrawls

down two column names: “Billy’s Score” and “Jane’s Score”.

 If we imagine this game to be virtual

Scrabble programmed on a computer,

we suddenly can see the concept of a

variable that varies emerge.

 That piece of paper is the computer’s

memory and on that paper,

information is written “Billy’s Score”

and “Jane’s Score” are variables,

locations in memory where each

player’s total points are stored and

that change over time.

name

value type of the information:

an integer

Variable Declaration in Processing

4 Interaction Design 17/18 6 – Variables in
Processing

 Variables are declared by first stating the type, followed by the name.

 A type is the kind of data stored in that variable. This could be:

 Integer: ... -2, -1, 0, 1, 2, 3 ...

 Decimal: ... 3.14159, 2.5, –9.95 ...

 Character: ... ‘a’ , ‘b’ , ‘c’ ...

 and many others…

 Variable names:

 must be one word (no spaces)

 must start with a letter

 can include numbers, but cannot start with a number

 can not include any punctuation or special characters,

with the exception of the underscore: “_”

Example of a variable named count of

type int, which stands for integer.

Primitive types and variable names

5 Interaction Design 17/18 6 – Variables in
Processing

Variable Inizialization

6 Interaction Design 17/18 6 – Variables in
Processing

 Once a variable is declared, we can then assign it a value by setting

it equal to something. This procedure is called initialization.

 If we forget to initialize a variable, Processing will give it a default value,

such as 0 for integers, 0.0 for floating points, and so on.

 However, it is good to always initialize variables in order to avoid

confusion.

int count;

count = 50;

 We can combine the above two statements into one.

int count = 50;

 A variable can also be initialized by another variable (x equals y), or

by evaluating a mathematical expression (x equals y plus z , etc.).

Declare and initialize a variable named

count of type int with the value 50;

Declare and initialize a variable in one

line of code.

Example of Variable Inizialization
// Declare an int named count, and assign the value 0

int count = 0;

// Declare a char named letter, and assign the value ‘a‘

char letter = 'a';

// Declare a double named d, and assign the value 132.32

double d = 132.32;

// Declare a boolean named happy, and assign the value false

boolean happy = false;

// Declare a float named x, and assign the value 4.0

float x = 4.0;

// Declare a float named y (no assignment)

float y;

// Assign the value of x plus 5.2 to the previously declared y

y = x + 5.2;

// Declare a float named z, assign a value which is x times y plus 15.0.

float z = x * y + 15.0;

7 Interaction Design 17/18 6 – Variables in
Processing

Using a variable
 Let’s take a simple example of a program that draws a circle onscreen.

int circleX = 100;

int circleY = 100;

void setup() {

size(200,200);

}

void draw() {

background(255);

fill(175);

ellipse(circleX,circleY,50,50);

}

8 Interaction Design 17/18 6 – Variables in
Processing

Declare and initialize two integer

variables at the top of the code.

Use the variables to specify the location

of an ellipse. This corresponds to:

ellipse(100,100,50,50);

Assignment Operation

 A variable is not simply a placeholder for one constant value. We call it a

variable because it varies.

 To change its value, we write an assignment operation, which assigns a

new value to the variable.

variable name = expression;

int a = 1;

int b = 2;

int x = 5;

x = a + b;

int y = 300;

x = y - 10 * 20;

x = x * 5;

9 Interaction Design 17/18 6 – Variables in
Processing

Examples of assigning a new value to variables.

Notice that assignment is the same as how we

initialize a variable, only the variable does not

need to be declared.

Variable declaration is performed just the first time

we define a variable in the source code.

At the end, x will be equal to 500.

Varying variables
 Let’s take a simple example of a program that draws a circle onscreen.

int circleX = 0;

int circleY = 100;

void setup() {

size(200,200);

}

void draw() {

background(255);

fill(175);

ellipse(circleX,circleY,50,50);

circleX = circleX + 1;

}

10 Interaction Design 17/18 6 – Variables in
Processing

Declare and initialize two integer

variables at the top of the code.

To increment the variable circleX by one,

we say: circleX equals itself plus one.

In code, this amounts to the following

assignment operation:

circleX = circleX + 1;

Remember that draw() loops over and

over again, all the while retaining the value
of circleX in memory.

