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Abstract

Modern organizations execute processes to deliver product and services, whose
enactment needs to adhere to laws, regulations and standards. Conformance
checking is the problem of pinpointing where deviations are observed. This
paper shows how instances of the conformance checking problem can be repre-
sented as planning problems in PDDL (Planning Domain Definition Language)
for which planners can find a correct solution in a finite amount of time. If
conformance checking problems are converted into planning problems, one can
seamlessly update to the recent versions of the best performing automated plan-
ners, with evident advantages in term of versatility and customization. The pa-
per also reports on results of experiments conducted on two real-life case studies
and on eight larger synthetic ones, mainly using the Fast-downward planner
framework to solve the planning problems due to its performances. Some ex-
periments were also repeated though other planners to concretely showcase the
versatility of our approach. The results show that, when process models and
event logs are of considerable size, our approach outperforms existing ones even
by several orders of magnitude. Even more remarkably, when process models
are extremely large and event-log traces very long, the existing approaches are
unable to terminate because they run out of memory, while our approach is able
to properly complete the alignment task.

Keywords: Conformance Checking, Automated Planning, Business Process
Management, Process Mining

1. Introduction

Process mining is about extracting knowledge from event logs commonly
available in today’s information systems. These techniques provide new means
to discover, monitor and improve processes in a variety of application domains.
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Whereas large attention has been paid to discovery models that summarize
the behavior observed in the event log, less effort has been put on conformance
checking, which aims to find commonalities and discrepancies between the mod-
eled and the observed behavior.

However, a number of previous works advocates the use of conformance
checking for business alignment and auditing (see, e.g., (Accorsi & Stocker,
2012; Hosseinpour & Jans, 2016)): It allows one to check whether business
processes are executed within certain boundaries set by managers, governments,
laws, national and international regulations and standards, etc. Conformance
checking starts from an event log, which records the actual process executions,
and a model that encodes the boundaries and the constraints mentioned above.
The practical relevance of conformance checking is demonstrated through several
successful case studies in multiple domains, of which a partial list is reported in
Section 6.1.

Several notions were introduced for conformance checking, such as token-
based replay and comparison of footprints (see, e.g., (van der Aalst, 2016)) but
they were unable to exactly pinpoint the deviations causing nonconformity. To
overtake this limitation, the notion alignment has been introduced (van der
Aalst et al., 2012). An alignment between a recorded process execution and
a process model is a pairwise matching between activities recorded in the log
and activities allowed by the model. Sometimes, activities as recorded in the
log (events) cannot be matched to any of the activities allowed by the model
(process activities).

For instance, an activity is executed when not allowed (e.g., a loan is opened
before assessing the applicant). In this case, we match the event with a special
null activity (hereafter, denoted as �), thus resulting in so-called moves in log.
Other times, an activity should have been executed but is not observed in the
event log (e.g., a loan is not opened after positively assessing the applicant).
This results in a process activity that is matched to a � event, thus resulting
in a so-called move in model.

Alignments are powerful artifacts to detect nonconformity between the ob-
served behavior as recorded in the event log and the prescribed behavior as
represented by process models. If an alignment between a log trace and process
model contains at least one move in log/model, it means that the trace refers to
a process execution that is not compliant with the allowed behavior represented
by the process model. As a matter of fact, the moves in log/model indicate
where the execution is not conforming by pinpointing the deviations that have
caused this nonconformity. Pinpointing the actual reasons of nonconformity is
crucial for, e.g., auditors.

In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace
is not conforming. It is clear that one is interested in finding the most probable
explanation. In (van der Aalst et al., 2012), an approach is proposed that is
based on the principle of the Occam’s razor: the most parsimonious explanation
is preferable. Therefore, one should not aim to find any alignment but, in fact,
one of the alignments with the least expensive deviations (one of the so-called
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optimal alignments), according to some function assigning costs to deviations.
The existing techniques to compute optimal alignments (Adriansyah et al.,

2011, 2013a) provide ad-hoc implementations of the A* algorithm based on
an ad-hoc heuristics. This paper starts from the belief that re-implementing
standard planning techniques for solving specific planning problems in an ad-
hoc way is not ideal. The main drawback is that it is not possible to seamlessly
plug in new planning algorithms and evaluate the performance levels. As a
consequence, the possibility of evaluating different alternatives is hampered;
also, if the literature proposes new algorithms that clearly overtake the existing
ones for solving instances of the alignment problem, a massive amount of work
is needed to modify the implementation.

Hence, in order to facilitate the integration of different planning algorithms,
this paper illustrates how the problem of computing optimal alignments can be
formulated as a planning problem in PDDL (Planning Domain Definition Lan-
guage) (McDermott et al., 1998), which can be solved through off-the-shelf au-
tomated planners. PDDL is the standard encoding language for planning tasks.
It allows one to explicitly represent states of the world and actions through a
planning domain, and to instantiate such a domain with concrete objects, an
initial state and a goal specification (planning problem).

In a nutshell, given a process model and a real process execution recorded
in an event log, this paper shows how to build a planning domain and problem
instance such that the solution steps of the problem are guaranteed to corre-
spond to the alignment steps. Also, the paper illustrates how the encoding of
alignment problem always generates planning problems that can be solved by
planning systems in a finite amount of time.

An evaluation was performed on real-life process models and event logs and
on synthetic models and logs of increasing sizes to analyze its scalability. The
evaluation results show that, when the process models are larger (more than
100 activities), it is significantly faster than the existing techniques reported
in (Adriansyah et al., 2011, 2013a). The latter are the only techniques that
compute alignments with guarantee of optimality. Even more remarkably, when
process models are extremely large and event-log traces very long, the existing
techniques were unable to compute alignments because they were unable to
operate with 16 Gb of RAM (they went out of memory after several hours of
computation), while our plan-based approach was able to properly complete the
alignment task.

The need of approach that scales better is also advocated by the IEEE Task
Force in Process Mining (Van Der Aalst et al., 2011): “In some domains, mind-
boggling quantities of events are recorded. [...] Therefore, additional efforts are
needed to improve performance and scalability.”. While experiments were largely
conducted through Fast-downward because of being the best performing, the
paper also reports on experience with other planners. The intention is also to
showcase how the approach is versatile and allows one to plug in new planners
at basically no cost.

The rest of the paper is organized as follows. In Section 2 we provide the
relevant background necessary to understand the paper. In Section 3 we illus-
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trate our approach to convert alignment problems to planning problems, and
we provide correctness results for such problems. In Section 4 we describe the
architecture of the software tool implementing our planning-based alignment
approach. Then, Section 5 reports on experiment results, while in Section 6 we
discuss related works. Finally, Section 7 concludes the paper.

2. Preliminaries

In this section, we provide some preliminary concepts used throughout the
paper. In Section 2.1 we introduce the Petri Net modeling language. In Sec-
tion 2.2 we describe the problem we want to solve through planning: construct-
ing an optimal alignment between event logs and process models represented as
Petri nets. In Section 2.3 we give an overview on automated planning.

2.1. Petri Nets

Many notations have been introduced to represent business processes, such
as BPMN, EPC, YAWL or UML Activity Diagrams (Dumas et al., 2013), and
some of those are characterized by an ambiguous semantics. Since we need a
simple language with clear semantics to explain our technique, we opted for Petri
nets. Despite of its simplicity, it has been proven to be sufficiently adequate to
model crucial aspects of business processes (van der Aalst, 1998) and to check
their conformance against real executions recorded in event logs (see, e.g., the
case studies reported in (van der Aalst, 2016)). The practical suitability of
Petri nets for conformance checking is also showcased through two real-life case
studies in Section 5.1.

It is undoubtable that there are business-process aspects that cannot be
modeled through Petri nets, including the objects manipulated by activities,
the activity guards or constraints on activities to only be executed by resources
belonging to certain organizational units. They can certainly be modeled by
richer languages, e.g. BPMN, but this addition aspects requires an increase of
the language expressiveness to an extent that makes the alignment computation
an undecidable problem (cf. Section 7). However, our approach can easily be
applied to any other process modeling language with the same expressiveness or,
for more expressive languages, if the constructs providing more expressiveness
are not employed.

A Petri net is is a directed graph with two node types called places and
transitions. The nodes are connected via directed arcs. Connections between
two nodes of the same type are not allowed. Places are represented by circles
and transitions by rectangles.

Definition 1 (Petri Net). A Petri net is a tuple (P, T, F ) where

• P is a finite set of places;

• T is a finite set of transitions;

4



• F ⊆ (P × T )∪ (T × P ) is the flow relation between places and transitions
(and between transitions and places).

Given a transition t ∈ T , •t is used to indicate the set of input places of t,
which are the places p with a directed arc from p to t (i.e., such that (p, t) ∈ F ).
Similarly, t• indicates the set of output places, namely the places p with a direct
arc from t to p. At any time, a place can contain zero or more tokens, drawn
as black dots. The state of a Petri net, a.k.a. marking, is determined by the
number of tokens in places. Therefore, a marking m is a function m : P → N.

In any run of a Petri net, the number of tokens in places may change, i.e.,
the Petri net marking, according to the following enablement and firing rules:

• A transition t is enabled at a marking m iff each input place contains at
least one token: ∀ p ∈ •t, M(p) > 0.

