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Abstract. Process Management Systems (PMSs, aka Workflow Man-
agement Systems – WfMSs) are currently more and more used as a sup-
porting tool to coordinate the enactment of processes. In real world sce-
narios, the environment may change in unexpected ways so as to prevent
a process from being successfully carried out. In order to cope with these
anomalous situations, a PMS should automatically adapt the process
without completely replacing it. In this paper, we propose a technique,
based on continuous planning, to automatically cope with unexpected
changes, in order to modify only those parts of the process that need to
be changed/adapted and keeping other parts stable. We also provide a
running example that shows the practical applicability of the approach.
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1 Introduction

Process Management Systems (PMSs, aka Workflow Management Systems) [1]
are applied to support and automate process enactment, aiming at increasing the
efficiency and effectiveness in its execution. Classical PMSs offer good process
support as long as the processes are structured and do not require much flexibil-
ity. In the last years, the trade-off between flexibility and support has become an
important issue in workflow technology [2]. If on the one hand there is a desire
to control processes and avoid incorrect executions of the processes, on the other
hand users want flexible processes that do not constraint them in their action. A
recent open research question concerns how to tackle scenarios characterized by
being very dynamic and subject to higher frequency of unexpected contingen-
cies than classical scenarios, e.g., a scenario for emergency management. There,
a PMS can be used to coordinate the activities of emergency operators within
teams. Figure 1 shows a (slightly simplified) example of a possible scenario for
the aftermath of an earthquake. The process depicts some actors that assess
an area for dangerous partially-collapsed buildings. Meanwhile others are giving
first aid to the injured people and filling in a questionnaire. In such a context,
the PMS must provide an high degree of both support and flexibility. Hence, if
on the one hand it should “drive” each actor along the control flow, by guaran-
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Fig. 1. A possible process to be carried on in disaster management scenarios

teeing that each task in the process is executed in the correct order and with a
proper termination, on the other side it should automatically react to exceptions
by adapting the process without completely replacing it. This paper proposes a
novel approach, in which continuous planning [3] is used to improve the degree of
automatic adaptation in PMSs. The technique, which constitutes an interesting
application of non-classical planning, is able to automatically adapt processes
without explicitly defining handlers/policies to recover from exogenous events.
In order to describe our approach, we make use of a declarative model named
SmartPM. Our model allows to define logical constraints and provides a proper
execution engine that manages the process routing and decides which tasks are
enabled for execution, by taking into account the control flow and the value of
variables. Once a task is ready for being assigned, the engine is also in charge
of assigning it to a proper service (which may be a human actor, a robot, a
software application, etc.). In contrast with other approaches that use planning
to handle adaptivity [4, 5], our technique provides two interesting features in
recovering failures : (i) it modifies only those parts of the process that need to
be adapted by keeping other parts stable; (ii) it is a non-blocking technique;
it does not stop directly any task in the main process during the computation
of the recovery process. The rest of the paper is organized as follows. Section 2
covers the state of the art in adaptivity in PMSs and relevant results in planning.
Sections 3 and 4 introduce the basic preliminary concepts, whereas Sections 5
and 6 illustrate both the general framework and the technique for automatically
adapting processes. Finally, Section 7 concludes the paper.

2 Related Works

The approach proposed in this paper tackles the problem of automatic adaptivity
in PMSs by using techniques devised from the planning community. Adaptivity
in PMSs concerns the capability to face exceptional changes, which are char-
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Table 1. Features provided by the leading PMSs to manage adaptation

Product Manual Pre-planned Unplanned

YAWL [6] X
DECLARE [2] X
OPERA [7] X X
ADEPT2 [8] X
ADOME [9] X
AgentWork [10] X
ProCycle [11] X
WASA [12] X
SmartPM + Continuous Planning X

