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Abstract. Recently, the idea of applying process data analysis over rela-
tional databases (DBs) has been investigated in the process mining field
resulting into different DB schemas that can be used to effectively store
process data coming from Process-Aware Information Systems (PAISs).
However, although SQL queries are particularly suitable to check declara-
tive rules over traces stored in a DB, a deep analysis of how the existing
instruments for SQL-based process mining can be effectively used for
process analysis tasks based on declarative process modeling languages
is still missing. In this paper, we present a full-fledged framework based
on SQL queries over relational DBs for different declarative process min-
ing use cases, i.e., process discovery, conformance checking, and query
checking. The framework is used to benchmark different SQL-based so-
lutions for declarative process mining, using synthetic and real-life event
logs, with the aim of exploring their strengths and weaknesses.

Keywords: Process Discovery · Conformance Checking · Query Check-
ing · Declarative Process Model · SQL · Relational Database

1 Introduction

The process data recorded by Process-Aware Information Systems (PAISs) is
usually stored in multiple and often heterogeneous relational databases (DBs).
Several efforts have been done, in the past, in order to solve the data integration
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problem [4], but also in order to store and query process data in relational DBs
in an effective and efficient manner [31, 13].

In recent years, the process mining community has investigated how DB
theory methods can be used to carry on process analysis on the process behavior
recorded in a relational DB. Different DB schemas have been developed [31, 13],
which are suitable to effectively store process data into a DB.

SQL queries are particularly suitable for process mining based on declarative
languages (such as Declare [23], DPIL [33], or DCR Graphs [16]) since it is
possible to build a 1-to-1 mapping between the SQL queries and the temporal
rules that need to be checked over traces stored in a DB. Although some works
have already investigated how to discover Declare rules from a DB using SQL
queries [27–29], a full-fledged framework to support the event log storage in a
DB and the execution of queries that can be used to support the entire spectrum
of declarative process mining use cases is still missing.

In this exploratory paper, we introduce such a framework and we use it
to provide a deep analysis of strengths and weaknesses of different SQL-based
solutions for declarative process mining. The framework is readily available1

for researchers and practitioners that need to analyze process data stored in
relational DBs.

The paper is structured as follows. Section 2 presents the research problem.
Section 3 discusses related work. Section 4 introduces the proposed framework,
and discusses the DB schemas and the SQL queries supported. In Section 5, the
framework is used to benchmark different SQL-based solutions for declarative
process mining using synthetic and real-life logs. Section 6 concludes the paper
and spells out directions for future work.

2 Research Problem

In this paper, we present an SQL-based framework for declarative process mining
and use it to benchmark different SQL-based solutions for declarative process
mining. Through the framework, we answer the following research questions:

– RQ1: What is the most efficient DB schema in terms of required disk space
and population time?

– RQ2: What is the most efficient DB schema in terms of query execution
time?

– RQ3: How does the query execution time vary for datasets with different
characteristics?

– RQ4: How does the query execution time vary for different types of queries?

RQ1 and RQ2 aim at understanding which one of the DB schemas exist-
ing in the literature has the highest performance in terms of population time,
required disk space, and query execution time. To answer these research ques-
tions, we also test how some improvements over the existing schemas can increase

1 https://github.com/francxx96/XEStoDB
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the DB performance. To answer RQ3, we show how the query execution time
varies using synthetic logs with different characteristics. The query execution
time measured for answering RQ2 and RQ3 concerns the discovery task. RQ4
investigates, instead, the query execution time needed to run all the different
types of queries provided in the proposed framework.

3 Related Work

The literature on declarative process mining covers a wide range of process
mining use cases [21]. In this paper, we solve standard process mining tasks like
process discovery (cf. [27, 28]), conformance checking (cf. [3]), and query checking
(cf. [26]), and we extend them with novel types of analysis that can be easily
tackled using queries like instance-spanning process analysis [1], metric temporal
rule discovery and checking [20], and local rule checking (i.e., the verification of
rules in specific time intervals).