• A transition t can fire at a marking m iff it is enabled. As result of firing
a transition t, one token is “consumed” from each input place and one is
“produced” in each output place. More formally, firing a transition t at
marking m leads to a marking m′ such that:

m′(p) =

 m(p)− 1, if p ∈ •t \ t•,
m(p) + 1, if p ∈ t• \ •t,
m(p), otherwise.

(1)

This is denoted as m
t−→ m′. In the remainder, given a sequence of transition

firing σ = 〈t1, . . . , tn〉 ∈ T ∗, m0
σ−→ mn is used to indicate m0

t1−→ m1
t2−→ . . .

tn−→
mn.

When Petri nets are used to represent business processes, transitions are as-
sociated with process activities, more specifically to activity labels, and mark-
ings indicate the process state (van der Aalst, 1998). Executions of business
processes have a start and end. Therefore, Petri nets need to be associated with
an initial and final marking.

Definition 2 (Labelled Petri Net). A Labelled Petri net is a tuple
(P, T, F,A, `,mi,mf ) where:

• (P, T, F ) is a Petri net;

• A is the set of activity labels;

• ` : T 6→ A is a function that associates a label with some transitions in T ;

• mi and mf are the initial and final marking.

Given a Labelled Petri net N = (P, T, F,A, `,mi,mf ), the labeling function
` does not need to be total, as certain transitions are not associated with a label.
Such transitions do not represent actual pieces of work in processes but their
introduction is sometimes necessary to properly represent the process behaviour.
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Figure 1: The Petri net used as working example.

In the remainder, shortcuts Inv(N) ⊂ T indicates those transitions of N that
are associated with no labels (i.e., not in the domain of `).

Fig. 1 shows an example of a Labelled Petri net that will be used throughout
the paper. The transition’s names are depicted inside the transitions. The
markings with respectively one token in place start or in place end are the
initial and final marking (and no tokens in any other place). Transitions a, b
and c are associated with labels of the same name. The black-colored transition
τ is invisible and transitions d1 and d2 are both associated with label d.

In the remainder of this paper, we assume Labelled Petri nets to be 1-
bounded, also known as safe. A Petri net is 1-bounded (or safe) if in any
reachable marking from the initial marking mi, no place ever contains more
than 1 token. The following is the general definition of k-boundness (van der
Aalst, 1998; van der Aalst & van Hee, 2002):

Definition 3 (k-boundedness). A Labelled Petri net N = (P, T, F,A, `,mi,mf )

is k-bounded iff, for each marking m s.t. m0
σ−→ m for some σ ∈ T ∗, m(p) ≤ k

for all p ∈ P .

One-boundness is not a large limitation as the behavior allowed by most
of business processes can be represented as 1-bounded Petri nets (see (Kie-
puszewski et al., 2003; van der Aalst & van Hee, 2002)). In particular, every
k-bounded Petri net for some k ∈ N can be transformed in 1-bounded Petri net:
first, the reachability graph, which is finite, is built; second, a 1-bounded Petri
net is built by transforming each reachability-graph state in a place and each
reachability-graph transition in a Petri-net transition; finally, Petri-net arcs are
added to connect the places to transition as guided by the reachability graph.
In general, 1-bounded Petri nets can represent any BPMN model that only uses
any of the following constructions: activities, sequence flows, start events, end
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events and exclusive, inclusive and parallel gateways (Kalenkova et al., 2015).
As a further indication of the practical relevance of k-bounded Petri nets,

readers can refer to Section 6.1 where a partial list of successful cases of the
conformance-checking applications is discussed. All these cases have in common
that the processes can be represented as k-bounded Petri nets.

2.2. Alignment between Event Logs and Petri Nets

Event logs are the starting point for process mining. An event log is a multi-
set of traces. A trace describes the life-cycle of a process instance in terms of
the activities executed.

Definition 4 (Event Log). Let N = (P, T, F,A, `,mi,mf ) be a Labelled Petri
net. Let E be the universe of events. A trace σL ∈ E∗ is a finite sequence
of events. An event log L over N is a pair (L, λN ) consisting of a multi-set
L ∈ B(E∗)1 of traces and a function λN : E → A, which associates each event e
with an activity λN (e).

Multiple instances of a process may consist of the same sequence
of transition firings and, hence, result in the same trace. This mo-
tivates the definition of an event log as a multi-set. The following
[〈a, b, c, d〉, 〈a, b, c, d〉, 〈a, b, c, d, b, c, d〉, 〈a, d〉, 〈a, d〉] is an example of event log,
assuming an event universe E = {a, b, c, d} and, for each event e ∈ E , λN (e) = e
Transition firings in an event log are known as events. The concept of time is
not explicitly modeled but, without losing generality, we assume that events in
a trace are sorted according to the timestamp of their occurrence. As mentioned
in Section 1, we perform conformance checking by constructing an alignment
of event log (L, λN ) and process model N (van der Aalst et al., 2012), which
allows us to exactly pinpoint where deviations occur. On this aim, the events
in the event log need to be related to transitions in the model, and vice versa.
Building this alignment is far from trivial, since the log may deviate from the
model at an arbitrary number of places.

We need to relate “moves” in the log to “moves” in the model in order to
establish an alignment between a process model and an event log. However, it
may be that some of the moves in the log cannot be mimicked by the model
and vice versa. We explicitly denote such “no moves” by �.

Definition 5 (Legal Alignment Moves). Let N = (P, T, F,A, `,mi,mf ) be a
Labelled Petri net. Let (L, λN ) be an event log. A legal alignment move for N
and (L, λN ) is represented by a pair (sL, sM ) ∈ (E ∪{�}×T ∪{�})\{(�,�)}
such that:

• (sL, sM ) is a move in log if sL 6= � and sM = �,

• (sL, sM ) is a move in model if sL =� and sM ∈ T ,

1Given a set X, B(X) is the set of all multisets constituted by elements of X.
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γ1 =
a d b c �
a � b c d1

γ2 =
a � d b c
a τ d1 � �

γ3 =
a � d b c �
a τ d2 b c d1

Figure 2: Alignments of trace 〈a, d, b, c〉 and the process model in Fig. 1.

• (sL, sM ) is a synchronous move if sL 6=�, sM ∈ T \Inv(N) and λN (sL) =
`(sM )

An alignment is a sequence of alignment moves:

Definition 6 (Alignment). Let N = (P, T, F,A, `,mi,mf ) be a Labelled Petri
net and (L, λN ) be a event log. Let ΓN be the universe of all legal alignment
moves for N and (L, λN ). Let σL ∈ L be a log trace. Sequence γ ∈ Γ∗N is
an alignment of N and σL if, ignoring all occurrences of �, the projection on
the first element yields σL and the projection on the second yields a sequence

σ′′ ∈ T ∗ such that mi
σ′′

−−→ mf .

Many alignments are possible for the same trace. For example, Fig. 2 shows
three possible alignments for a trace σ1 = 〈a, d, b, c〉.2 Note how moves are
represented vertically. For example, as shown in Fig. 2, the first move of γ1 is
(a, a), i.e., a synchronous move of a, while the the second and fifth move of γ1

are a move in log and model, respectively.
However, we aim at finding a complete alignment of σL and N with minimal

deviation cost. In order to define the severity of a deviation, we first introduce
a cost function on legal moves and, then, generalize it to alignments. The
alignment with the lowest cost is called an optimal alignment.

Definition 7 (Cost Function). Let N = (P, T, F,A, `,mi,mf ) be a Labelled
Petri net and σL ∈ A∗ a log trace, respectively. Assuming ΓN as the set
of all legal alignment moves, a cost function κ assigns a non-negative cost
to each legal move: ΓN → N+

0 . The cost of an alignment γ ∈ ΓN be-
tween σL and N is computed as the sum of the cost of all constituent moves:
K(γ) =

∑
(sL,sM )∈γ κ(sL, sM ).

Alignment γ is an optimal alignment if, for any alignment γ′ of N and σL,
K(γ) ≤ K(γ′). The definition of the cost function κ is domain dependent and
is manually defined by process analysts/auditors according to the knowledge
of the domain and of the severity of the different sorts of nonconformity. For
instance, in a loan process, it is significantly more severe to approve a loan when
not supposed (i.e., a move in log for a certain activity Approve Loan) than to
send a letter and ask for additional information when unnecessary (i.e., a move

2For this example, for the sake of simplicity, we again assume that E = {a, b, c, d} and, for
each event e ∈ E, λN (e) = e.
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in log for a certain Ask for additional information) or to forget to send it when
expected (i.e., a move in model for Ask for additional information). In other
words, the cost of each legal move depends on the specific model and process
domain and, hence, the cost function needs to be defined specifically for each
setting and cannot be automated. While approaches could be researched to
support stakeholders with the cost-function definition, this would be beyond
the scope of this paper. Also note that an optimal alignment does not need to
be unique, i.e., multiple alignments with the same minimal cost may exist.