acterized by events, foreseeable or unforeseeable, during the process instance
executions which may require instances to be adapted in order to be carried out.
There are two ways to handling exceptional events: manual (once events are
detected, a responsible person, expert on the process domain, modifies manually
the affected instances) or automatic (when exceptional events are sensed, PMS
is able to change accordingly the schema of affected instances in a way they can
still be completed). In the range of automatic adaptation, we can distinguish be-
tween two further categories: pre-planned adaptation (i.e., for each kind of failure
that is envisioned to occur, a specific contingency process is defined a priori) and
unplanned adaptation. In the latter case, process schemas are defined as if fail-
ures could never occur; there is a monitor which is continuously looking for the
occurrence of failures. When some of them occur, the process is automatically
adapted to mitigate the effects. The difference with the pre-planned adapta-
tion consists in that there exist no pre-planned policies, but the policy is built
on the fly for the specific occurrence. Over the years, a multitude of adaptive
PMSs (either commercial or research proposals/prototypes) have been devel-
oped. Table 1 compares the degree of adaptability to exceptional changes that
is currently provided by the leading PMSs (either commercial or research pro-
posals/prototypes). Among them, interesting approaches are ProCycle [11] and
ADEPT2 [8]. The first uses a case-based reasoning approach to support adapta-
tion of workflow specifications to changing circumstances. Case-based reasoning
(CBR) is the way of solving new problems based on the solutions of similar
past problems: users are supported to adapt processes by taking into account
how previously similar events have been managed. However, adaptation remains
manual, since users need to decide how to manage the events though they are
provided with suggestions. ADEPT2 features a check of “semantic” correctness
to evaluate whether events can prevent processes from completing successfully.
But the semantic correctness relies on some semantic constraints that are defined
manually by designers at design-time and are not inferred, e.g., over pre- and
post-conditions of tasks. Pre-planned approaches to exceptional changes (a.k.a.
exceptions) are often based on the specification of exception handlers and com-
pensation flows [7], with the challenge that in many cases the compensation
cannot be performed by simply undoing actions and doing them again. Our ap-
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proach is complementary with regard to this literature, and leverages on it for
dealing with exceptional changes that can be pre-planned. The novelty is that
we propose, in addition to incorporating the previous techniques in a PMS, also
to consider automatic adaptation to unplanned exceptions.

2.1 Planning Algorithms

Planning systems are problem-solving algorithms that operate on explicit repre-
sentations of states and actions. The standard representation language of classi-
cal planners is known as the Planning Domain Definition Language [13] (PDDL);
it allows to formulate a problem through the description of the initial state of
the world, the description of the desired goal and a set of possible actions. An
action definition defines the condition under which an action can be executed,
called pre-conditions and its effects on the state of the world, called effects. The
set of all action definitions represents the domain of the planning problem. A
planner that works on such inputs generates a sequence of actions (the plan) that
leads from the initial state to a state fulfilling the goal. The code in Figure 2b
depicts the PDDL representation of the task go(i) (it is the first task defined
in each branch of the process in Figure 1) that instructs a service c to move
towards the destination denoted by i. Continuous Planning [3] refers to the pro-
cess of planning in a world under continual change, where the planning problem
is often a matter of adapting to the world when new information is sensed. A
continuous planner is designed to persist indefinitely in the environment. Rather
than thinking of the planner and execution monitor as separate processes, one
of which passes its results to the other, we can think of them as a single process.
In order to validate our approach, we make use of a continuous planner working
on top of UCPOP planner [14].

3 Preliminaries

In this paper, we use the situation calculus (SitCalc) to formalize adaptation in
PMSs. The SitCalc is a second-order logic formalism designed for representing
and reasoning about dynamic domains [15]. In the SitCalc, a dynamic world is
modeled as progressing through a series of situations as a result of various actions
being performed. A situation represents a history of actions occurred so far. The
constant S0 denotes the initial situation, and a special binary function symbol
do(a, s) denotes the next situation resulting from the performance of action a
in situation s. Conditions whose truth value may change are modeled by means
of fluents. Technically, these are predicates taking a situation term as their last
argument. Fluents may be thought of as “properties” of the world whose values
may vary across situations. Changes in fluents (resulting from executing actions)
are specified through successor state axioms. In particular for each fluent F we
have a successor state axioms as follows:

F (−→x , do(a, s))⇔ ΓF (−→x , a, s) (1)
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Table 2. IndiGolog constructs

