
7 – Conditionals in Processing

Francesco Leotta, Andrea Marrella

Last update : 12/4/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

Conditional Statements

2 Interaction Design 17/18 7 – Conditionals

 Conditional statements: How a program produces different results

based on varying circumstances.

 In the world of computer programming, we only take one kind of test:

the boolean test: true or false.

 A boolean expression is an expression that evaluates to either true

or false. Let’s look at some common language examples:

 I am hungry → true

 I am afraid of computer programming → false

 In the formal logic of computer science, we test relationships

between numbers.

 15 is greater than 20 → false

 5 equals 5 → true

 32 is less than or equal to 33 → true

*

*

*

*

*

Boolean
expression

Boolean
expression

*

Conditionals: if, else

3 Interaction Design 17/18 7 – Conditionals

 Boolean expressions (often referred to as conditionals) operate within the

sketch as questions.

 Is 15 greater than 20?

 If the answer is yes (true), we can choose to execute certain instructions (such as draw a

rectangle); if the answer is no (false), those instructions are ignored.

 This introduces the idea of branching; depending on various conditions, the

sketch can follow different paths.

if (boolean expression) {

// code to execute if boolean expression is true

}

 The structure can be expanded with the keyword else to include code that

is executed if the boolean expression is false.

if (boolean expression) {

// code to execute if boolean expression is true

} else {

// code to execute if boolean expression is false

}

Boolean Expressions as Conditionals

4 Interaction Design 17/18 7 – Conditionals

 In Processing, boolean expressions have the following form:

 x > 20 → depends on current value of x

 y == 5 → depends on current value of y

 z <= 33 → depends on current value of z

 z >= k → depends on current values of z and k

 x != k + z – y → depends on current values of x, z, k and y

 k < z + 2 → depends on current values of k and z

 The following operators can be used in a boolean expression:

Equality is done with double equals. Single equal

is used for variables assignment operations.

Equality is done with double equals. Single equal

is used for variables assignment operations.

Example

5 Interaction Design 17/18 7 – Conditionals

 If the mouse is on the right side of the screen, draw a black rectangle on the

left side of the screen .

void setup() {

size(200,200);

}

void draw() {

if (mouseX > width/2) {

fill(0);

rect(0,0,width/2,height);

}

}

Example

6 Interaction Design 17/18 7 – Conditionals

 If the mouse is on the left side of the screen, draw a white background,
otherwise draw a grey background .

void setup() {

size(200,200);

}

void draw() {

if (mouseX < width/2) {

background(255);

} else {

background(150);

}

}

Testing Multiple Conditions

7 Interaction Design 17/18 7 – Conditionals

 For testing multiple conditions, we use an else if.

 When an else if is used, the conditional statements are

evaluated in the order presented.

 As soon as one boolean expression is found to be true, the

corresponding code is executed and the remaining boolean

expressions are ignored.

if (boolean expression #1) {

// code to execute if boolean expression #1 is true

} else if (boolean expression #2) {

// code to execute if boolean expression #2 is true

} else if (boolean expression #n) {

// code to execute if boolean expression #n is true

} else {

// code to execute if none of the above

// boolean expressions are true

}

Example

8 Interaction Design 17/18 7 – Conditionals

 If the mouse is on the left third of the window, draw a white background, if it

is in the middle third, draw a gray background, otherwise, draw a black

background.

void setup() {

size(400,400);

}

void draw() {

if (mouseX < width/3) {

background(255);

} else if (mouseX < 2*width/3) {

background(127);

} else {

background(0);

}

}

Boolean Variables

9 Interaction Design 17/18 7 – Conditionals

 A boolean variable (or a variable of type boolean) is a variable that can only be true

or false (think of it as a switch. It is either on or off).

 In Processing there are several system (boolean) variables, such as mousePressed

and keyPressed

boolean switched = false;

void draw() {

if (switched) {

background(255);

} else {

background(0);

}

if(mousePressed) {

switched = false;

} else if(keyPressed) {

switched = true;

}}

For including a boolean variable in a sketch,

we should initialize it with a starting value,

being it true or false.

A boolean variable can be used alone in a IF

statement, as it already records a true/false

value.

When the mouse is pressed, the variable
switched turned to false and the background

becomes black. Otherwise, when a key is
pressed, the variable switched turned to true

and the background becomes white.

Exercise 1 – Moving Rectangle

10 Interaction Design 17/18 7 – Conditionals

 Move a rectangle across a window by incrementing a variable each

time of a unity.

 Start the shape at x coordinate 0 (y coordinate is fixed at 0) and use

an IF statement to have it stop at x coordinate 200.

 Then, decrement the same variable each time of a unity to have it

stop at coordinate 0…and so on.