In case that a customized cost function cannot be provided, one can use a
standard cost function, which assigns cost 1 to every move in log or move in
model for visible transitions and cost 0 to synchronous moves and moves in
model for invisible transitions. For instance, the standard cost function for the
model in Fig. 1:

κ
(
(sL, sM )

)
=

 1 if sM =�,
1 if sL =� and sM 6= τ,
0 otherwise.

(2)

Let us consider the alignments in Fig. 2. Using the standard cost function
in Equation 2, alignments γ1 and γ2 have cost 2 since they have two moves in
model and/or log and, also, moves for τ have cost 0. Conversely, γ3 takes on
a cost 1. So, γ3 is a less expensive alignment. Since no alignment exists with
cost 0, γ3 is among the least expensive alignments. Therefore γ3 is an optimal
alignment.

2.3. Automated Planning

The Automated planning field is a branch of Artificial Intelligence (AI) that
aims to the realization of automated systems for the synthesis of organized
sequences of real-world activities. Automated planning operates on explicit
representations of states and actions (Bonet & Geffner, 2001; Ghallab et al.,
2004). The Planning Domain Definition Language (PDDL) (McDermott et al.,
1998) is a de-facto standard to formulate a planning problem P = 〈I,G,PD〉,
where I is the description of the initial state of the world, G is the desired goal
state, and PD is the planning domain.

A planning domain PD is built from a set of propositions describing the state
of the world (a state is characterized by the set of propositions that are true)
and a set of actions Ω that can be executed in the domain. An action schema
a ∈ Ω is of the form a = 〈Para,Prea,Eff a〉, where Para is the list of input
parameters for a, Prea defines the preconditions under which a can be executed,
and Eff a specifies the effects of a on the state of the world. Both preconditions
and effects are stated in terms of the propositions in PD. Propositions can be
represented through boolean predicates and fluents. In the remainder of the
paper, we remain consistent with PDDL terminology (McDermott et al., 1998;
Fox & Long, 2003): a predicate is a boolean property of the world and fluents
are used to express numeric properties, such as the actions’ cost. Both the
values of predicates and fluents can change as result of the execution of actions.
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PDDL includes also the ability of typing the parameters that appear in actions
and constraining the types of arguments to predicates and fluents.

There exist several forms of planning in the AI literature. In this paper,
we focus on planning techniques characterized by fully observable, static and
deterministic domains, i.e., we rely on the classical planning assumption of a
“perfect world description” (Wilkins, 1988). Concretely, this implies that: (i)
any planning action only provides deterministic and observable effects; (ii) a
complete knowledge of the initial state I is available.

Example Consider the PDDL planning domain PDex and its associated plan-
ning problem PRex:

(define (domain PDex)
(:types simple complex - object)
(:predicates
(pred1 ?x - simple ?y - complex) (pred2) (pred3) (pred4))

(:functions
(single-cost ?x - simple) (total-cost))

(:action act1
:parameters (?k1 - simple ?k2 - complex)
:precondition (and (pred1 ?k1 ?k2) (pred3))
:effect (and (not(pred4)) (pred2)

(increase (total-cost) (single-cost ?k1))))
(:action act2

:precondition (pred4)
:effect (pred3))

)

(define (problem PRex) (:domain PDex)
(:objects obj1 obj2 - simple obj3 - complex)
(:init (pred1 obj1 obj3) (pred4)

(= (single-cost obj1) 1) (= (single-cost obj2) 2)
(= (total-cost) 0))

(:goal (and (pred2) (pred3) (not (pred4))
(= (total-cost) 1))

)

The example planning domain PDex consists of a unique abstract type object
capturing any possible object instance involved in some predicate or fluent, and
two object sub-types named respectively simple and complex objects. Each
proposition (e.g., the predicate pred1 and the fluent single-cost) may be
defined over variables of a certain type. Variables are distinguished by a “?”
character at front, and the dash “-” is used to assign types to the variables.
In the example above, ?x is defined to be of type simple and ?y to be a
complex object. Planning actions may involve some input parameters. For
example, action act1 has two parameters defined in terms of variables ?k1 of
type simple and ?k2 of type complex. The action schema of act1 states
that - for being executed - the predicates pred1 (properly grounded on two
object instances of kind simple and complex, resp.) and pred3 must hold.
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Then, it states that a successful execution of act1 guarantees, on the one hand,
that pred2 and the negation of pred4 will hold together, and on the other
hand that the fluent total-cost is increased of a value equal to the action
cost (single-cost ?k1). In the PDDL planning problem PRex, which has
been defined over PDex, two object instances of type simple and one of type
complex are defined. In the initial state I only the predicates (pred1 obj1
obj3) and pred4 are known to be true, while the other predicates are set to
false. Furthermore, numeric fluents are initialized to their respective initial
values. The goal condition G is a formula where the conjunction of pred2,
pred3 and the negation of pred4 is true and the value of the total-cost
fluent is equal to 1.

Under the assumptions of a “perfect world description”, a solution to a
planning problem is a sequence of actions—a plan—whose execution brings
from initial state I to some state that satisfy goal G. The plan is said to be
optimal if it minimizes the sum of action costs.

Example A simple plan satisfying PRex consists in, first, executing action
act2 (possible because pred4 is true in I), which makes pred3 true. Then,
the plan continues executing act1, where object instances obj1 and obj3 are
properly grounded (i.e., instantiated). This turns the value of pred2 to true
and that of pred4 to false. With these actions, the value of total-cost is
increased of the value of (single-cost obj1), i.e. 1. Notice that this plan
is optimal.

Automated planning has made huge advances in the last twenty years, lead-
ing to solvers able to create plans with thousands of actions for problems de-
scribed by hundreds of propositions. In this work, we represent planning do-
mains and problems making use of the STRIPS fragment of PDDL 2.1 (Fox &
Long, 2003), enhanced with the numeric features provided by the “level 2” of
the same language. Such features are used to keep track of the costs of planning
actions and to synthesize plans satisfying pre-specified metrics.

3. Encoding the Alignment Problem in PDDL

This section illustrates how, given an event log (L, λN ) and Labelled Petri
net N = (P, T, F,A, `,mi,mf ), the problem of the alignment of N and σL =
〈e1, . . . , en〉 ∈ L can be encoded as a PDDL planning problem, which can be
solved by state-of-the-art planners. The synthesized plan will consist of a se-
quence of alignment moves that establish an alignment between σL and N .

3.1. Predicates and fluents
In the planning domain PD, we provide three abstract types called place,

transition and event. The types place and transition represent re-
spectively the places and the transitions of N . The type event is used to record
the list of events that occur in the specific trace σL that must be checked for
conformance. For trace σ1 = 〈a, d, b, c〉 and the Petri net in Fig. 1, the following
objects are introduced in the planning problem P:
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(:objects a b c d1 d2 inv - transition
start p1 p2 p3 p4 end - place
e1 e2 e3 e4 evEND - event)

In addition to the four events, denoted as e1, ..., e4, we introduce the invisible
transition inv and a fictitious evEND, which identifies the end of trace. The
introduction of this fiction evEND is not specific of this example, but it is
general for any instance of the alignment problem.

To capture all possible markings of N and the evolution of σL during an
alignment, we define four boolean predicates in PD, as follows:

token. For each p ∈ P , (token ?p - place) holds iff p contains a token in
the currently reached marking.

succ. For each 1 ≤ n < |σL|, (succ ?e1 - event ?e2 - event) holds if
e1 = ei and e2 = ei+1.

tracePointer. For each event e ∈ σL, (tracePointer ?e - event) holds
when, during the computation of the alignment, e is the next trace event
to align.

associated For each event e ∈ σL, (associated ?e - event ?t -
transition) holds when `(t) = λN (e).

In addition to the predicates above, assuming a cost function κ, the following
fluents are also introduced:

move-model-cost. For each transition t ∈ T , fluent (move-model-cost ?t
- transition) takes on the cost of a model move for t, i.e., the value
of κ((�, t)).

move-log-cost. For each event e ∈ σL, fluent (move-log-cost ?e -
event) takes on the cost of a log move for e, i.e. the value of κ((e,�)).

total-cost. (total-cost) keeps track of the cost of the alignment currently
found.

Synchronous moves are associated with no costs and, hence, no fluent needs to
be introduced. For trace σ1 = 〈a, d, b, c〉 and the Petri net in Fig. 1, the initial
state of P with the definition of predicates and fluents is as follows:

(:init (token start) (tracePointer e1)
(succ e1 e2) (succ e2 e3)
(succ e3 e4) (succ e4 evEND)
(associated e1 a) (associated e2 d1)
(associated e2 d2) (associated e3 c)
(associated e4 b) (= (total-cost) 0))
(= (move-model-cost a) 1)
(= (move-model-cost b) 1)
(= (move-model-cost c) 1)
(= (move-model-cost d1) 1)
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(= (move-model-cost d2) 1)
(= (move-model-cost inv) 0)
(= (log-move-cost e1) 1)
(= (log-move-cost e2) 1)
(= (log-move-cost e3) 1)
(= (log-move-cost e4) 1))

Readers can observe that the last ten lines are the representation of the cost-
function example in Equation 2 of Section 2.2. At the end, for the example in
question, when the alignment is found, the Petri net needs to be in the final
marking, i.e., with one token in place end and zero tokens in any other place,
and the trace pointer has reached evEND:

(:goal (and (tracePointer evEND) (token end)
(not (token p1)) (not (token p2))
(not (token p3)) (not (token p4))
(not (token start))))

Readers should notice that, since our purpose is to minimize the total cost of
the alignment, the planning problem also contains the following specification:
(:metric minimize (total-cost)).