An approach for process discovery similar to the SQL-based one used in this
paper is presented in [27, 28]. Here, a sub-set of the standard Declare [24] tem-
plates (i.e., parameterized temporal rules) is used to define SQL queries that
can be used to discover Declare models. Further investigation [29] led to the
introduction of a set of queries for the discovery of Multi-Perspective Declare
(MP-Declare). Other techniques (that are not based on SQL) for performing
declarative process mining are available in state-of-the art process mining toolk-
its like RuM [2] and Declare4Py [8]. However, in order to use these tools for
process analysis, the source data must be first extracted from the PAISs and
then arranged in XES files.

In [30], the authors present an investigation that shows that it is possible
to make the SQL queries for Declare discovery faster by using DB indexing. As
mentioned in Section 4, the DB indexing analysis provided in [30] supports the
way we designed our queries.

4 SQL-based Declarative Process Mining Framework

In this paper, we present a full-fledged framework to perform different process
mining tasks using SQL queries over relational DBs of PAISs. Fig. 1 presents
the conceptual overview of the framework. The framework supports two phases
of the process data analysis with relational DBs.

Database Creation. A new relational DB is created following a DB schema given
as input, the DB is then populated according to an input event log.

SQL-Based Declarative Process Mining. In this phase, the user chooses the pro-
cess mining (PM) task to perform (i.e., discovery, query checking or conformance
checking) and the query type, i.e., one of the task variants that will be intro-
duced in Section 4.2. For conformance checking, the Declare model to be checked
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Fig. 1: Conceptual overview of the developed framework.

has to be provided by the user as well. The corresponding SQL query is designed
based on the inputs. The query is then executed on the DB.

To support these two phases of the process data analysis, we implemented
a wide range of queries. Some of these queries implement different declarative
process mining tasks and support the SQL-Based Declarative Process Mining
phase, others support the Database Creation phase using different DB schemas.

4.1 Database creation

In the literature, different DB schemas have been proposed to store process data
with the aim of minimizing both population time and disk space required to
store the data. The DB schemas proposed are all fully compatible with the XES
standard [32]. We selected four different relational DB schemas to be compared:

– Monolithic, composed of a single table in which each row represents an event
of the log;

– DBXES, presented in [31];
– RXES, presented in [13];
– RXES+, which is an adaptation of RXES (see Fig. 2).

The design of RXES+ was intended to optimize not only the population time
and the disk space needed to store the process data, but also the query execution
time for process mining tasks.

Differently from DBXES and RXES, in RXES+, the log, trace and event ta-
bles include the mandatory XES attributes (i.e., name, timestamp, and lifecycle
transition), so that we significantly reduce the amount of repetitions in tables
{log|trace|event} has attribute and attribute. Moreover, RXES is defined in a
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Fig. 2: RXES+ schema.

way that it eliminates the duplicate traces/events inside a log, i.e., when pop-
ulating the DB, if an event or a trace is exactly the same as another event or
trace already present in the DB, this element is not repeated but linked to the
existing one. However, checking the existence of an event or a trace in the DB is
an unnecessarily heavy task. Indeed, from an analysis of the logs existing in the
literature (see Table 1), we can see that, since events are always provided with a
timestamp, the occurrence of duplicate traces/events is extremely rare (this only
happens if multiple events with exactly the same attributes occur exactly at the
same time). For this reason, RXES+ has been designed to allow duplicates. As
we can see from our experiments, this does not significantly affect the DB size
and the query execution time but dramatically reduces the population time.

4.2 SQL-based declarative process mining

SQL queries are a powerful instrument for implementing in a straightforward
way a large range of analysis types over process data recorded in a DB. Here,
we present the query types available in our framework. All the queries use a
temporary table @event, which allows the queries to be formulated exactly in
the same way independently of the schema. The temporary table @event is built
with a different query depending on the schema. For example, for the RXES+
schema @event is built with the query:

1 DECLARE @event TABLE ( l o g i d BIGINT, t r a c e i d BIGINT,
task VARCHAR(300) , [ timestamp ] DATETIME2(3) )

2

3 INSERT @event
4 SELECT t . l o g i d , e . t r a c e i d , e . name + ’ ’ + e . t r an s i t i o n ,
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5 e . [ timestamp ]
6 FROM t r a c e t JOIN event e ON t . id = e . t r a c e i d ;

Discovery. For process discovery, i.e., for the identification of a set of rules (based
on a Declare template specified by the user) satisfied with a minimum support2

in an input log, we follow the approach introduced in [27, 28], where, first, the
input template is instantiated into different candidate constraints (obtained by
replacing the template parameters with all the possible combinations of activities
available in the log), and, then, the candidate constraints are checked to compute
their support.