Solution of Exercise 1

11 Interaction Design 17/18 7 – Conditionals

int x = 0;

int y = 0;

boolean increment = true;

void setup() {

size(200,100);

}

void draw() {

background(255);

fill(0);

if(x==100) {

increment = false;

}

else if(x==0) {

increment = true;

}

if(increment) {

x = x+1;

} else {

x = x-1;

}

rect(x,y,100,100);

}

Exercise 2 – Keys, Clicks and Colors

12 Interaction Design 17/18 7 – Conditionals

 Write a sketch in a way that the background color is changed

depending on the following rules:

 At the beginning, use background(255,255,255).

 If the left button of the mouse is pressed, use background(100,100,100).

 If the right button of the mouse is pressed, use background(10,100,200).

 If the letter ‘w’ of the keyboard is pressed, use background(200,10,100).

 If the letter ‘x’ of the keyboard is pressed, use background(100,200,10).

 In all the other cases, use background(0,0,0).

Solution of Exercise 2

13 Interaction Design 17/18 7 – Conditionals

void setup() {

background(255,255,255);

}

void draw() {}

void mousePressed() {

if(mouseButton == LEFT) {

background(100,100,100);

}

else if(mouseButton == RIGHT) {

background(10,100,200);

} else {

background(0,0,0);

}

}

…continue…

Solution of Exercise 2

14 Interaction Design 17/18 7 – Conditionals

void keyPressed() {

if(keyCode == ‘w’) {

background(200,10,100);

}

else if(keyCode == ‘x’) {

background(100,200,10);

} else {

background(0,0,0);

}

}

Exercise 3 – Dynamic Colors

15 Interaction Design 17/18 7 – Conditionals

 Create a sketch that performs the following steps:

 Step 1. Create variables to hold on to red, green, and blue color components. Call

them r , g , and b .

 Step 2. Continuously draw the background based on those colors.

 Step 3. Draw lines to divide the window into quadrants.

 Step 4. If the mouse is on the right-hand side of the screen, increment the value of

r (increase red), if it is on the left-hand side decrement the value of r (decrease

red).

 Step 5. If the mouse is on the bottom of the window, increment the value of b

(increase blue). Otherwise, it is on the top decrement the value of b (decrease

blue).

Solution of Exercise 3

16 Interaction Design 17/18 7 – Conditionals

float r = 0;

float b = 0;

float g = 0;

void setup() {

size(200,200);

}

void draw() {

background(r,g,b);

stroke(0);

line(width/2,0,width/2,height);

line(0,height/2,width,height/2);

…continue…

Step 1. Three variables for the

background color.

Step 2. Draw the backgroud.

Step 3. Draw lines to divide the

window into quadrants.

Solution of Exercise 3

17 Interaction Design 17/18 7 – Conditionals

if(mouseX > width/2) {

r = r + 1;

} else {

r = r - 1;

}

if (mouseY > height/2) {

b = b + 1;

} else {

b = b - 1;

}

}

Step 4. If the mouse is on the right-

hand side of the window, increase red.

Otherwise, it is on the left-hand side

and decrease red.

Step 5. If the mouse is on the bottom

of the window, increase blue.

Otherwise, it is on the top and

decrease blue.

Constraining the value of a variable

18 Interaction Design 17/18 7 – Conditionals

 In the previous example, color values may increase to unreasonable extremes (less

than 0 and more than 255).

 We might want to constrain the value of a variable (for example, a size or a location

of a shape) so that it does not get too big or too small, or wander off the screen.

 For doing that, Processing offers a function entitled constrain(var,min,max) that

takes three arguments in input:

 the value of the variable var we intend to constrain

 the minimum limit min

 the maximum limit max

 The function returns the constrained value and is assigned back to a variable.

// we can add the following code to constraint the variable values

r = constrain(r,0,255);

g = constrain(g,0,255);

b = constrain(b,0,255);
Constrain all color values to

between 0 and 255.

Solution of Exercise 3

(with constrained variables)

float r = 0;

float b = 0;

float g = 0;

void setup() {

size(200,200);

}

void draw() {

background(r,g,b);

stroke(0);

line(width/2,0,width/2,height);

line(0,height/2,width,height/2);

if(mouseX > width/2) {

r = r + 1;

} else {

r = r - 1;

}

if (mouseY > height/2) {

b = b + 1;

} else {

b = b - 1;

}

r = constrain(r,0,255);

g = constrain(g,0,255);

b = constrain(b,0,255);

}

19 Interaction Design 17/18 7 – Conditionals

Logical Operators

20 Interaction Design 17/18 7 – Conditionals

 Sometimes, simply performing some code based on one condition is not

enough. For example:

 If the mouse is on the right side of the screen AND the mouse is on the bottom of the screen,

draw a rectangle in the bottom right corner.