3.2. Planning Actions

The plan to reach the final goal from the initial state is constituted by a
sequence of alignment moves, each of which is a planning action. Therefore,
three classes of actions exist in PD: synchronous moves, model moves and log
moves.

Synchronous moves. A separate action exists for each transition
t ∈ T \ Inv(N) to represent a synchronous move for t. For instance, let us con-
sider transition a of the model in Fig. 1; synchronous move for a is associated
with the following action:

(:action moveSync-a
:parameters (?e1 - event ?e2 - event)
:precondition (and (token start)

(tracePointer ?e1)
(associated ?e1 a)
(succ ?e1 ?e2))

:effect (and (not (token start))
(token p1) (token p2)
(not (tracePointer ?e1))
(tracePointer ?e2)))

The preconditions of the action are (i) that a is enabled (as defined in Sec-
tion 2.1): each place p ∈ •a contains a token; (ii) e1 is the actual event of
σL under analysis; (iii) e1 corresponds to the execution of a in σL; (iv) e1 is
succeeded by the event e2 in σL. The effect is such that the trace pointer moves
from e1 to e2 and that the marking changes according to the firing rules in
Equation 1 of Section 2.1: The token in place start is consumed and one token
is produced in places p1 and p2.
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Model moves. A separate action exists for each transition t ∈ T . A model
move focuses on making an enabled transition t fire without performing any
move in σL. For instance, let us consider transition a of the model in Fig. 1; a
model move for a is associated with the following action:

(:action moveInTheModel-a
:precondition (token start)
:effect (and (not (token start))

(token p1) (token p2)
(increase (total-cost)

(move-model-cost a))))

The effects are accordant to the firing rules in Equation 1: The token in
place start is consumed and one token is produced in places p1 and p2.
The difference with synchronous moves is that the value of any predicate
tracePointer does not change. It is worthy observing how the execution
of a model move for a makes total cost (of the alignment) increases of a value
equal to (move-model-cost a).

Log moves. All log moves can be represented by a single generic action, which
is independent of N and σL:

(:action moveInTheLog
:parameters (?e1 - event ?e2 - event)
:precondition (and (tracePointer ?e1)

(succ ?e1 ?e2))
:effect (and (not (tracePointer ?e1))

(tracePointer ?e2)
(increase (total-cost)

(log-move-cost ?e1))))

A log move for any event ei ∈ σL is represented as (moveInTheLog ?e1
?e2) where e1 = ei and e2 = ei+1. The preconditions are that e2 follows e1,
and that e1 is the actual event under analysis. The effect is to move the trace
pointer from e1 to e2 and to increase the total cost of the alignment of a value
equal to (log-move-cost ?e1).

3.3. Discussion on Correctness and Termination

The proposed encoding of an alignment problem A as planning problem P is
such that one can find a solution for A by solving P. Also, planning algorithms
always terminate when the input is a planning problem P that encodes an
alignment problem according to the procedure proposed in this paper.

Proposition 8 (Correctness). Let N = (P, T, F,A, `,mi,mf ) be any 1-bounded
Labelled Petri net, let (L, λN ) be an event log and let σL ∈ L be any trace. Let A
be the problem of building an alignment of σL and N . If there exists a sequence
σN ∈ T ∗ s.t. mi

σN−−→ mf , our encoding procedure for A generates a planning
problem that has a solution.
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In a nutshell, if such a sequence σN exists, it is always possible to build an
alignment that consists of moves in log for all events e ∈ σL followed by moves
in model for all transitions t ∈ σN (see Definition 6). Therefore, there exists a
solution to P that consists of a finite sequence of steps, each of which mapping
one alignment move.

Proposition 9 (Termination). Let N = (P, T, F,A, `,mi,mf ) be any 1-bounded
Labelled Petri net, let (L, λN ) be an event log and let σL ∈ L be any trace. Let A
be the problem of building an alignment of σL and N . If there exists a sequence
σN ∈ T ∗ s.t. mi

σN−−→ mf , our encoding procedure for A generates a planning
problem that can be solved by planning algorithms in a finite amount of time.

Intuitively, our encoding procedure define object types in the planning do-
main that refer to a finite number of places and transitions of N and events of
σL (cf. Definitions 2 and 4). Therefore, the number of planning problem object
values is finite. Since predicates and actions specified in the planning domain
provide a finite number of input parameters defined over the above object types,
also their grounding over the object values is finite. Hence, the domain and the
planning problem can be phrased as a propositional one; and the thesis follows
from the decidability of propositional planning (Ghallab et al., 2004). As dis-
cussed in (Helmert, 2002; Haslum & Geffner, 2014), fluent total-cost does
not affect termination: it only appears among the effects of actions and not in
the preconditions of actions or in the planning goals. Termination is also not
affected by the definition of the metric associated with fluent total-cost,
since the plan’s cost never decreases when new actions are added and actions
have constant costs.

Last but not least, if planning systems are used that guarantee the optimality
of the solution, the solution is one of alignments with the lowest cost, which is
an optimal alignment.

4. Implementation

We have developed a planning-based alignment tool that implements the
technique discussed in Section 3. The tool has been developed as a standard Java
application, using the Java SE 7 Platform, and relies on two main architectural
layers as shown in Fig. 3.

The Design Layer provides a GUI that assists the process designer in (i)
the definition of a new event log from scratch (cf. Fig. 4(a)), (ii) the import of
existing event logs and Petri nets stored in external repositories, (iii) the cus-
tomization of the cost function and of the initial/final marking of the Petri net
under analysis as well as (iv) the selection of a search heuristic within an avail-
able repertoire.3 (cf. Fig. 4(b)) Notably, the tool supports the standard XES
(eXtensible Event Stream (Günther & Verbeek, 2014)) and PNML (Petri Net

3see http://www.fast-downward.org/Doc/SearchEngine
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Figure 3: The architecture of the planning-based alignment tool.

Markup Language (Billington et al., 2003)) for respectively storing, exchanging,
and analyzing event logs and Petri nets.

The Encoding & Planning Layer is in charge of translating the input spec-
ifications in PDDL format, which is readable by any state-of-the-art PDDL
planner, and performing the alignment task. Specifically, starting from a Petri
net and an event log to be aligned, the PDDL Encoder component builds a
single PDDL planning domain file and as many PDDL planning problem files
as are the traces stored in the event log. At this point, for any trace of the
event log (i.e., for any of the generated planning problems) a state-of-the-art
PDDL planner is invoked. With such inputs, the planner synthesizes a plan,
i.e., a sequence of alignment moves, whose quality depends on the specific search
heuristic selected.

Our tool is integrated with the Fast-downward planning frame-
work (Helmert, 2006) to find optimal alignments of event logs and process mod-
els. Fast-downward is a progression planner that uses hierarchical decompo-
sitions of planning tasks for computing its heuristic function, called the causal
graph heuristic, which approximates goal distances by solving a hierarchy of
“local” planning problems. To produce optimal alignments, Fast-downward
uses a best-first search in first iteration to find a plan and a weighted A* search
to iteratively decreasing weights of plans.

When a plan satisfying the goal is found, the Translator component makes it
available to the process designer through the GUI. Furthermore, together with
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(a)

(b) (c)

Figure 4: Screenshots of the GUI provided by our planning-based alignment tool.

the alignment moves, when all the traces of a log have been analyzed, the tool
produces several statistics to evaluate the quality of the alignments (e.g., the
average cost of the alignment, the percentage of dirty traces in the log, etc.).
Conversely, if the planner component is not able to find any plan for a specific
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trace (i.e., for a specific planning problem), this means that no alignment is
possible for that trace.

Finally, we notice that the manual effort required to use our planning based
alignment tool is comparable to the effort needed to use other established
tools for conformance checking such as the implementation by Adriansyah’s
et al. (Adriansyah et al., 2011, 2013a). They all take as input (i) a Petri Net
(formatted in PNML), (ii) an event log (formatted in XES) and (iii) an explicit
specification of the cost function.

5. Validation

The approach has been positively assessed using both real-life and synthetic
processes. For real-life processes, we employed a road-traffic management a
financial-related process. For synthetic processes of different sizes, processes
contained up to 236 activities, and we compared the results with those obtained
by the existing approach by Adriansyah et al. (Adriansyah et al., 2011, 2013a).
The results show that the approach has a significantly better scalability than
the Adriansyah’s approach. The latter is outperformed by our planning-based
approach when the model becomes larger. For the two larger processes, the
existing approach by Adriansyah et al. was unable to compute the alignment
with the our experiment machine. In particular, we performed our experiments
with a machine with an Intel Core i7-4770S CPU 3.10GHz Quad Core and 16GB
RAM. The Fast-downward planning framework was set to use the Blind A*
search strategy, which guarantees to produce optimal solutions. Notice that
it is formally proven (Geffner & Bonet, 2013) that the A* algorithm is optimal
when, for all states s ∈ S of the search space, the algorithm uses a heuristics h(s)
that is admissible (i.e., h(s) never overestimates the cost of reaching the goal)
and safe (i.e., if h(s) declares s to be a dead-end, then s is really a dead-end).
Since the Blind heuristics used in the Fast-downward planning framework is
proven to be admissible and safe (see, e.g., http://www.fast-downward.
org/Doc/Heuristic), the Blind A* search strategy employed always find
solutions guaranteed to be optimal.