In particular, for each SQL query defined from now on, the Support is com-
puted as follows:

CAST(COUNT(∗ ) AS FLOAT) / CAST( (SELECT COUNT(∗ ) FROM
@event WHERE task=’TaskA ’ ) AS FLOAT)

Starting from the queries presented in [27, 28] - the Baseline (BS) query
set - developed for the discovery of standard Declare rules, we designed a new
query set - the Join query set - in order to improve the query execution time
for discovery. In particular, the new query set was designed with the aim of
reducing possible performance bottlenecks; in order to achieve this, we used the
query plan [14] produced when executing each query. From the plans, we noticed
that, before running any queries, the DBMS always sorts the events in the DB
when the queries contain explicit JOIN statements. This conclusion is similar
to the one found in [30], where a systematic DB indexing analysis is conducted.
Therefore, we re-designed the queries to benefit of this automatic DB indexing
executed by the DBMS.

Example 1. In Declare, the response template instantiated with activation A
and target B indicates that, when activity A is executed, it must be eventually
followed by B. The discovery from an input log of rules of type response can be
obtained with the following query relying on explicit JOIN statements:

1 SELECT ’ Response ’ , TaskA , TaskB , Support
2 FROM (
3 SELECT a . t r a c e i d , a . task AS TaskA , b . task AS TaskB
4 FROM @event a JOIN @event b ON (
5 a . l o g i d = b . l o g i d
6 AND a . t r a c e i d = b . t r a c e i d
7 AND a . task != b . task
8 AND a . [ timestamp ] < b . [ timestamp ]
9 ) GROUPBY a . t r a c e i d , a . task , a . [ timestamp ] , b . task

10 ) subquery
11 GROUPBY TaskA , TaskB ;

2 Here the support corresponds to the event support introduced in [7].
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Conformance Checking. For conformance checking, we follow the approach intro-
duced in [3]. The input here is not a generic template but a Declare model, i.e.,
a set of concrete rules, which are instantiations of templates with real activities.
The outcome is the support in the log of each rule in the model.

Example 2. The conformance checking of a rule of type response instantiated
over activities Receive Payment and Send Receipt wrt. an input log is obtained
from the one seen in Ex1 by changing line 7 as follows:

7 AND a . task=’ Receive Payment ’ AND b . task=’ Send
Rece ipt ’

Query Checking. This type of analysis was first introduced in [26]. The input
here is a partial instantiation of a template, i.e., a template where only one
of the parameters is replaced with a real activity, while the other one remains
unspecified. In addition, a minimum support is also specified. The outcome is
the discovery from an input log of rules of the specified format, and satisfied in
the log with the specified minimum support.

Example 3. The query checking of a rule of type response instantiated with
activation Receive Payment and target left unspecified is obtained from the one
seen in Ex 1 by changing line 7 as follows:

7 AND a . task=’ Receive Payment ’ AND b . task !=a . task

Additional types of analysis The standard approaches for discovery, confor-
mance, and query checking just introduced can be extended using variants of
the standard queries, which provide facilities to solve well-known problems in
declarative process mining, such as:

– Instance-Spanning analysis (IS) [1], which considers the whole log as a single
trace obtained by ordering the events by timestamp;

– Local Rule Checking (LRC), which checks the validity of a rule only within
a given time interval;

– Metric Temporal rule discovery (MT) [20], which enriches the query for the
discovery of standard Declare rules with information about the minimum/av-
erage/maximum temporal distance between activation and target activities;

– Validity Intervals analysis (VAL), which finds the time intervals in a trace
in which a Declare rule is valid;

– Attribute Range (RNG) analysis, which finds for a given attribute the range
of values it gets in a given time interval.

These variants can also be easily combined together to build custom queries
that are useful for a particular need of the end user, e.g., it is possible to combine
IS with LRC in order to have an instance-spanning query restricted to a given
time interval.