Construct Meaning
a A primitive action.
σ? Wait while the σ condition is false.
(δ1; δ2) Sequence of two sub-programs δ1 and δ2.
proc P (−→v ) δ Invocation of a IndiGolog procedure δ passing a vector −→v of parameters.
(δ1|δ2) Non-deterministic choice among (sub-)program δ1 and δ2.
if σ then δ1 else δ2 Conditional statement: if σ holds, δ1 is executed; otherwise δ2.
while σ do δ Iterative invocation of δ.
(δ1 ‖ δ2) Concurrent execution.
δ∗ Non-deterministic iteration of program execution.
πa.δ Non-deterministic choice of argument a followed by the execution of δ.
〈σ → δ〉 δ is repeatedly executed until σ becomes false, releasing control to anyone

else able to execute.
send(Υ,−→v ) a vector −→v of parameters is passed to an external program Υ .
receive(Υ,−→v ) a vector −→v of parameters is received by an external program Υ .

where ΓF (−→x , a, s) is a formula with free variables fully capturing the truth-value
of fluent F on objects −→x when action a is performed in situation s. Besides
successor state axioms, SitCalc is characterized by action precondition axioms,
which specify whether a certain action is executable in a situation. Action pre-
condition axioms have the form:

Poss(a, s)⇔ Πa(s) (2)

where the formula Πa(s) defines the conditions under which the action a may be
performed in the situation s. In order to control the execution of actions we make
use of high level programs, expressed in Golog-like programming languages. In
particular we focus on IndiGolog [16], a programming language for autonomous
agents that sense their environment and act as they operate. The programmer
provides a high-level nondeterministic program involving domain-specific actions
and tests to perform the tasks. The IndiGolog interpreter reasons about the
preconditions and effects of the actions in the program to find a legal terminating
execution. To support this, the programmer provides a SitCalc theory, that is a
declarative specification of the domain (i.e., primitive actions, preconditions and
effects, what is known about the initial state) in the situation calculus. IndiGolog
is equipped with standard imperative constructs (e.g., sequence, conditional,
iteration, etc.) as well as procedures and primitives for expressing various types
of concurrency and prioritized interrupts. The Table 2 summarizes the constructs
of IndiGolog used in this work. Basically, these constructs allow to define every
well-structured process as defined in [17]. Let’s focus on the interrupt construct:

〈 σ → δ 〉 def
= while Interrupts running do

if σ then δ else false endIf
endWhile

To see how this works, first assume that the special fluent Interrupts running
is identically true. When an interrupt 〈σ → δ〉 gets control from higher priority
processes, suspending any lower priority processes that may have been advanc-
ing, it repeatedly executes δ until σ becomes false. Once the interrupt body
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δ completes its execution, the suspended lower priority processes may resume.
The control release also occurs if σ cannot progress (e.g., since no action meets
its precondition). The interrupt construct allows IndiGolog to provide a formal
notion of interleaved planning, sensing, and action. Roughly speaking, an online
execution of a program finds a next possible action, executes it in the real world,
obtains sensing information afterward, and repeats the cycle until the program
is finished. The fact that actions are quickly executed without much deliberation
and sensing information is gathered after each step makes the approach realis-
tic for dynamic and changing environments. Finally, IndiGolog provides flexible
mechanisms for interfacing with other programming languages such as Java or
C, and for socket communication. For our convenience, we have defined here
two more abstract constructs to send/receive parameters as well as values with
external programs, defined out of the range of the IndiGolog process. For more
details about the communication between IndiGolog and external programs, we
refer the reader to [16].

4 Process Formalization in Situation Calculus

When using IndiGolog for process management, we take tasks to be predefined
sequences of actions and processes to be IndiGolog programs. The monitoring of
the process execution is in charge of SmartPM, our declarative PMS deployed by
using the IndiGolog interpreter. It drives the task assignment to services involved
in the process execution and repairs the process if it is invalidated. To denote
the various objects of interest, we make use of the following domain-independent
predicates (that is, non-fluent rigid predicates):

– Service(c): c is a service;
– Task(t): t is a task;
– Capability(b): b is a capability;
– Provides(c, b): service c provides the capability b;
– Requires(t, b): task t requires the capability b.