In the experiments, we use a cost function that assigns cost 1 to log moves
and model moves for non-invisible transition and cost 0 to any other legal align-
ment move (similar to Equation 2). Readers should observe that the approaches
by Adriansyah and et. exploit the fact that, if multiple process instances are
executed in the same way, they are recorded in the event log as multiple in-
stances of the same trace and, hence, the alignment can be computed once for
all occurrences. Therefore, those approaches do not recompute the alignment
multiple times for the same traces, thus speeding up the entire process. In order
to make the comparison of the two approaches more fair, we also employ the
same speed improvement.

In order to assess the scalability with respect to the “complexity” of the
event logs, we artificially injected noise into the event logs of both the real-life
and synthetic processes. The injection of X% of noise in a log corresponds to
injecting X% of noise in each trace of the log: an event is swapped with the next
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Algorithm 1: Injection of X% of noise in a trace

Data: A trace σL =∈ E∗ and a probability X ∈ (0, 100)
Result: A new trace σ′L ∈ E∗
σ′L ← σL;
for i← 1 to |σ′L| do

X ← ExtractNumber(0, 100);

if X ≤ X then
SwapEventsInPositions(i, i+ 1);

one with a probability of X% (see Algorithm 1). Note that an event initially
at position i can be swapped with event at position i + 1 and, later, can be
swapped again with the event at position i+ 2, etc., thus moving further apart
from its initial position (with decreasing probability). Readers may wonder why
we opted for swapping events rather than adding artificial or remove existing
events. The reason is related to the fact that swapping events is the hardest type
of noise when building an alignment; for instance, supposing that a followed by
b is allowed, if the trace contains b followed by a, then the alignment would
consists in a model move for a, which is followed by a synchronous move for b
and a log move for a.

Section 5.1 reports on the experiments conducted on two real-life case stud-
ies, where Section 5.2 illustrates the results of the synthetic processes of larger
sizes. The analysis on the synthetic processes has a twofold purpose. On the
one hand, it shows how our approach scales with models of increasing sizes. On
the other hand, it provides a comparison of our approach with the approach by
Adriansyah et al. (Adriansyah et al., 2011, 2013a). Section 5.3 reports on the
experience of using planners different from Fast-downward to showcase the
versatility and easiness of plugging in different planners at almost no cost.

5.1. Evaluation on the Real-life Case Studies

The evaluation on real-life case studies is based on the process enacted in
an Italian local police for the management of road-traffic violations and on the
process enacted by a Dutch financial institute.

5.1.1. Description of the processes

The road-traffic violations are managed by the Italian local police through
an ad-hoc information system that was explicitly built for this purpose by an
external company. The functioning of this information system is not supported
by process models, nor does the system documentation provide any textual
description of how the process is actually managed through the system.

Therefore, we had several interviews with the stakeholders involved in the
use of the systems. During these interviews, we asked them how the system
manages the violations in the different steps. During the interview process,
we also became acquainted with the Italian laws that constrain the process of
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(a) The Petri net describing the road traffic violations process model.

(b) The Petri net describing the model of the process at the Dutch financial institute.

Figure 5: The Petri nets that model the processes used as real-life case studies to validate our
approach.

managing of these violations. It should be noticed that the present constraints
still leave space to the different local polices to slightly vary how the process is
actually management in the details. Fig. 5(a) depicts the model that illustrates
how the road-traffic violations should be managed, which was finally validated
with the local-police stakeholders.

A new process instance starts by firing the Create Fine transition. In general,
the offender can pay the fine (partly or fully) at many moments in time: Right
after the creation, after a road fine notification is sent by the police to the
offender’s place of residence, or when such a notification is received by the
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offender herself. If the entire amount is paid (or, even, by mistake, more than
that amount), the fine management is closed. This motivates the presence of the
invisible transitions Inv1, Inv2 and Inv3. If a notification is sent, the offender
needs to also pay the postal expenses. If the offender does not pay within
180 days, a penalty is added, usually as much as the fines amount. After being
notified by post, the offender can appeal against the fine through a judge and/or
the prefecture. If the appeal is successful, the process instance ends (by firing
either Inv4 or Inv6 ). Otherwise, the case continues by firing Inv5 or Receive
Result. If the offender does not pay, eventually the fine ends by handing over
the case for credit collection. Interested readers can refer to (Mannhardt et al.,
2015) for a detailed discussion of the domain and the process model. An event
log that records the execution of more than 200000 process instances is publicly
available (de Leoni & Mannhardt, 2015), out of which we randomly extracted
30000 traces for the experiments.

For the case study with the Dutch financial institute, we followed a similar
process as for the Italian local police to draw the process model. We interviewed
two company stakeholders, specifically one manager and one business analyst,
to understand their process and we were introduced to the Dutch laws on this
topic. The result was the model in Fig. 5(b), which was ultimately validated
with the same individuals. A new instance of this process is created when a
customer applies for a monetary benefit for their financial product. The initial
marking is a marking with one token in place Start and no tokens in any other
place; the final marking is one token in place End and no tokens in any other
place. The process starts with customer applying for the benefits (transition
Receive Application from the Customer). In order to assess the eligibility of
the applicant, a number of letters can be asked to the customers depending
on the situation (see the transitions Request Client For Additional Documents
and Receive Requested Documents). After that, a decision is made about the
eligibility for the credit and the customer is informed (see transition Make a De-
cision and Send Letter to Customer about Decision). If the decision is negative,
invisible transition tr41 is performed and the process instance terminates. If
the decision is positive, transition Initiate Systems For Payments is eventually
executed. This transition is then followed by a number of transitions that are
executed during the provision of the credit, such as sending the payment in-
stallments (see transition Send Payment). During the phase, the institute may
perform a number of fraud checks to ensure that the information provided by
the applications is truthful. This may require the institute to ask the customer
for further information. If a fraud is detected, anti-fraud measures can be acti-
vated and letters can be sent to the customer to claim a number of payments
back. Eventually, when the credit provision ends, transition Finish is executed
and the process instance terminates. For this case study, we were provided with
an event log composed of 2232 traces, each of which refers to the execution to
deal with a different applicant.
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total time
(ms.)

alignment
cost

search
time (ms.)

total time
(ms.)

alignment
cost

search
time (ms.)

total time
(ms.)

alignment
cost

Financial Institute original log 10% noise 20% noise 30% noise

1-25 798 15.63 66.32 1.25 15.7 66.48 1.86 15.8 67.35 1.97 15.9 67.54 2.17
26-50 1,166 16.31 76.7 2.48 16.39 78.33 3.91 16.4 78.85 4.39 16.72 79.39 4.87
51-75 212 17.46 99.59 3.53 17.51 105.54 4.75 17.92 106.72 5.71 18.13 108.42 6.54
76-100 44 19.06 122.27 4.18 20.43 131.41 5.18 20.57 132.52 6.93 20.66 135.04 8.41
101-125 10 20.2 149.3 5.67 21.6 162.3 7.21 21.9 164.2 9.12 22.1 164.8 9.87
126-150 1 22 178 7 22.2 201 9 22.4 207 11 23 208 12

Traffic Violations original log 10% noise 20% noise 30% noise

1-5 27,200 14.63 53.94 0.24 14.65 54.12 0.28 14.72 54.15 0.34 14.73 54.27 0.46
6-10 2,792 14.71 55.93 0.25 14.71 55.94 0.31 14.98 55.98 0.67 14.99 56.13 0.94
11-15 7 14.86 64.57 0.27 14.88 64.85 0.33 15.28 65.14 1 15.43 65.57 1.27
16-20 1 15.25 79.12 2 15.74 79.71 2 16.43 81.07 2 17.14 82.98 2

Table 1: Experimental results for both real-life case studies. Numbers reported are averages
over all traces within a certain trace cluster.

1-25 26-50 51-75 76-100 101-125 126-150
40

60

80

100

120

140

160

180

200

Length of trace.

T
ra

n
sl

a
ti

o
n

+
P

re
p
ro

ce
ss

in
g

ti
m

e
(m

s.
)

Financial Institute case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

1-25 26-50 51-75 76-100 101-125 126-150
15

16

17

18

19

20

21

22

23

24

Length of trace.

S
ea

rc
h

ti
m

e
(m

s.
)

Financial Institute case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

1-25 26-50 51-75 76-100 101-125 126-150

50

75

100

125

150

175

200

225

Length of trace.

T
ra

n
sl

a
ti

o
n

+
P

re
p
ro

ce
ss

in
g

+
S
ea

rc
h

ti
m

e
(m

s.
) Financial Institute case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

1-5 6-10 11-15 16-20
20

30

40

50

60

70

80

Length of trace.