Example 4. The following query implements the Instance-Spanning discovery of
response rules:
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1 SELECT ’ Response ’ , TaskA , TaskB , Support
2 FROM (
3 SELECT a . t r a c e i d , a . task AS TaskA , b . task AS TaskB
4 FROM @event a JOIN @event b ON (
5 a . l o g i d = b . l o g i d
6 AND a . task != b . task
7 AND a . [ timestamp ] < b . [ timestamp ]
8 ) GROUPBY a . t r a c e i d , a . task , a . [ timestamp ] , b . task
9 ) subquery

10 GROUPBY TaskA , TaskB ;

The following query implements the Local Rule Checking of the response
template instantiated over activities Receive Payment and Send Receipt in the
time interval spanning from 2020-01-01 00:00:00.000 to 2021-12-31 23:59:59.999:

1 DECLARE @in t e r v a l s t a r t DATETIME2(3)=’2020−01−01
00 : 0 0 : 0 0 . 0 00 ’ ,

2 @interva l end DATETIME2(3)=’2021−12−31 23 : 5 9 : 5 9 . 9 99 ’ ;
3

4 SELECT ’ Response ’ , TaskA , TaskB , Support
5 FROM (
6 SELECT a . t r a c e i d , a . task AS TaskA , b . task AS TaskB
7 FROM @event a JOIN @event b ON (
8 a . l o g i d = b . l o g i d AND a . t r a c e i d = b . t r a c e i d
9 AND a . task = ’ Receive Payment ’ AND b . task = ’ Send

Rece ipt ’
10 AND a . [ timestamp ] < b . [ timestamp ]
11 ) WHERE a . [ timestamp ] >= @in t e r v a l s t a r t
12 AND a . [ timestamp ] < @interva l end
13 AND b . [ timestamp ] >= @in t e r v a l s t a r t
14 AND b . [ timestamp ] < @interva l end
15 GROUPBY a . t r a c e i d , a . task , a . [ timestamp ] , b . task
16 ) subquery
17 GROUPBY TaskA , TaskB ;

The following query implements the Metric Temporal discovery of response
rules:

1 SELECT ’ Response ’ , TaskA , TaskB , Support ,
2 MIN(TD) AS min TD , AVG(TD) AS avg TD , MAX(TD) AS

max TD
3 FROM (
4 SELECT a . t r a c e i d , a . task AS TaskA , b . task AS TaskB ,
5 MIN(DATEDIFF(SECOND, a . [ timestamp ] , b . [ timestamp

] ) ) AS TD
6 FROM @event a JOIN @event b ON (
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7 a . l o g i d = b . l o g i d AND a . t r a c e i d = b . t r a c e i d
8 AND a . task != b . task AND a . [ timestamp ] < b . [

timestamp ]
9 ) GROUPBY a . t r a c e i d , a . task , a . [ timestamp ] , b . task

10 ) subquery
11 GROUPBY TaskA , TaskB ;

For space limitations, we do not report here the queries returning the Validity
Intervals of a rule and the Attribute Range of an attribute. The interested reader
can find the details about these queries at https://github.com/francxx96/XEStoDB.

5 Benchmarks

To answer the research questions introduced in Section 2, we performed experi-
ments on synthetic and real-life logs. In the following sections, we first describe
the experimental setting, i.e., describe the logs and metrics used in the exper-
imentation, then, we discuss the experimental results to answer the research
questions.

5.1 Experimental setting

As already mentioned, we validated our SQL-based framework by considering
both synthetic and real-life logs. With the real-life logs, we wanted to demon-
strate the applicability of the framework to well-known benchmarks in the pro-
cess mining field. In particular, we considered six logs, most of them presented
in past editions of the Business Process Intelligence Challenge (BPIC):

– SEPSIS, recording the treatment of incoming patients with sepsis in a hos-
pital [22];

– ROAD, related to a road traffic fines management process [18];
– FINANC, pertaining to a loan application process (provided for the BPIC

2012) [9];
– LOAN, a richer version of FINANC (provided for the BPIC 2017) [10].
– REIMB, pertaining to a reimbursement process for international declarations

(provided for the BPIC 2020) [11];
– TRAVEL, related to the management of travel permits (provided for the

BPIC 2020) [12];

Table 1 reports the characteristics of the real-life logs. These logs are widely
heterogeneous ranging from simple to very complex, with a log size ranging from
1,050 traces (for the SEPSIS log) to 150,370 traces (for the ROAD log). A similar
variety can be observed in the number of event classes (i.e., activities executed
in the log), ranging from 11 to 51. Moreover, the trace length also varies from
very short traces (containing only two events), to very long traces (containing
185 events). The table also shows the percentages of duplicate events in each
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Table 1: Descriptive statistics of real-life logs.
Log Total Total Event Duplicate Trace length
name traces events classes events min avg max