 If a key is pressed OR the left button of the mouse is NOT clicked, draw a black ellipse.

 In order to build complex conditions, some logical operators can be used

and properly combined in a boolean expression.

 Build a rectangle if the mouse is on the right side of the

screen AND on the bottom.

if (mouseX > width/2 && mouseY > height/2) {

fill(255);

rect(width/2,height/2,width/2,height/2);

}

 Build an ellipse if the mouse is on the right side of the screen

OR on the bottom.

if (mouseX > width/2 || mouseY > height/2) {

fill(255);

rect(width/2,height/2,width/2,height/2);

}

The NOT Logical Operator

21 Interaction Design 17/18 7 – Conditionals

 In addition to && and ||, there is also the logical operator NOT written

as an exclamation point: !

 If the mouse is NOT pressed, draw a circle, otherwise draw a square.

if (!mousePressed) {

ellipse(width/2,height/2,100,100);

} else {

rect(width/2,height/2,100,100);

}

 In the previous example, (! mousePressed) means “NOT mousePressed”. The

resulting boolean expression has a value that is either true or false (depending on

whether or not the mouse is currently pressed).

 If the mouse is pressed, (! mousePressed) is equal to FALSE.

 If the mouse is not pressed, (! mousePressed) is equal to TRUE.

Evaluate Logical Operators

22 Interaction Design 17/18 7 – Conditionals

 Given two boolean expressions A and B associated with the logical operator &&

(AND), the resulting expression (A && B) is true if and only if both A and B are true.

Otherwise, it is false.

 Given two boolean expressions A and B associated with the logical operator || (OR),

the resulting expression (A || B) is true if and only if at least one between A and B is

true. Otherwise, it is false.

 Given a boolean expression A associated with the logical operator ! (NOT), the

resulting expression (!A) is inverted: if A is true, (!A) is false; if A is false, (!A) is true.

A B

true true

true false

false true

false false

A && B A || B !A

true true false

false true false

false true true

false false true

Exercise 4

23 Interaction Design 17/18 7 – Conditionals

 Are the following expressions true or false?

 Assume variables int x = 5 and int y = 6

!(x > 6)

(x == 6 && x == 5)

(x == 6 || x == 5)

(x == 3 || y == 5)

(x == 5 && y == 6)

(x == 5 && (y == 6 || y == 7))

(x > -1 && y < 10)

 Although the syntax is correct, what is flawed about the following boolean

expression?

(x > 10 & & x < 5)

Solution of Exercise 4

24 Interaction Design 17/18 7 – Conditionals

 Are the following expressions true or false?

 Assume variables int x = 5 and int y = 6

!(x > 6)

(x == 6 && x == 5)

(x == 6 || x == 5)

(x == 3 || y == 5)

(x == 5 && y == 6)

(x == 5 && (y == 6 || y == 7))

(x > -1 && y < 10)

 Although the syntax is correct, what is flawed about the following boolean

expression?

(x > 10 && x < 5)
It is always false. It is not possible

that x is greater than 10 and lower

than 5 at the same time!

 TRUE

 FALSE

 TRUE

 FALSE

 TRUE

 TRUE

 TRUE

Exercise 5 – Multiple Rollovers

25 Interaction Design 17/18 7 – Conditionals

 Write the Processing code that solves the following problem:

 Setup:

 1. Set up a window of 200 200 pixels .

 Draw:

 2. Draw a white background.

 3. Draw horizontal and vertical lines to divide the window in four quadrants .

 4. If the mouse is in the top left corner, draw a black rectangle in the top left corner.

 5. If the mouse is in the top right corner, draw a black rectangle in the top right corner.

 6. If the mouse is in the bottom left corner, draw a black rectangle in the bottom left corner.

 7. If the mouse is in the bottom right corner, draw a black rectangle in the bottom right corner.

“How do we know if the mouse is in a given corner?” To

accomplish this, we would say: “If the mouse X location

is greater than 100 pixels and the mouse Y location is

greater than 100 pixels, draw a black rectangle in the

bottom right corner”.

Solution of Exercise 5

26 Interaction Design 17/18 7 – Conditionals

void setup() {

size(200,200);

}

void draw() {

background(255);

stroke(0);

line(100,0,100,200);

line(0,100,200,100);

// Fill a black color

noStroke();

fill(0);

Solution of Exercise 5

27 Interaction Design 17/18 7 – Conditionals

if (mouseX < 100 && mouseY < 100) {

rect(0,0,100,100);

} else if (mouseX > 100 && mouseY < 100) {

rect(100,0,100,100);

} else if (mouseX < 100 && mouseY > 100) {

rect(0,100,100,100);

} else if (mouseX > 100 && mouseY > 100) {

rect(100,100,100,100);

}

}

Depending on the mouse location,

a different rectangle is displayed!