T
ra

n
sl

a
ti

o
n

+
P

re
p
ro

ce
ss

in
g

ti
m

e
(m

s.
)

Traffic Violations case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

1-5 6-10 11-15 16-20
0

3

6

9

12

15

18

21

24

27

30

Length of trace.

S
ea

rc
h

ti
m

e
(m

s.
)

Traffic Violations case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

1-5 6-10 11-15 16-20
50

55

60

65

70

75

80

85

90

Length of trace.

T
ra

n
sl

a
ti

o
n

+
P

re
p
ro

ce
ss

in
g

+
S
ea

rc
h

ti
m

e
(m

s.
) Traffic Violations case study

original log

log with noise (10%)

log with noise (20%)

log with noise (30%)

Figure 6: Performance of computing alignments through planning for the two real-life case
studies investigated in this paper. The time is the average per trace for each category. The
upper figures refer to the financial institute case study, while the lower figure refer to the
traffic violations case study. The figures on left-hand side and center refer to, respectively,
to the average translation plus pre-processing time and to the average plan search time. The
figures on right refer to the total time, which is the sum of the graphs of the left-hand side
and center graphs.

5.1.2. Results of the Experiments and Discussion

Table 1 and Fig. 6 show the results of our experiments. The traces are split
in clusters according to their length. The values for “original log” refer to the
clusters before injecting noise. By showing the results separately for each cluster
and different values of additional noise, we can evaluate how the performance
scales up with longer and/or more noisy traces. The upper charts of Fig. 6 are
about the financial institute and the lower are about the Italian local police.
The each case study, left-hand side center charts respectively show the average
time for translating and pre-processing and for an optimal plan searching; the
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search
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total time
(ms.)

search
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total time
(ms.)

alignment
cost

search
time (ms.)
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(ms.)
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cost

search
time (ms.)

total time
(ms.)
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cost

original log 10% noise 20% noise 30% noise

25 17.76 82.33 20.39 84.79 3.08 22.41 86.21 4.24 24.62 88.87 5.32
36 18.91 94.98 19.36 94.13 4.95 19.55 92.78 8.03 19.71 92.67 10.44
68 21.73 126.45 26.89 130.68 3.07 31.23 134.57 4.38 40.71 144.99 6.53
95 21.2 120.94 23.67 123.65 4.43 25.58 125.78 7.1 27.23 126.82 9.25
115 24.43 157.71 71.75 205.47 4.45 247.02 384.26 7.42 580.46 716.68 10.19
136 25.33 172.49 31.12 178.66 7.91 35.29 182.88 13.87 39.17 187.17 19.04
175 42.49 330.29 18,473.59 18,759.91 6.88 83,955.49 84,195.41 13.36 1.71 · 105 1.71 · 105 19.45
263 53.18 415.79 1,982.93 2,343.92 7.84 13,165.97 13,524.63 15.22 30,219.76 30,582.11 21.46

Table 2: Experimental results of the synthetic case studies for the eight synthetic processes
and when varying the amount of noise injected in the event log. The time refers to the average
per trace.

right-hand side charts show the sum of these two times. This way, we can have
a better understanding of the weight of these two components in the total time.

The results show that the planner is able to align even the most complicated
traces (i.e., the largest traces with the 30% of noise injected) in no more than 208
milliseconds. The results of the experiments seem to suggest that the time for
computing an optimal alignment grows polynomially with the trace length and
the amount of noise. Similarly results are also observed for the synthetic process
models, which are discussed in Section 5.2. This means that, whereas the worst-
case complexity of computing alignments is certainly exponential wrt. the noise
amount and trace length, the planner’s heuristics are able to considerably limit
the exploration of the search space.

5.2. Evaluation with Synthetic Data Sets

As mentioned above, the evaluation with synthetic data sets aims to assess
the scalability of the planning-based approach with model of increasingly larger
sizes and to compare it with the scalability of existing approaches.

Specifically, we generate eight Petri nets with respectively 25, 36, 68, 95, 115,
136, 175 and 263 (visible and invisible) transitions (the Petri nets are attached
as an Appendix at the end of the paper). For each Petri net, we generate an
event log with 1000 traces. The average trace length is respectively 20.8, 26.5,
51.6, 27.8, 42.8, 58.3, 148.07, 156.21 for the eight processes in question. We
used the PLG2 tool (Burattin, 2015) to generate the Petri nets and the event
logs, using the default parameters to configure the generation. In the same way
as for the real-life case studies, we injected 10%, 20% and 30% of noise in the
event log so as to be able to assess the correlation between computation time
and amount of noise.

Table 2 shows the results of the experiments conducted on the eight Petri
nets generated by PLG2 when varying the injected noise from no noise to 30%
noise. The table reports for each combination model-noise the search time, the
total time (translation, pre-processing plus search time) and the alignment’s
cost, averaged over all event-log traces. When injecting no noise, the alignment
cost is clearly zero and, hence, we do not report it. The average translation
+ pre-processing time and search times are also plotted on, respectively, the
left-hand and right-hand side graphs in Figure 7. The former linearly grows
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Figure 7: Experimental results of the synthetic case studies for the eight synthetic processes
and when varying the amount of noise injected in the event log. The left-hand and right-hand
side graphs refer to the average translation time and search time, respectively.

with larger models. This is expected: translation time accounts for the time to
encode the alignment problems as planning problems and the pre-processing is
the time to parse the planning problems and instantiate the internal structures
for searching. These times are certainly linearly proportional to the size of the
domain, namely the size of the process model and the respective event log. The
slight decrease for the process model with 95 activities compared with the model
with 68 activities is undoubtedly related to a smaller average trace size of the
event log referring to the process with 95 activities.

Looking at the search time in the right-hand side graph in Figure 7, it seems
that the planning-based approach shows a good scalability. With the exception
of the model with 175 activities and noise of 20% and 30%, the alignment time
is less than 30 seconds per trace. Clearly, the problem has an exponential
complexity with respect to the size of the process model and the complexity of
log traces (length and noise). Therefore, in certain cases, the computation can
take significantly longer. Some readers might be surprised that a model with
fewer activities is harder than another with more activities, e.g., comparing the
models with 115 and 136 activities and the models with 175 and 263 activities.
However, this is easy to explain: The complexity of computing alignments is
linked to the amount of behavior that the model allows and, not necessarily does
a larger number of activities reflect a larger amount of allowed behavior. As an
extreme example, one can think of a model that consists in a sequence of 100
activities: There is only one allowed behavior, namely the execution sequence
of these 100 activities. Unfortunately, it is far from being trivial to use the
amount of allowed behavior as dependent variable to vary in the experiments.
Computing the amount of allowed behavior is an entire direction of research
that is still being carried on. Also, all tools to synthesize artificial models and
logs are based on parameters linked to number of modeling elements (e.g, the
number of transitions/activities) rather than based on the amount of allowed
behavior.

The synthetic set of process models have also been used to compare the per-
formances and scalability of our planning-based approach and the approach by
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PN Length Adriansyah’s
approach

(ms.)

Plan-based
approach

(ms.)

Adriansyah’s
approach

(ms.)

Plan-based
approach

(ms.)

alignment
cost

Adriansyah’s
approach

(ms.)

Plan-based
approach

(ms.)

alignment
cost

Adriansyah’s
approach

(ms.)

Plan-based
approach

(ms.)

alignment
cost

original log 10% noise 20% noise 30% noise

25 10.35 82.33 25.85 84.79 3.08 42.8 86.21 4.24 56.87 88.87 5.32
36 2.39 94.98 11.71 94.13 4.95 19.24 92.78 8.03 28.6 92.67 10.44
68 23.68 126.45 112.85 130.68 3.07 164.92 134.57 4.38 278.31 144.99 6.53
95 13.16 120.94 77.56 123.65 4.43 119.89 125.78 7.1 168.32 126.82 9.25
115 75.22 157.71 638.52 205.47 4.45 966.34 384.26 7.42 1,987.12 716.68 10.19
136 64.05 172.49 304.62 178.66 7.91 465.97 182.88 13.87 578.63 187.17 19.04
175 659.25 330.29 — 18,759.91 6.88 — 84,195.41 13.36 — 1.71 · 105 19.45
263 593.69 415.79 — 2,343.92 7.84 — 13,524.63 15.22 — 30,582.11 21.46

Table 3: Comparison between the experimental results of the synthetic case studies through
the Adriansyah’s approach (Adriansyah et al., 2011; van der Aalst et al., 2012) and the
planning-based approach when varying the amount of noise injected in the event log. The
time refers to the average per trace. The missing values refer to experiments that could not
be carried out through the Adriansyah’s approach because of lack of memory.
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Figure 8: Comparison of the total alignment time between our planning-based approach and
the approach proposed by Adriansyah et al. For the different combinations of synthetic
processes and event-log noise, the graph plots the difference in the alignment time between
the Adriansyah’s and the planning-based approach. Values larger than zero indicates that our
approach is faster than Adriansyah’s; conversely, values smaller than zero indicates that our
approach is slower. The results do not show the comparison for the models with 176 and 263
activities because the implementation of the Adriansyah’s technique could not compute the
optimal alignments and run out of memory. Even when approaches could compute optimal
alignments, our approach outperforms the existing approach for larger models with more noise,
while the results are comparable for small models and little amount of noise.