SEPSIS 1,050 15,214 16 < 0.01% 3 14 185

ROAD 150,370 561,470 11 79.63% 2 4 20

FINANC 13,087 262,200 36 < 0.01% 3 20 175

LOAN 31,509 1,160,405 26 0% 9 37 177

REIMB 6,449 72,151 34 0.04% 3 11 27

TRAVEL 7,065 86,581 51 0% 3 12 90

log. In this respect, we can see that, except for the ROAD log, the percentage
of duplicate events is always equal to zero or very close to it.

Synthetic logs were created using the ASP log generator [6] implemented
in the declarative process mining tool RuM [2]. They are intended to prove
the scalability of the presented framework wrt. logs with specific characteristics
(i.e., number of distinct event classes, number of traces in the log, number of
events in a trace) in a controlled environment. We built several different syn-
thetic logs, each named using the format clsXXXtrcXXXevtXXX. For example,
cls10trc100evt30 identifies a log containing 10 different event classes and 100
traces, each including 30 events.

The performance metrics we considered in our experimentation to answer
the research questions are:

– Required disk space to store a log in a DB, which is a measure of the DB
redundancy degree;

– DB population time;

– Event insertion time, which measures the time needed for inserting an event
in the DB (when measured for subsequent insertions, it might happen that
the insertion time is higher for events inserted later in the DB);

– Query execution time.

All the experimental material can be found in the repository available at
https://github.com/francxx96/XEStoDB, which contains:

– Translation scripts (Java 11) from XES-formatted files to each type of DB
considered;

– SQL schemas reproducing the (empty) DBs;

– SQL dumps of the DBs already populated with the datasets used in our
experiments;

– SQL queries for implementing all the declarative process mining task dis-
cussed in this paper.

We performed our experiments on a machine with an Intel Xeon E5-2690
CPU (dual core, 2.60 GHz), Windows Server 2019 OS and 16 GB RAM. The
DBMS we used to define DB schemas and queries is Microsoft SQL Server 2019.
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Fig. 3: Subsequent event insertion times for SEPSIS.

Table 2: Disk space for log storage and average population time.
DB Disk space (MB) Population time (s)

schema SEPSIS ROAD FINANC LOAN REIMB TRAVEL SEPSIS ROAD FINANC LOAN REIMB TRAVEL

Monolithic 8.50 184.98 110.03 627.00 53.24 91.78 34.69 1,211.73 560.31 2,795.66 156.03 216.90
DBXES 7.63 180.30 73.93 - 43.55 49.13 364.09 15,551.52 14,440.95 - 6,034.75 7,303.98
RXES 8.50 - - - - - 18,060.88 - - - - -
RXES+ 5.08 92.59 30.19 318.96 21.91 26.30 134.89 5,063.72 1,203.21 13,406.82 896.47 1,085.52

5.2 Results

RQ1. What is the most efficient DB schema in terms of required disk
space and population time? To answer this research question, we created,
for each considered real-life log, four DBs (one for each considered schema) con-
taining the process data of that log. A comparison in terms of required disk
space needed to store the logs using the different DB schemas and their popula-
tion times3 (averaged over 5 runs) can be seen in Table 2. Here, we can observe
that, as expected, the Monolithic schema has the highest degree of redundancy
and occupies in all cases the highest amount of disk space (in some cases more
than three times wrt. RXES+). This is a critical issue for large real-life logs. In
addition, the large amount of disk space occupied, forces the Monolithic schema
to have an upper-bound on the number of attributes that can be stored in the
DB given by the limited number of columns admitted by the DBMSs for a single
table. The RXES+ schema, instead, uses always less space than other schemas
for all the analyzed logs. For what concerns the population time, the Monolithic
schema is the fastest one. This is due to its simple structure (it is composed

3 We set a timeout on the population scripts and each script that did not end within
24 hours was stopped. Dashes in the tables mean that the corresponding scripts
reached the timeout.
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of a single table containing all the log data) that does not require to update
DB-related constraints (e.g., foreign keys) when inserting a new event. The pop-
ulation time of RXES is extremely high since its structure requires to check
the presence of duplicate events/traces at each insertion. This is confirmed by
the more detailed analysis conducted on the SEPSIS log shown in Fig. 3. The
plots in the figure indicate the time needed for subsequent event insertions for
the four considered schemas. The time required for subsequent event insertions
for RXES grows linearly with the number of events already inserted, while it
remains constant for the other schemas. RXES+ is faster than both DBXES
and RXES. Overall, RXES+ guarantees a good trade-off between the disk space
needed to store the process data and the population time.