What happens by running the previous example?

11 Interaction Design 17/18 6 – Variables in
Processing

Exercise 1

 Change the previous example so that instead of the circle

moving from left to right, the circle grows in size.

12 Interaction Design 17/18 6 – Variables in
Processing

Solution to Exercise 1

13 Interaction Design 17/18 6 – Variables in
Processing

int circleX = 100;

int circleY = 100;

int circleWidth = 0;

int circleHeight = 0;

void setup() {

size(200,200);

}

void draw() {

background(255);

fill(175);

ellipse(circleX,circleY,circleWidth,circleHeight);

circleWidth = circleWidth + 1;

circleHeight = circleHeight + 1;

}

 Change the previous example so that instead of the circle

moving from left to right, the circle grows in size.

Exercise 2

 Change the previous example so that the circle grows of a unity

in size when the mouse is clicked and decreases of a unity in

size when a key is pressed.

14 Interaction Design 17/18 6 – Variables in
Processing

Solution to Exercise 2

15 Interaction Design 17/18 6 – Variables in
Processing

int circleX = 100;

int circleY = 100;

int circleWidth = 0;

int circleHeight = 0;

void setup() {

size(200,200);

}

void draw() {

background(255);

fill(175);

ellipse(circleX,circleY,circleWidth,circleHeight);

}

void mousePressed() {

circleWidth = circleWidth + 1;

circleHeight = circleHeight + 1;

}

void keyPressed() {

circleWidth = circleWidth - 1;

circleHeight = circleHeight - 1;

}

Using many variables
 Variables can be used to express any piece of information. In the

following example, 8 variables of kind int are used.

int circleX = 0;

int circleY = 0;

int circleW = 50;

int circleH = 100;

int circleStroke = 255;

int circleFill = 0;

int backgroundColor = 255;

int change = 1;

// Your basic setup

void setup() {

size(200,200);

}

16 Interaction Design 17/18 6 – Variables in
Processing

void draw() {

// Draw the background and the ellipse

background(backgroundColor);

stroke(circleStroke);

fill(circleFill);

ellipse(circleX,circleY,circleW,circleH);

// Change the values of all variables

circleX = circleX + change;

circleY = circleY + change;

circleW = circleW + change;

circleH = circleH - change;

circleStroke = circleStroke - change;

circleFill = circleFill + change;

}

Exercise 3

 Write code that draws the following screenshot with variables.

17 Interaction Design 17/18 6 – Variables in
Processing

Solution to Exercise 3 (1)

int firstCircleX;

int firstCircleY;

int secondCircleX;

int secondCircleY;

int thirdCircleX;

int thirdCircleY;

int fourthCircleX;

int fourthCircleY;

int circleWidth;

int circleHeight;

int backgroundColor;

int fillColor;

18 Interaction Design 17/18 6 – Variables in
Processing

Declaration of variables.

Solution to Exercise 3 (1)

void setup() {

size(200,200);

firstCircleX = 50;

firstCircleY = 50;

secondCircleX = 150;

secondCircleY = 50;

thirdCircleX = 50;

thirdCircleY = 150;

fourthCircleX = 150;

fourthCircleY = 150;

circleWidth = 50;

circleHeight = 50;

backgroundColor = 255;

fillColor = 150;

}

19 Interaction Design 17/18 6 – Variables in
Processing

Assignment of values to

variables.

Solution to Exercise 3 (1)

void draw() {

background(backgroundColor);

fill(fillColor);

ellipse(firstCircleX,firstCircleY,circleWidth,circleHeight);

ellipse(secondCircleX,secondCircleY,circleWidth,circleHeight);

ellipse(thirdCircleX,thirdCircleY,circleWidth,circleHeight);

ellipse(fourthCircleX,fourthCircleY,circleWidth,circleHeight);

}

20 Interaction Design 17/18 6 – Variables in
Processing

Draw the ellipses.

System Variables

 As we saw with mouseX, mouseY, pmouseX, pmouseY

Processing has a set of convenient predefined system

variables available for being used.

 These are commonly needed pieces of data associated with all sketches

(such as the width of the window, the key pressed on the keyboard, etc.).

 When naming your own variables, it is best to avoid

system variable names.
 however, if you inadvertently use one, your variable will become primary

and override the system one.