To refer to the ability of a service c to perform a certain task t, we introduce
the following abbreviation:

Capable(c, t)
def
= ∀b.Requires(t, b)⇒ Provides(c, b). (3)

That is, service c can carry out a certain task t iff c provides all capabilities
required by the task t. The life-cycle of a task involves the execution of four
basic actions:

– assign(c, t, i, p): a task t with input i is assigned to a service c. p denotes the
expected output that t is supposed to return if its execution is successful;

– start(c, t): service c is notified to start task t;
– ackCompl(c, t): service c acknowledges of the completion of task t;
– release(c, t, i, p, q): service c releases task t, executed with input i and expected

output p, and returns an output q.
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Fig. 2. a) The life cycle and b) the PDDL representation of the task go

The terms i, p and q denote arbitrary sets of input/output, which depend on the
specific task. The actions performed by the process need to be “complemented”
by other actions executed by the services themselves. The following are used to
inform the PMS engine about how tasks execution is progressing:

– readyToStart(c, t): service c declares to be ready to start performing task t;
– finishedTask(c, t, q): service c declares to have completed the execution of task
t with output q.

Figure 2a depicts the protocol for a successful execution of a generic task go(i),
that instructs a service c to move towards the destination denoted by i = destB .
Note that we suppose to work with domains in which services, tasks, input and
output parameters are finite. The formalization of processes in IndiGolog requires
two distinct sets of fluents. A first set includes those “engine fluents” that the
PMS uses to manage the task life-cycle of processes (for the sake of brevity,
here we omit their specification). The second set concerns such fluents used to
denote the data needed by process instances; their definitions depends strictly
on the specific process domain of interest. These “data fluents” can be used to
constrain the task assignment, to record the outcome of a task and as guards
into the expressions at decision points (e.g., for cycles, conditional statements).
So, if X is a process variable meant to capture the outcome of a (specific) task
T , then a SitCalc theory shall include a data fluent X ϕ

1 with the following
successor state axiom:

X ϕ(i, do(a, s)) = q ≡(
∃c, p. a = release(c, T, i, p, q)

)
∨(

X ϕ(i, s) = q ∧ ¬∃c, p, q′. a = release(c, T, i, p, q′) ∧ (q′ 6= q)
)
.

(4)

The value of X ϕ is changed to value q when one of the corresponding tasks
finishes with output q. The formalization allows also to define tasks whose as-
sociated data fluents can be customized in according to the process needs. For
example, one can require some fluents defined for each service c in the formal-
ization. This is the case of the task go(i), just introduced above. The fluent Atϕ

1 Sometimes we use arguments-suppressed formulas, i.e., formulas with all arguments
suppressed (e.g. Xϕ denotes the arguments-suppressed expression for Xϕ(i, s)).
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is meant to capture the new position q of the service c in the situation s after
the execution of go(i).

Atϕ(c, do(a, s)) = q ≡(
∃i, p. a = release(c, go, i, p, q)

)
∨(

Atϕ(c, s) = q ∧ ¬∃i, p, q′. a = release(c, go, i, p, q′) ∧ (q′ 6= q)
)
.

(5)

As far as it concerns the task assignment, it is driven by the special fluent
Free(c, s), which states if a service c is available in situation s for task assignment:

Poss(assign(c, t, i, p), s)⇔ Capable(c, t) ∧
Free(c, s) ∧ (X ϕ,1 ∧ ... ∧X ϕ,m).

(6)

A task t can be assigned to a service c iff c is Free and is Capable to execute
t. Moreover, values of data fluents X ϕ,j (where j ranges over {1..m}) possibly
included in the axiom should be evaluated.

Example 1. Consider the process instance depicted in Figure 1. In order to rep-
resent pre- and post-conditions of each task defined in the control-flow, the
following data fluents are needed : (i) Atϕ(c, s) stores the location in which the
service c is located in situation s; (ii) SurveyOKϕ(d, s) is true in situation s if a
survey concerning injured people at destination d has been successfully filled and
forwarded to the headquarter; (iii) PhotoOKϕ(d, s) is true if the pictures taken
in location d are judged as having a good quality; (iv) RescueOKϕ(d, s) is true
if injured people in area d have been supported through a medical assistance.