RQ2. What is the most efficient DB schema in terms of query execu-
tion time? To answer this research question, we executed all the queries in the
two discovery query sets BS and Join for all the considered real-life logs stored
using all the considered DB schemas. Table 3 shows the query execution times
measured by executing the BS and the Join query set. The gray background
in the table indicates the schema that performed best on the same log and the
same query. The query execution times displayed in the tables are averaged over
5 runs. The results highlight that the Monolithic and RXES+ schemas achieve
very similar performance on both query sets, and perform better than DBXES
and RXES. Almost all the queries in the Join set run faster than the baseline
queries.

RQ3. How does the query execution time vary for datasets with dif-
ferent characteristics? To answer this research question, we performed a set
of controlled experiments using synthetic logs generated by varying the number
of event classes, the number of traces, and the number of events in each trace.
In particular, we generated three sets of synthetic logs; each set fixes two of the
above parameters, while changing the remaining one.

For testing how the trace size affects the query execution time, we generated
five synthetic logs containing 10 event classes and 100 traces of size 10, 20, 25,
30, and 50, respectively. For testing how the log size affects the query execution
time, we generated three synthetic logs containing 10 event classes, traces of
size 20 and with log size equal to 100, 500, and 1000, respectively. Finally, for
testing how a different number of event classes affects the query execution time,
we generated four synthetic logs with log and trace size equal to 100 and 20,
respectively, and containing 5, 10, 15, and 20 event classes. The query execution
time was, again, measured running all the queries in the two discovery query sets
BS and Join and was normalized over the results obtained for all the queries in
the two query sets, in order to have a single performance indicator for all queries
in each set. We used the RXES+ schema for these experiments.

The results are shown in Fig. 4. In Fig. 4a, we can observe that the Join
query set is more efficient when traces are shorter, while grows exponentially as
the traces become longer. This is due to the structure of the Join queries, which
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Table 3: Query execution time comparison between the query sets.
Average query time (s)

Response
Alternate Chain

Precedence
Alternate Chain Responded

DB Response Response Precedence Precedence Existence
schema BS Join BS Join BS Join BS Join BS Join BS Join BS Join

SEPSIS

Monolithic 0.585 0.506 1.111 0.587 1.215 0.427 0.564 0.543 1.405 0.538 1.595 0.429 1.193 0.975
DBXES 1.176 1.239 1.854 1.259 1.999 1.037 1.319 1.299 2.140 1.208 2.382 1.050 1.949 1.714
RXES 0.676 0.636 1.213 0.720 1.348 0.507 0.698 0.675 1.522 0.649 1.735 0.502 1.318 1.107
RXES+ 0.575 0.524 1.105 0.602 1.225 0.452 0.561 0.547 1.394 0.542 1.575 0.447 1.173 0.990

ROAD

Monolithic 9.40 8.04 25.78 8.31 31.43 4.91 9.06 7.86 25.97 8.06 31.87 4.76 22.78 14.55
DBXES 13.73 12.56 31.08 13.28 36.39 9.85 13.98 12.77 31.39 12.92 37.03 9.75 27.63 19.73
RXES+ 9.44 8.09 26.43 8.44 31.74 5.02 9.28 7.90 26.53 8.12 32.44 4.89 22.93 14.57

FINANC

Monolithic 36.72 32.57 39.99 22.17 57.59 15.39 36.26 33.58 44.83 18.54 74.54 15.56 60.86 68.38
DBXES 46.06 41.63 50.54 31.16 67.62 22.62 45.93 43.08 55.67 27.74 84.30 23.08 70.57 79.73
RXES+ 37.25 32.41 40.87 21.75 57.21 15.65 36.45 33.51 45.66 18.41 74.64 16.20 60.13 68.09