Adriansyah et al. (Adriansyah et al., 2011; van der Aalst et al., 2012). We have
used the same process models and event logs as before. Table 3 shows the re-
sults of the experiments conducted through the Adriansyah’s and our planning-
based approach. The missing values in the table refer to executions where the
approach by Adriansyah et al. (Adriansyah et al., 2011; van der Aalst et al.,
2012) was unable to terminate and compute optimal alignments for all traces.
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As previously mentioned, this was caused by the fact that the existing approach
was running out of memory while computing the optimal alignments for certain
traces, even though the machine used for the experiment was equipped with 16
GB of RAM. Conversely, for our planning-based approach, we monitored the
memory consumption during the alignment tasks, and we found that the maxi-
mum amount of memory used was of 4.8 GB. This is certainly due to the fact
that the planning-based approach required to visit a few number of states while
building alignments.

It is worthy observing that, given a specific process model and an event
log, the alignment steps synthesized by our plan-based approach have exactly
the same cost than the ones provided by the Adriansyah’s, as both approaches
provide optimal solutions (i.e., with the lowest cost) to the alignment problem.

For the different combinations of process models and event logs with dif-
ferent amount of noise, Fig. 8 plots the difference in the average alignment
time between the Adriansyah’s and our planning-based approach. Values larger
than zero indicates that our approach is faster than Adriansyah’s; conversely,
values smaller than zero indicates that our approach is slower. We used the
implementation available in ProM 6.6 to compute the alignment for the Adri-
ansyah’s approach.4 The graph shows that the ProM implementation of the
Adriansyah’s approach is faster for smaller models and, also, for the models
of intermediate sizes but with small amount of noise. When the noise amount
increases and/or the models become larger, the planning-based outperforms the
existing approach, even of several orders of magnitude (for the hardest combi-
nation of model and event log). For instance, for the combination of the model
with 115 activities and the respective event log with the injection of 30% of
noise, the planning-based approach requires around 716 milliseconds on average
to compute the alignment versus 1987 milliseconds (277% of the time) for the
Adriansyah’s, therefore with a gain of around 1300 milliseconds per trace. Of
course, we do not show here the result comparison with the models with 175 and
263 activities because, as mentioned before, the existing approach was unable
to compute all optimal alignments without running out of memory.

As a conclusion, when used to compute alignments between process models
and log traces, Fast-downward, the state-of-the-art planner used in our im-
plementation, was able to compute optimal alignments for every synthetic model
used in this experiment. Conversely, the existing approach developed by Adrian-
syah et al. was unable to compute all optimal alignments without running out of
memory. Even when the existing approach was able to carry out the alignment
task, it was significantly outperformed for the large models. This clearly moti-
vates the need of our planning-based approach, which scales significantly better
with models and log of increasing sizes.

Readers should notice that saving 1300 milliseconds per trace is not negligi-
ble: event logs with 500000 traces are very common and we would lead to saving

4ProM is an is a open-source framework for implementing process mining tools and algo-
rithms. ProM 6.6 Web site - http://www.promtools.org/doku.php?id=prom66
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650000 seconds of computation, namely almost 180 hours (around 7 days and
half). It is worth also highlighting that our definition of encoding contributes to
improved performances. The encoding is defined such that the planners requires
as little time as possible to interpret it. In order to do so, we have minimized
the number of predicates and planning actions and of their parameters.

The reason why the Adriansyah’s approach is slightly faster for small process
models and/or small amount of noise is only related to the implementation. The
implementation by Adriansyah et al. can compute the alignment of a log with N
traces in a single OS (operating-system) process. Conversely, Fast-downward
needs to create 2N OS processes, namely one process for pre-processing the
problem and one for solving it for each of the N traces. The amount of time
required by the operating system to create a new OS process is comparable
with the actual time to solve the planning problems when these problems are
relatively small. Furthermore, Fast-downward leverages on the creation of OS
files to let the different OS processes communicate whereas the implementation
by Adriansyah et al. uses the memory, with the latter obviously faster of several
orders of magnitude. When the models are larger or the event logs are more
noisy, this implementation’s aspects become negligible because the actual search
time is significantly larger that the OS time to create OS processes.

5.3. Integration with other planning algorithms

Our plan-based approach is able to produce - for any specific alignment prob-
lem - PDDL files that are standard and independent from the specific planning
system. Therefore, plugging in new planners and performing new experiments
have very limited costs.

In order to show the benefits of versatility and customization of our plan-
based approach, we performed further experiments with the same synthetic
Petri nets and event logs described in Section 5.2 by using two further optimal
state-of-the-art planners: SymBA-2* (Torralba et al., 2014a) and SPM&S (Tor-
ralba et al., 2014b). We employed these two planners for a fair comparison be-
cause they also use heuristics that guarantee optimality. The SymBA-2* (Sym-
bolic Search and Abstraction Heuristics for Cost-Optimal Planning) planner
performs a bidirectional search, while the SPM&S (Symbolic Perimeter Merge-
and-Shrink) planner implements an optimal algorithm that combines abstrac-
tion heuristics, perimeter and symbolic search.

Table 4 shows that the Blind A* search strategy used by Fast-downward
performs significantly better in most of cases than the algorithms implemented
in SymBA-2* and SPM&S. For the process model with 263 activities, Fast-
downward, SymBA-2* and SPM&S have comparable results in alignment’s
time. For the process model with 175 activities, Fast-downward is surpris-
ingly performing worse than the other two.

While this indicates that timing performances of automated planners are
dependent on the used planning algorithm and system, it is beyond the main
scope of the paper to provide guidelines about the preferable planning algo-
rithms/systems in the different scenarios. This papers focuses on showing
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PN Length Fast-Down.
(ms.)

SymBA-2*
(ms.)

SPM&S
(ms.)

Fast-Down.
(ms.)

SymBA-2*
(ms.)

SPM&S
(ms.)

alignment
cost

Fast-Down.
(ms.)

SymBA-2*
(ms.)

SPM&S
(ms.)

alignment
cost

Fast-Down.
(ms.)

SymBA-2*
(ms.)

SPM&S
(ms.)

alignment
cost

original log 10% noise 20% noise 30% noise

25 82.33 681.19 810.17 84.79 685.35 812.44 3.08 86.21 692.97 814.04 4.24 88.87 699.42 816.05 5.32
36 94.98 767.05 950.25 94.13 767.05 950.25 4.95 92.78 785.14 956.19 8.03 92.67 793.13 959.25 10.44
68 126.45 1,413.85 1,722.13 130.68 1,413.85 1,722.13 3.07 134.57 1,418.51 1,779.17 4.38 144.99 1,419.5 1,808.61 6.53
95 120.94 2,048.84 2,431.35 123.65 2,048.84 2,431.35 4.43 125.78 2,049.14 2,445.66 7.1 126.82 2,053.92 2,483.98 9.25
115 157.71 2,288.56 2,741.5 205.47 2,289.84 2,787.31 4.45 384.26 2,291.91 2,817.29 7.42 716.68 2,352.81 2,868.77 10.19
136 172.49 2,749.83 3,267.17 178.66 2,752.28 3,282.23 7.91 182.88 2,765.14 3,300.87 13.87 187.17 2,775.46 3,317.48 19.04
175 330.29 5,785.67 6,209.07 18,759.91 5,909.46 6,546.87 6.88 84,195.41 6,092.93 6,837.57 13.36 1.71 · 105 6,259.99 7,182.13 19.45
263 415.79 11,844.62 13,054.21 2,343.92 11,960.84 13,289.56 7.84 13,524.63 12,044.67 13,744.92 15.22 30,582.11 12,194.09 14,075.09 21.46

Table 4: Comparison between the experimental results of the synthetic case studies obtained
through three different planners (Fast-Downward, SymBA-2* and SPM&S) integrated in the
planning-based approach when varying the amount of noise injected in the event log. The
time refers to the average per trace.

that alignment problems can be encoded in planning problems using a system-
independent planner language, PDDL. Since the encoding is system indepen-
dent, we can seamlessly switch from one planner to the other and look for the
planner that outperforms the others for the problem in question. The exper-
iment shows that an outperforming planning system does not really exist and
that many state-of-the-art planners perform the existing ad-hoc approaches.
The power of our approach is also linked to the versatility: in the future we
can improve the performance even further if a better planner will be released.
Our mapping to PDDL is independent of the specific planner and, hence, new
planners compliant with existing planners can be integrated with almost no
effort.

6. Related Works

This section touches on the research works related to this paper.
Section 6.1 reports on the practical relevance of conformance checking with

special focus on model-log alignments. It also reports on successful cases where
alignments are used to detect deviations between the prescribed behavior and
what has been observed in reality.

Section 6.2 illustrates how planning techniques have been employed in the
domain of BPM, highlighting the significant differences with respect to the ex-
ploitation of planners in the work reported in this paper.

6.1. Conformance Checking and Alignments

Several organizations maintain process models that describe or prescribe how
cases (e.g., orders or bank applications) are handled. However, reality may not
agree with what is modeled. As indicated in Section 1, conformance checking
techniques reveal and diagnose differences between the behavior that is modeled
and what is observed.