5 General Framework

Before a process starts its execution, the PMS takes the initial context from
the real environment and builds the knowledge base corresponding to the initial
situation S0. In S0 every service is assumed as free. As far as data fluents, their
initial value should be defined manually at design-time, since they depend on
the specific domain. The PMS also builds an IndiGolog program δ0 correspond-
ing to the process to be carried on. For simplicity, we consider for the discussion
only well-formed processes as defined in [17]. Process adaptivity can be seen as
the ability of PMS to reduce the gap from the expected reality – the (idealized)
model of reality that is used by the PMS to deliberate – and the physical real-
ity, the real world with the actual values of conditions and outcomes. Roughly
speaking, the PMS should be able to find a recovery process δh that repairs δ0
and remove the gap between the two kinds of reality. A first approach in this
direction was developed in [18]. That approach synthesizes a linear process δh
(i.e., a process constituted only by a sequence of actions) inserted at a given
point of the original process – exactly the point in which the deviation is iden-
tified. In more details, let’s assume that the current process is δ0 = (δ1; δ2) in
which δ1 is the part of the process already executed and δ2 is the part of the
process which remain to be executed when a deviation is identified. Then the
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technique devised in [18] synthesizes a linear process δh that deals with the de-
viation; the adapted process is δ′0 = (δ1; δh; δ2). However, whenever a process
needs to be adapted, every running task is interrupted, since the “repair” se-
quence of actions δh = [a1, . . . , an] is placed before them. Thus, all the branches
can only resume execution after the repair sequence has been executed. A slight
improvement to the last approach was devised in [19], where the technique is
refined by “assuming” concurrent branches as independent (i.e., neither working
on the same variables nor affecting some conditions). If independent, it allows to
automatically synthesize a linear recovery process such that it affects only the
branch interested in the deviation. Hence, if the current process is δ0 = (δ1||δ2)
and the branch δ2 breaks, the approach proposed in [19] synthesizes a recovery
process δh such that the adapted process is δ′0 = (δ1||(δh; δ2)). Note that also
this last approach needs to block the execution of the main process δ0 until the
building of the recovery process δh is completed.

The technique proposed in this paper tries to overcome the above limita-
tions by introducing a non-blocking repairing technique. The idea is to build
the recovery procedure δh in parallel with the execution of the main process δ0,
avoiding to stop directly any task in the process. Once ready, δh will be inserted
as a new branch of δ0 and will be executed in concurrency with every other task.
Let’s now detail how the proposed technique works. We start by formalizing the
concepts of physical reality and expected reality.

Definition 1 A physical reality Φ(s) is the set of all data fluents Xϕ,j (where j
ranges over {1..m}) defined in the SitCalc theory. Hence, Φ(s) =

⋃
j=1..m{Xϕ,j}.

The physical reality Φ(s) captures the values assumed by each data fluent in
the situation s. Such values reflect what is happening in the real environment
whilst the process is under execution. However, the PMS must guarantee that
each task in the process is executed correctly, i.e., with an output that satisfies
the process specification. For this purpose, the concept of expected reality Ψ(s)
is needed. For each fluent X ϕ, we introduce a new expected fluent Xψ that is
meant to record the “expected” value of X after the execution of a task T . The
successor state axiom for this new fluent is straightforward:

Xψ(i, do(a, s)) = p ≡(
∃c, q. a = release(c, T, i, p, q)

)
∨(

Xψ(i, s) = p ∧ ¬∃c, p′, q. a = release(c, T, i, p′, q) ∧ (p′ 6= p)
)
.

(7)

It states that in the expected reality a task is always executed correctly and forces
the value of Xψ to the value of the expected output p.

Definition 2 An expected reality Ψ(s) is the set of all expected fluents Xψ,j

(where j ranges over {1..m}) defined in the SitCalc theory. Hence, Ψ(s) =⋃
j=1..m{Xψ,j}.

A recovery procedure is needed if the two realities are different from each other,
i.e., some tasks in the process failed their execution by returning an output
q whose value is different from the expected output p. Since the PMS has to
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guarantee that each task is executed correctly, if a discrepancy occurs it derives
a flow of repairing actions that turns the physical reality into the expected reality.
Formally, a situation s is known as Relevant - candidate for adaptation - iff :

Relevant(δ0, s) ≡ ¬SameState(Φ(s), Ψ(s)) (8)

Predicate SameState(Φ(s), Ψ(s)) holds iff the states2 denoted by Φ(s) and Ψ(s)
are the same. Each task defined in δ0 affects (or is affected by) only a finite
number of fluents. This means that each task is interested only in that fragment
of reality it contributes to modify.