LOAN

Monolithic 542.76 202.87 355.58 166.87 566.16 93.29 533.45 207.00 369.44 143.76 663.95 96.67 843.42 424.74
RXES+ 540.37 204.00 350.52 167.32 568.96 95.01 546.44 207.66 374.10 145.01 678.89 97.44 895.67 422.88

REIMB

Monolithic 8.79 1.65 9.20 1.91 13.44 1.09 8.94 1.62 9.26 1.86 13.98 1.11 16.43 2.71
DBXES 13.20 5.49 14.94 6.38 20.42 4.69 13.47 6.18 15.15 6.50 20.77 4.75 22.49 8.60
RXES+ 9.77 2.72 11.67 2.98 15.74 1.30 10.18 2.64 11.79 2.92 16.19 1.28 19.14 4.79

TRAVEL

Monolithic 22.63 4.22 20.95 4.36 27.72 2.02 22.59 4.09 20.62 4.23 28.03 2.04 32.85 7.45
DBXES 25.60 7.79 24.57 8.63 32.10 6.09 26.75 8.41 24.72 8.64 33.15 6.20 37.34 12.02
RXES+ 22.28 4.18 20.35 4.35 27.37 1.98 22.54 4.07 20.67 4.21 27.98 1.99 33.13 7.43

leverages DB indexing (improving the performance for traces with less than 20
events) and a Cartesian product, containing all the possible combinations of the
events in a trace, which becomes larger when the trace size increases. Fig. 4b
shows, instead, that the Join query set scales better than BS as the log size
grows, and Fig. 4c shows how the query execution time for both BS and Join
grows linearly when the number of event classes increases, with Join becoming
more efficient for logs containing more than 15 event classes.

To sum up, for logs with more than 15 event classes and more than 500 traces
each containing less than 20 events (which are common characteristics for many
real-life logs) the queries in the Join set are more efficient. However, for traces
particularly long, it is better to use queries that do not rely on explicit JOIN
statements.

RQ4. How does the query execution time vary for different types of
queries? To answer this research question, we executed all the additional types
of queries defined in Section 4 using RXES+ as schema on each log.4

Table 4 compares, for each Declare template, the execution time (averaged
over 5 runs) of the standard queries in the Join query set (STD) with the IS,
LRC, MT, VAL. Here, IS, LRC, and MT are standard discovery tasks, while
VAL returns the validity intervals of all the Declare rules obtained by instanti-

4 We set a timeout of 30 minutes on the query scripts.
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Fig. 4: Query execution time for Discovery task wrt. (4a) number of events per
trace, (4b) number of traces in the log, (4c) number of event classes in the log.

Table 4: Query execution time for each query type.
Average query time (s)

Query
Response

Alternate Chain
Precedence

Alternate Chain Responded
type Response Response Precedence Precedence Existence

SEPSIS

STD 0.52 0.60 0.45 0.55 0.54 0.45 0.99
IS 471.55 491.96 820.21 605.46 473.83 814.45 0.95

LRC 0.65 0.86 0.74 0.65 0.83 0.76 1.03
MT 0.84 0.84 0.62 0.83 0.77 0.61 0.82
VAL 0.96 1.94 4.16 1.23 6.22 3.48 2.68

ROAD

STD 8.09 8.44 5.02 7.90 8.12 4.89 14.57
IS - - - - - - 42.69

LRC 7.00 8.94 5.32 6.55 8.68 5.19 11.37
MT 0.84 8.71 5.19 8.25 8.47 5.07 8.40
VAL 0.96 19.66 11.99 11.51 20.02 12.12 26.72

FINANC

STD 32.41 21.75 15.65 33.51 18.41 16.20 68.09
IS - - - - - - 65.38

LRC 22.13 23.97 16.52 23.32 20.67 17.18 41.76
MT 37.91 23.82 17.38 38.64 20.15 18.09 38.02
VAL 42.84 69.79 105.42 51.92 90.67 109.70 102.22

LOAN

STD 204.00 167.32 95.01 207.66 145.01 97.44 422.88
IS - - - - - - 677.36

LRC 230.16 193.64 97.39 233.38 166.22 100.56 475.61
MT 242.90 181.59 104.70 249.01 157.58 106.87 249.84
VAL 322.73 434.47 636.92 363.25 482.77 658.32 1,032.00