Exercise 6 – Perimeter Rectangle

 Draw a rectangle that moves and follows the edges of a window.

 One way to solve this problem is to think of the rectangle’s motion as

having four possible states, numbered 0 through 3.

 State #0: left to right.

 State #1: top to bottom.

 State #2: right to left.

 State #3: bottom to top.

 We can use a variable to keep track of the state number and adjust

the x, y coordinate of the rectangle according to the state.

 Once the rectangle reaches the endpoint for that state, we can

change the state variable.

Solution of Exercise 6

29 Interaction Design 17/18 7 – Conditionals

int x = 0;

int y = 0;

int speed = 5;

int state = 0;

void setup() {

size(200,200);

}

…continue…

x and y locations of the square.

Speed of the square. It determines

how fast the square moves.

A variable to keep track of the square’s

state. Depending on the value of its state, it

will either move right, down, left, or up.

Solution of Exercise 6

30 Interaction Design 17/18 7 – Conditionals

void draw() {

background(255);

// Display the square

noStroke();

fill(0);

rect(x,y,10,10);

…continue…

Solution of Exercise 6

31 Interaction Design 17/18 7 – Conditionals

if (state == 0) {

x = x + speed;

if (x > width-10) {

x = width-10;

state = 1;

}

}

else if (state == 1) {

y = y + speed;

if (y > height-10) {

y = height-10;

state = 2;

}

}

…continue…

State 0: left to right

State 1: top to bottom

Solution of Exercise 6

32 Interaction Design 17/18 7 – Conditionals

else if (state == 2) {

x = x - speed;

if (x < 0) {

x = 0;

state = 3;

}

}

else if (state == 3) {

y = y - speed;

if (y < 0) {

y = 0;

state = 0;

}

}

}

State 2: right to left

State 3: bottom to top

Let’s Play: Add Gravity!

float x = 100; // x location of square

float y = 0; // y location of square

float speed = 0; // speed of square

float gravity = 0.1;

void setup() {

size(200,200);

}

7 – Conditionals

void draw() {

background(255);

// Display the square

fill(0);

noStroke();

rectMode(CENTER);

rect(x,y,10,10);

y = y + speed;

speed = speed + gravity;

// If square reaches the bottom

// Reverse speed

if (y > height) {

speed = speed * -0.95;

}}

A new variable, for simulating gravity. We

use a small number (0.1) that accumulates

over time, increasing the speed. Try

changing this number to 2.0 and see what

happens.

Multiplying by -0.95 instead of 1 slows the square down

each time it bounces (by decreasing speed). This is known

as a “dampening” effect and is a more realistic simulation

of the real world (without it, a ball would bounce forever).

Exercise 7 – Bouncing Alien

34 Interaction Design 17/18 7 – Conditionals

 Write the Processing code that allows to move the alien

within the screen by bouncing on the edges of the

screen.

Solution of Exercise 7

35 Interaction Design 17/18 7 – Conditionals

float x = 100;

float y = 100;

float w = 60;

float h = 60;

float eyeSize = 16;

float xspeed = 3;

float yspeed = 1;

void setup() {

size(200,200);

}

…continue…

The alien has variables for speed in

the horizontal and vertical direction.

Solution of Exercise 7

36 Interaction Design 17/18 7 – Conditionals

void draw() {

// Change the location of the alien by speed

x = x + xspeed;

y = y + yspeed;

if ((x > width) || (x < 0)) {

xspeed = xspeed * -1;

}

if ((y > height) || (y < 0)) {

yspeed = yspeed * -1;

}

An IF statements with a logical OR

determines if the alien has reached either

the right or left edges of the screen.

When this is true, we multiply the speed

by -1, reversing the alien’s direction!

Identical logic is applied to

the y direction as well.

Solution of Exercise 7

37 Interaction Design 17/18 7 – Conditionals

background(0);

ellipseMode(CENTER);

rectMode(CENTER);

noStroke();

// Draw alien's body

fill(150);

rect(x,y,w/6,h*2);

// Draw alien's head

fill(255);

ellipse(x,y-h/2,w,h);

// Draw alien's eyes

fill(0);

ellipse(x-w/3,y-h/2,eyeSize,eyeSize*2);

ellipse(x + w/3,y-h/2,eyeSize,eyeSize*2);

// Draw alien's legs

stroke(150);

line(x-w/12,y + h,x-w/4,y + h + 10);

line(x + w/12,y + h,x + w/4,y + h + 10);

}