Definition 3 A task T affects a data/expected fluent X iff ∃c, i, p, q, a s.t. a =
release(c, T, i, p, q) and X(i, do(a, s)) ⇔ ΓX(i, a, s) (cf. equation 1). We denote
it with T .X.

Definition 4 A task T is affected by a data/expected fluent X iff ∃c, i, p, a s.t.
a = assign(c, T, i, p) and X ∈ Πa(s) (cf. equation 2). We denote it with T /X.

The two latter definitions allow to state a new further definition of Φ(s) and
Ψ(s), whose range can be limited to a specific task T .

Definition 5 Given a specific task T, a T-limited physical reality Φ|T (s) is the
set of those data fluents Xϕ,j (where j ranges over {1..m}) such that T . Xϕ,j

or T /Xϕ,j. We denote these fluents as Xϕ|T . Hence, Φ|T (s) =
⋃
j=1..m{Xϕ,j|T }

and Φ|T (s) ⊆ Φ(s).

Definition 6 Given a specific task T, a T-limited expected reality Ψ |T (s) is the
set of those expected fluents Xψ,j (where j ranges over {1..m}) such that T .Xψ,j

or T /Xψ,j. We denote these fluents as Xψ|T . Hence, Ψ |T (s) =
⋃
j=1..m{Xψ,j|T }

and Ψ |T (s) ⊆ Ψ(s).

From definitions 5 and 6, the following one stems :

Definition 7 Let T1, ..., Tn all tasks defined in the SitCalc theory. A physical
(expected) reality Φ(s) (Ψ(s)) is the union of all T-limited physical (expected) re-
alities that hold in situation s : Φ(s) =

⋃
i=1..n Φ|Ti

(s) (Ψ(s) =
⋃
i=1..n Ψ |Ti

(s)).

Now, the predicate Relevant can be refined in a way that focuses on a specific
task T :

RelevantT (δ0, s) ≡ ¬SameState(Φ|T (s), Ψ |T (s)) (9)

Our framework is able to capture - and to recover from - two different kinds
of task failure. An internal failure is related to the failure in the execution of
a task, i.e., the task does not terminate, or it is completed with an output
that differs from the expected one. Example 2 shows such a case. An external
failure is represented as an exogenous event e, given in input by the external

2 Given a situation s and a set
−→
F of fluents, a state(

−→
F (s)) is the set composed by

the values - in s - of each fluent Fj that belongs to
−→
F . Hence, state(

−→
F (s)) =⋃

j=1..m{Fj} s.t. Fj ∈
−→
F .
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environment, that forces a set of data fluents to assume a value imposed by the
event itself. Such a new value could differ from the expected one, by generating
a discrepancy between the two realities. In order to capture the effects of e, the
process designer has to refine the successor state axiom of those fluents whose
value can be affected by e. An example of how to catch an exogenous event is
shown in the following section.

Example 2. Consider the process instance depicted in Figure 1. Let’s suppose
that the PMS assigns the task go(destB) to the service srvc. Assume that srvc,
instead to reach destB , ends the execution of the task go in destZ . Then, after
the release action is executed, the fluent Atϕ takes the value destZ . But this
output does not satisfy the expected outcome. The expected output p = destB
is stored in the fluent Atψ; it generates a discrepancy between Φ|go(s) and
Ψ |go(s). This means that the Relevantgo(δ0, s) holds, and the main process δ0
needs to be adapted.