REIMB

STD 2.72 2.98 1.30 2.64 2.92 1.28 4.79
IS - - - - - - 15.49

LRC 3.08 3.77 2.09 3.12 3.82 2.21 5.44
MT 3.38 3.59 1.39 3.33 3.57 1.40 3.49
VAL 5.46 7.57 5.63 5.39 7.54 6.27 12.44

TRAVEL

STD 4.18 4.35 1.98 4.07 4.21 1.99 7.43
IS - - - - - - 29.88

LRC 4.68 5.38 3.05 4.49 5.39 3.24 6.72
MT 5.08 5.16 2.13 4.91 4.90 2.16 4.99
VAL 7.64 10.76 9.15 7.86 11.11 10.44 17.25

ating each template with all the combinations of event classes available in the
log. Table 5 shows results for the RNG query execution time. RNG returns all
the value ranges of all the attributes available in each log in a fixed time in-
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Table 5: Query execution time for RNG query type.
Query Average query time (s)
type SEPSIS ROAD FINANC LOAN REIMB TRAVEL

RNG 0.14 0.18 0.09 14.25 1.23 0.70

terval. The details about the queries used in this experiment can be found at
https://github.com/francxx96/XEStoDB.

We have already seen from the experiments on the synthetic logs that the
execution time of the queries in the Join set grows exponentially as the trace
size grows. Since the instance-spanning queries consider the whole log as a single
trace, the IS queries require much more time to be executed. To solve this issue,
in our repository, we provide also for this type of queries a version that does not
use explicit JOIN statements.

6 Conclusion

In this paper, we proposed an SQL-based framework for declarative process
mining. We proposed different queries to support the three main use cases of
declarative process mining, i.e., process discovery, conformance checking, and
query checking. We also presented an extensive cross-benchmark comparison we
conducted using several synthetic and real-life logs for investigating the perfor-
mance of different DB schemas and different types of queries.

The evaluation has been conducted using Microsoft SQL Server 2019 as
DBMS. Nonetheless, the conclusions drawn are valid in general. In particular,
the improved performance of RXES+ in terms of disk space needed to store a
log and the insights derived from the experiments on the DB population time are
clearly valid independently of the DBMS used. In addition, the improvements in
the query execution time obtained with the use of explicit JOIN statements are
also valid in general provided that the queries are executed on an indexed DB.
Another observation that is worth mentioning is that all the queries presented
in this paper are easily applicable to any (proprietary) DB schema with the
only requirement that the DB contains timestamped events somehow grouped
together (into traces), which is the most basic requirement needed to conduct
any type of process mining analysis on a dataset (only the query for building
the temporary table @event must be rewritten when using a new DB schema).
Portability is, in general, a significant advantage of the proposed framework and
this is the reason why we developed it by relying only on standard SQL clauses.
Although other more sophisticated SQL clauses could be used to improve the
overall performance of the framework, these solutions could affect its portability
across different DBMSs.

We think that the investigations conducted in this paper can be considered
as an important basis for researchers who want to develop techniques for process
mining based on SQL since they give several insights about the main bottlenecks
and possible issues that can come up when DBs are used for process analytics.
This work can be, in the future, extended towards several directions. First, a
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systematic comparison with the techniques for performing declarative process
mining available in toolkits like RuM [2] and Declare4Py [8] could be conducted.

Even if we defined basic queries over the data attributes attached to events
in a log (the RNG queries), more sophisticated queries could be defined, for
example, for checking MP-Declare rules. These queries might represent the basis
for novel approaches for discovery, conformance checking and query checking
based on MP-Declare. Also, it would be easy to compute, using SQL queries,
metrics for measuring the “interestingness” of a Declare rule [5] that go beyond
the support we use in this paper (e.g., confidence).

The use of different query languages like PQL [25] could be investigated in
the context of declarative process mining. Smarter strategies for storing event
data in DBs like the ones investigated in [7] could help improving the query
execution time. Other DB schema can be built for other standards for storing
process information in event logs like the recent object-centric standards, such
as XOC [19] and OCEL [15].

Another avenue for future work is the development of conformance checking
SQL queries providing richer feedback to the user like trace alignments. Finally,
the use of more advanced instruments from DB theory, such as the use of tem-
poral DBs [17], could be investigated with the aim of improving the performance
of the proposed framework.
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