Several existing works and case studies illustrate that conformance check-
ing is a highly relevant problem with a strong practical relevance. Several
successful cases are reported where conformance checking is used to uncover
common and frequent deviation patterns in several domains, such as public sec-
tor (e.g. (van der Aalst, 2016, pp. 404-408) and (Rozinat & van der Aalst,
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2008; Ramezani et al., 2012)), chip production (Rozinat et al., 2009), health
care (Mans et al., 2015; Kirchner et al., 2013), finance (Adriansyah & Buijs,
2012) and automotive (vanden Broucke et al., 2013).

In particular, with the exception of (van der Aalst, 2016; Rozinat & van der
Aalst, 2008), these papers leverage on optimal model-log alignments and, hence,
they can exactly pinpoint which activities are the root-causes of deviations. For
further information of the case studies, readers are referred to the correspond-
ing publications. It is still worth highlighting here that, for every mentioned
case study, the process model was represented as a 1-bounded Petri net, thus
illustrating that Petri nets can be sufficiently expressive to adequately represent
many real-life processes.

Alignment-based conformance checking is primarily used as an artifact to
pinpoint and document deviations; however, alignments can also be employed
to improve existing models (see, e.g., (Fahland & van der Aalst, 2012)) and
to evaluate the quality of models discovered through process-mining techniques
(see, e.g., (Adriansyah et al., 2015)).

Optimal alignments allow for detecting low-level deviations, such as missing
or non-allowed executions. However, in (Adriansyah et al., 2013b), a technique
is proposed to “extend alignment-based deviation analysis techniques by sup-
porting the detection of high-level deviations such as activity replacements and
swaps”. Authors of (Adriansyah et al., 2013b) leverage on an oracle to compute
optimal alignments.

Independently of the employed techniques, the worst-case complexity of the
problem of computing optimal alignments is exponential with the respect to
the amount of behavior allowed by the process models and the length of the
log traces. Therefore, no matter how one improves the computation, there will
always be a model for which the computation of alignments for certain traces
becomes intractable. The computation of alignments can be speeded up by using
divide-and-conquer approaches: the model is broken down into fragments and
each fragment is aligned separately. In (van der Aalst, 2013), a decomposition
technique is proposed that guarantees the model to be decomposed in fragments
such that, if the smaller traces fit the individual fragments, then they can be
composed into a trace that fits into the overall process model.

6.2. The Use of Planning Techniques in Business Process Management

A number of research works exist on the use of planning techniques in the
context of BPM, covering the various stages of the process life cycle.

For the design-time phase, existing literature works focus on exploiting plan-
ning techniques to automatically generate candidate process models that are
able of achieving some business goals starting from a complete (Gajewski et al.,
2005; Ferreira & Ferreira, 2006) or an incomplete (Marrella & Lespérance,
2013a,b) description of the process domain. Some research works also exist
that use planning techniques to deal with problems for the run-time phase, i.e.
when the process is being executed. Work (Currie & Tate, 1991) reports on
the use of planners to allocate process activities to (human) resources, whereas
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works (Marrella et al., 2016, 2014; van Beest et al., 2014; Marrella et al., 2012,
2011; Marrella & Mecella, 2011; Adams et al., 2006) report on approaches to
adapt the running process instances to cope with anomalous situations, includ-
ing connection anomalies, exogenous events and task faults.

Readers should observe that the entire aforementioned approaches do not au-
tomatically use historical information, e.g., extracted from event-log data. Also,
in these works, planning techniques are used for completely different purposes.

In the field of conformance checking, the scientific literature reports several
work involving the use of planning and other AI-based techniques. In (Regis
et al., 2012; Montali, 2010), authors employ model checking to verify whether
or not certain properties hold in a process model. It is perhaps possible to
represent traces as queries, e.g., in temporal logics. However, these works would
return a true/false answer, namely whether or not a trace is confirming the
model, without pinpointing where deviations occur and what their severity is.

Relatively close is the work of Di Francescomarino et al. (Di Francescomarino
et al., 2015) where authors use planners to recover the missing recording of
events in log traces. The concept of missing event recordings is very similar
to moves in model in our approach. However, they assume that all executions
are compliant with the model and, hence, every event that is present in the
incomplete log trace is assumed to be correct. In other words, they do not
foresee log moves. Also, when there are multiple ways to complete a log trace,
the approach only aims at the explanation with the fewest number of additions,
whereas in reality it may expected that events for certain activities are less
likely to be missing (i.e., additions for those activities should have a higher
weight/cost). Repairing event logs is also the goal of the approach in (Rogge-
Solti et al., 2013); however, such approach requires an oracle to compute optimal
alignments, such as what proposed in this paper.

In (López et al., 2016), the authors propose a technique to encode the prob-
lems of finding optimal alignments as constraint-satisfaction problems. This
technique shares the advantage to let it be easy and seamless to plug in the
most recent and enhanced off-the-shelf systems; furthermore, in the same way
as planners, constraint-satisfaction systems allow one to obtain a good enough
solution (i.e., sub optimal) relatively fast. Unfortunately, proposals based on
constraint satisfaction are challenged by the fact that linear constraints cannot
easily represent sequences. As result, work (López et al., 2016) is characterized
by a number of limitations. First, “it is restricted to acyclic process mod-
els” (López et al., 2016): The model cannot contain loops, i.e. a set of activities
that are repeated an arbitrary number of times (e.g., until a certain condition
is met). Second, invisible transitions and “different transitions with the same
name are not allowed” (López et al., 2016) (i.e., with the same label). Last,
the proposal “cannot always ensure that the found solution is minimal” (i.e.,
optimal).

Some research approaches focus on verifying the compliance of process mod-
els with respect to a set of formulas, which are mostly intended to encode
business rules of which one wants to verify the compliance (e.g. (Ly et al., 2011;
Belardinelli et al., 2012; Montali, 2010)) A log trace can possibly be represented
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by a set of formulas (e.g., an event for activity A is followed by an event for
activity B) and, hence, its compliance can be checked by applying existing
techniques. Unfortunately, their diagnostics are limited to highlighting which
formulas are not satisfied. We aim to pinpoint where in the process deviations
occur, such as the case that an activity has not been executed. It is far from
easy to derive the same insights on the basis of not-satisfied formulas. This is
due to the fact that the same log trace can be “repaired” in multiple ways to
satisfy one formula. When multiple, non-satisfied formulas come in to play, we
would be interested in finding the least expensive changes that are needed to
ensure all formulas are satisfied. In fact, this is again the problem of finding the
least expensive solution in a certain search space, i.e. a planning problem. To
our knowledge, the same limitation is also shared by techniques to debug the
execution of distributed systems (e.g. (Reynolds et al., 2006; Xu et al., 2009))

7. Conclusion

Within the discipline of BPM, conformance checking refers to the problem of
comparing if process executions comply with the rules that should be followed.
The starting point is a process model, which encodes such rules, and an event
log, which records actual executions of the process. Conformance checking tech-
niques aim to verify whether the actual executions deviate process model. The
notion of alignment (van der Aalst et al., 2012) provides a robust approach to
conformance checking, which makes it possible to pinpoint the deviations caus-
ing nonconformity. In particular, traces in the log are aligned with traces in the
model, thus making deviations be highlighted.

This paper has reported on how the problem of finding an alignment can be
represented as a planning problem in PDDL, which can be solved by off-the-
shelf planners. If conformance checking problems are converted into planning
problems, one can seamlessly update to the recent versions of the best per-
forming automated planners, with evident advantages in term of versatility and
customization. The theoretical results have shown that the planning problems
always have solutions (correctness) and such solutions can be found by planners
in a finite amount of time (termination). From a practical perspective, we in-
tegrated our tool with a planning system out-of-the-box (i.e., without specific
optimizations) and tested it in two real-life case studies and, also, with several
combinations of synthetic process models and event logs. The results suggest
that not only is the approach highly scalable but it does also outperform existing
approaches when the process models and event logs are of larger sizes.

As future work, we plan to also detect nonconformity that relates to time, re-
source and data aspects, such as deviations for activities that are not performed
by authorized employees or within given deadlines. This is far from being trivial
since the problem is in general undecidable; however, we aim to explore what
kind of expressiveness limitation we need to introduce to ensure decidability.
Another interesting avenue for future work is to consider the interdependencies
among the moves in the cost function. For instance, a certain model move can
be associated with a lower cost if it appears after/before certain log moves.
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Appendix

In this appendix we provide the diagrams of the synthetic Petri nets used to
test the scalability of our planning-based approach (see Section 5.2).

Figure 9: A synthetic Petri net with 25 transitions and 27 places.
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Figure 10: A synthetic Petri net with 36 transitions and 34 places.
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Figure 11: A synthetic Petri net with 115 transitions and 107 places.
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Figure 12: A synthetic Petri net with 68 transitions and 63 places.
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Figure 13: A synthetic Petri net with 95 transitions and 88 places.
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Figure 14: A synthetic Petri net with 136 transitions and 123 places.
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Figure 15: A synthetic Petri net with 175 transitions and 175 places.
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Figure 16: A synthetic Petri net with 263 transitions and 267 places.
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