6 The Repairing Technique

We now turn our attention to how adaptation is meant to work in our approach.
Before starting the execution of the process δ0, the PMS builds the PDDL rep-
resentation of each task defined in the SitCalc theory and sends it to an external
planner that implements the POP algorithm. In Figure 3, we show how the PMS
has been concretely coded by the interpreter of IndiGolog. This framework can be
viewed as a dynamic system in which the PMS continually generates new goals in
response to its perceptions about physical reality. The main procedure involves
three concurrent programs in priority. At a lower priority, the system runs the
actual IndiGolog program representing the process to be executed, namely proce-
dure Process. This procedure relies, in turn, on procedure ManageExecution,
which includes task assignment, start signaling, acknowledgment of completion,
and final release. The monitor, which runs at higher priority, is in charge of mon-
itoring changes in the environment and adapting accordingly. The first step in
procedure Monitor checks whether fluent RealityChanged holds true, meaning
that a service has terminated the execution of a task or an exogenous (unex-
pected) action has occurred in the system. Basically, the procedure Monitor is
enabled when the physical or the expected reality (or both) change. If it hap-
pens, the monitor calls the procedure IndiPOP, whose purpose is to manage
the execution of the external planner by updating its initial states and expected
goals according with changes in the two realities. IndiPOP first builds the two
sets Start (the initial state) and Finish (the goal), by making them equal respec-
tively to Φ(s) and Ψ(s). As far as concerns the initial state, it will include, for
each task t and service c defined in SitCalc theory, the values of Capable(c, t) and
of Free(c, s) in addition to the values of data fluents. Then IndiPOP catches
the partial plan planp (that has the form of a set of partial ordering constraints
between tasks; it is empty if no failure has happened yet) built till that moment
by the external planner and updates it with the new sets Start and Finish. Such
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Proc Main()
1 〈RealityChanged ∧ ¬Finished → [Monitor()]〉.
2 〈Recovered ∧ ¬Finished → [UpdateProcess()]〉.
3 〈true→ [Process(); finish]〉.

Proc UpdateProcess()
1 receive(Planner, planh).
2 Convert(planh, δh).
3 Update(δ0, (δ0||δh)).
4 resetReality.
5 resetRecovery.

Proc Monitor()
1 IndiPOP().
2 resetRealityChanged.

Proc IndiPOP()
1 Start = Φ(s) ∪ {

⋃
i=1..k,j=1..n{Capable(ci, tj)}} ∪ {

⋃
i=1..k{Free(ci, s)}}.

2 Finish = Ψ(s).
3 receive(Planner, planp).
4 send(RemoveConflicts, [planp, Start, F inish]).
5 receive(RemoveConflicts, planu).
6 send(Planner, [planu, Start, F inish]).

Proc ManageExecution(Task, Input, ExpectedOutput)
1 π(Srvc).assign(Srvc, Task, Input, ExpectedOutput).
2 start(Srvc, Task).
3 ackCompl(Srvc, Task).
4 release(Srvc, Task, Input, ExpectedOutput, RealOutput).

Fig. 3. A fragment of the core procedures of the IndiGolog PMS

updating finds something about planp that needs fixing in according with the
new realities. Since planp has been built working on old values of the two re-
alities, it is possible that some ordering constraints between tasks are not valid
anymore. This causes the generation of some conflicts, that need to be deleted by
planp through the external procedure RemoveConflicts. Basically, IndiPOP
can be seen as a conflict-removal procedure that revises the partial recovery
plan to the new realities. At this point, planu (that is, planp just updated, i.e.,
without conflicts) is sent back to the external planner together with the sets
Start and Finish. The external planner can now restore its planning procedure.
Note that if the predicate Relevant(s) holds, meaning that a misalignment be-
tween the two realities exists, the PMS tries to continue with its execution. In
particular, every Ti whose T-limited expected reality Ψ |Ti(s) is different from
the T-limited physical reality Φ|Ti(s) could not more proceed with its execution.
However, every task Tj not affected by the deviation can advance without any
obstacle. Once sent the sets of fluents composing the two realities to the external
planner, the monitor resets the fluent RealityChanged to false, and the control
passes to the process of interest (i.e., program Process), that may again exe-
cute/advance. When the external planner finds a recovery plan that can align
physical and expected reality, the fluent Recovered is switched to true and the
procedure UpdateProcess is enabled. Now, after receiving the recovery process
δh from the planner, the PMS updates the original process δ0 to a new process δ′0
that, respect to its predecessor, has a new branch to be executed in parallel; such



Continuous Planning for Solving Business Process Adaptivity 13

branch is exactly δh. It contains all that tasks able to repair the physical reality
from the discrepancies (i.e., to unblock all that tasks stopped in δ0 because their
preconditions did not hold). Note that when δh is merged with the original pro-
cess δ0, the two realities are still different from each others. Therefore, the PMS
makes them equal by forcing Ψ(s) to the current value of Φ(s). This because the
purpose of δh, after that all recovery actions have been executed, is to turn the
current Φ(s) into Ψ(s′), where s′ is that situation reached after the execution of
recovery actions. Let us now formalize the concept of strongly consistency for
a process δ0.