List of system variables

width - Width (in pixels) of sketch window.

height - Height (in pixels) of sketch window.

frameCount - Number of frames processed.

frameRate - Rate that frames are processed (per second).

displayWidth - Width (in pixels) of entire screen.

displayHeight - Height (in pixels) of entire screen.

key - Most recent key pressed on the keyboard.

keyCode - Numeric code for key pressed on keyboard.

keyPressed - True or false? Is a key pressed?

mousePressed - True or false? Is the mouse pressed?

mouseButton - Which button is pressed? Left, right, or center?

22 Interaction Design 17/18 6 – Variables in
Processing

Useful system functions: println(…)

 Sometimes, it is useful to display text information in the console of the Processing

Development Environment (located at the bottom).

 This is accomplished using the println(“string”) function, which takes one

argument, a String of characters enclosed in quotes.

23 Interaction Design 17/18 6 – Variables in
Processing

void setup() {

size(200,200);

}

void draw() {}

void mouseClicked() {

println(displayWidth);

println(displayHeight);

println(width);

println(height);

println(mouseButton);

}

 When the program runs, Processing displays that

String in the message window. This ability to print the

message window comes in handy when attempting to

debug the values of variables.

Useful system functions: frameRate(…)

 The function frameRate(n) requires an integer n between 1 and

60 and enforces the speed at which Processing will cycle through
draw().

 For example, frameRate(30) means 30 frames per second, a

traditional speed for computer animation.

 If you do not include frameRate(n), Processing will attempt to run

the sketch at 60 frames per second.

 Since computers run at different speeds, frameRate(n) is used to make sure that

your sketch is consistent across multiple computers.

24 Interaction Design 17/18 6 – Variables in
Processing

Using System Variables
void setup() {

size(200,200);

frameRate(30);

}

void draw() {

background(100);

stroke(255);

fill(frameCount/2);

rectMode(CENTER);

rect(width/2,height/2,mouseX + 10,mouseY + 10);

}

void keyPressed() {

println(key);

}

25 Interaction Design 17/18 6 – Variables in
Processing

frameCount is used to color a

rectangle.

The rectangle will always be in the

middle of the window if it is located at:
(width/2, height/2).

Width and height change depending on

the mouse location.

The function framerate() is used to

color a rectangle.

Useful system functions: random(…)

 The function random(n1,n2) function requires two

arguments and returns a random floating number ranging
from the first argument n1 to the second n2.

 The second argument must be larger than the first for it to work properly.

float w = random(1,100);

 However, if you want a random integer, you can convert the result of the
random function to an int.

int w = (int) random(1,100);

rect(100,100,w,50);

 The process of converting one data type to another is referred to

as casting.

26 Interaction Design 17/18 6 – Variables in
Processing

A random integer between 1 and

100. We force the float value
returned by the random(…)

function to be an integer value

It returns a float number.

Example with random(…)

float r;

float g;

float b;

float a;

float diam;

float x;

float y;

void setup() {

size(200,200);

background(0);

}

27 Interaction Design 17/18 6 – Variables in
Processing

void draw() {

// Fill all variables

// with random values

r = random(0,255);

g = random(0,255);

b = random(0,255);

a = random(0,255);

diam = random(0,20);

x = random(0,width);

y = random(0,height);

// Use values to draw an ellipse

noStroke();

fill(r,g,b,a);

ellipse(x,y,diam,diam);

}

Exercise 4

28 Interaction Design 17/18 6 – Variables in
Processing

Redesign the alien by adding two features:

New feature #1 The alien will rise from below the screen and fly off into space

(above the screen). No mouse interaction is allowed.

New feature #2 —Alien’s eyes will be colored randomly as the alien moves.

Solution to Exercise 4

29 Interaction Design 17/18 6 – Variables in
Processing

float bodyX;

float bodyY;

float eyeR;

float eyeG;

float eyeB;

void setup() {

size(200,200);

bodyX = width/2; // The alien always starts in the middle

bodyY = height + 100; // The alien starts below the screen

}

void draw() {

background(255);

rectMode(CENTER);

// Draw alien's body

stroke(0);

fill(150);

rect(bodyX,bodyY,20,100);

Declaring variables. bodyX and bodyY are for

feature #1. eyeR, eyeG, eyeB are for feature #2.

bodyX bodyY are used for the body location. They

are initialized based on the size of the window.