Definition 8 Let δ0 be a process composed by n tasks T1, .., Tn. δ0 is strongly
consistent iff:

– Given a specific task T and an input I, @c, c′, p, p′, q, q′, a, a′ s.t.
a = release(c, T, I, p, q) ∧ a′ = release(c′, T, I, p′, q′) ∧ (p 6= p′).

– ∀j ∈ 1..m,@(Ti, Tk)i 6=k s.t.(Ti . Xϕ,j ∧ Tk . Xϕ,j).

Intuitively, a process δ0 is strongly consistent if a specific task, executed on a
given input, cannot return different values for its expected output; moreover,
the above condition holds if do not exist two different tasks that affect the same
fluent. For strongly consistent processes, we can state the concept of goal :

Definition 9 Given a strongly consistent process δ0, composed by n tasks
T1, ..., Tn, the goal of δ0 can be defined as the set of all expected fluents Xψ,j

that are affected by T1, ..., Tn. Hence, Goal(δ0) = {Xψ,j s.t. ∃i1..n.(Ti .Xψ,j)}.

After a recovery procedure δh, Goal(δ0) ⊆ Goal(δ0||δh) , since the recovery pro-
cedure can introduce new tasks with respect to the original process δ0. Anyway,
the original Goal(δ0) is preserved also after the adaptation procedure.

Theorem 1 (Termination). Let δ0 be a strongly consistent process composed
by a finite number of tasks T1, ..., Tn. If δ0 does not contain while and iteration
constructs (cf. Table 1), and the number of exogenous events is finite, then the
core procedure of IndiGolog PMS terminates.

We want to underline that the termination cannot be guaranteed if δ0 contains
loops or iterations, since potentially the two realities could indefinitely change.
The same is true if the number of exogenous events is unbounded.

Example 3. Suppose that the process depicted in Figure 1 starts its execution
and reaches a situation s where some tasks have been completed by returning
their expected outputs. In particular, suppose that the left branch of the pro-
cess has been completely executed, by obtaining PhotoOKϕ(destA, s) = true and
PhotoOKψ(destA, s) = true, whilst the other tasks are still under execution. We
have defined an exogenous event photoLost(d) where d is a specific location. Such
an exogenous event models the case when some photos, previously taken in d, get
lost (e.g., due to the unwilling deletion of some files). Consequently, if the exoge-
nous event photoLost(destA) occurs, its effect is to force PhotoOKϕ(destA, s) in
the new situation s to be false, whilst PhotoOKψ(destA, s) continues to hold.
This means that Relevant(δ0, s) ≡ ¬SameState(Φ(s), Ψ(s)) and that the PMS



14 A. Marrella and M. Mecella

Fig. 4. The process in Figure 1 just fixed with a new repairing branch

should find a recovery program which restores the previous value for the flu-
ent PhotoOKϕ. For this purpose, the PMS invokes the external planner. While
the planner starts to build the recovery process, let us see the case in which,
in the meanwhile, the task go(destB) terminates with a different output by the
expected one. In particular, suppose that the service srvc2, that is executing
go(destB), reaches destZ instead of destB . Hence, we have different values for
Atϕ(srvc2, s′) and Atψ(srvc2, s′). Again, the PMS invokes the external planner
by obtaining the partial plan planp built till that moment and verifies if it needs
to be fixed according with new values of the two realities. If no conflicts are
individuated, the PMS sends back planp to the planner together with the infor-
mation about the initial state and the goal, updated to situation s′. Note that
in situation s′ the task survey cannot proceed because one of its preconditions
does not hold. When the planner ends its computation, it returns the recovery
process δh, that can be executed in concurrency with δ0 (see the right-hand side
of Figure 4) by preserving its original goal.

7 Conclusions

In this paper, we advocated the use of a declarative model named SmartPM for
automatic process adaptation based on continuous planning. If an unexpected
deviation is detected, a recovery process will be built and executed in parallel
to the main process. The non-blocking repairing technique enables to reach all
goals that would have been reached in the original process. Future works will
include an extensive validation of the approach with real collaborative processes
and will face the drawbacks provided by the use of continuous planning, such as
the risk to introduce data inconsistency when repairing.
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