Note we can not initialize these variables before
size(…) is called since we are using the system

variables width and height. Their value is known

only after the execution of the size(…) function.

Solution to Exercise 4

30 Interaction Design 17/18 6 – Variables in
Processing

// Draw alien's head

stroke(0);

fill(255);

ellipse(bodyX, bodyY-30,60,60);

// Draw alien's eyes

eyeR = random(255);

eyeG = random(255);

eyeB = random(255);

fill(eyeR,eyeG,eyeB);

ellipse(bodyX - 19,bodyY - 30,16,32);

ellipse(bodyX + 19,bodyY - 30,16,32);

// Draw alien's legs

stroke(150);

line(bodyX - 10,bodyY + 50,bodyX - 10,height);

line(bodyX + 10,bodyY + 50,bodyX + 10,height);

// The alien moves up

bodyY = bodyY - 1;

}

eyeR, eyeG, eyeB are given random

values and used in the fill(…) function.

bodyY is decreased by one so

that alien moves upward on the screen.

Images in Processing

 A digital image is nothing more than numbers indicating variations of

red, green, and blue at a particular location on a grid of pixels.

 The basic way to load and display images is PImage.

 Download file ocean1.zip from the following link:

http://www.dis.uniroma1.it/~leotta/interactiondesign/2017-2018/ocean1.zip

 Unzip the file and open ocean1.pde

from folder ocean1.

 The code allows to place two images on the window.

31 6 – Variables in
Processing

http://www.dis.uniroma1.it/~leotta/

Images
PImage ocean;

PImage flower;

void setup() {

size(640, 480);

ocean = loadImage("ocean.jpg");

flower = loadImage("flower.png");

image(ocean, 0, 0, 640, 480);

}

void draw() {

image(flower, 0, 0, 100, 100);

}

32

Declaration of two variables of kind PImage.

Initialize the variables to load the image

files we want to use with the function:
loadImage(“nomeFile")

Use the variable to draw the image with the function:

image(imgName, xPosition, yPosition, width, height)

The image(…) function works also with 3 arguments

only. In fact, it is not mandatory to specify the width and

the height of the image. If the last two arguments are

missing, the image will be displayed in its original size.

image(imgName, xPosition, yPosition)

The function tint(…)

tint(red,green,blue,transparency)

33 6 – Variables in
Processing

PImage ocean;

PImage flower;

void setup() {

size(640, 480);

ocean = loadImage("ocean.jpg");

flower = loadImage("flower.png");

tint(0, 255, 0, 30);

image(ocean, 0, 0, 640, 480);

}

void draw() {

tint(255, 0, 0, 255);

image(flower, 0, 0, 100, 100);

}

Declaration of two variables of kind
Pimage.

The image of the ocean is
recolored in green.

Function used to change the color
and the transparency of an image.

The image of the flower is
recolored in red.

Inserting images via the

Processing Development Environment

Images can be added to the data folder

automatically via:

Sketch → Add File…

or manually:

Sketch → Show Sketch Folder

This will open up the sketch folder. If

there is no data directory, create one.

Otherwise, place your image files

inside.

Processing accepts the following file

formats for images: GIF, JPG, TGA, and

PNG.

Exercise 5

35 Interaction Design 17/18 6 – Variables in
Processing

Starting from the previous example, change the code in order to generate a

new flower image in random positions and of random size when the mouse is

clicked.

Solution to Exercise 5

36 Interaction Design 17/18 6 – Variables in
Processing

PImage ocean;

PImage flower;

float x;

float y;

float w;

float h;

void setup() {

size(640, 480);

ocean = loadImage("ocean.jpg");

flower = loadImage("flower.png");

image(ocean, 0, 0, 640, 480);

x = 0;

y = 0;

w = 0;

h = 0;

}

Solution to Exercise 5

37 Interaction Design 17/18 6 – Variables in
Processing

void draw() {}

void mouseClicked() {

x = random(0,300);

y = random(0,300);

w = random(0,300);

h = random(0,300);

image(flower, x, y, w, h);

}

