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Abstract. In this demonstration paper, we present the first working version of
SmartPM, a Process Management System that is able to automatically adapt dy-
namic processes at run-time when unanticipated exceptions occur, thus requiring
no specification of recovery policies at design-time.
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Introduction. Nowadays, the maturity of process management methodologies has led
to the application of process-oriented approaches in new challenging domains beyond
business computing [2], such as healthcare, emergency management, and domotics.
In those dynamic settings, process enactment is influenced by user decision making
and coupled with contextual data and knowledge production. During process enact-
ment, variations from structured reference models are common due to exceptional cir-
cumstances arising (e.g., autonomous user decisions, exogenous events, or contextual
changes), thus requiring the ability to properly adapt the process behavior. According
to [6], process adaptation can be seen as the ability of a process to react to exceptional
circumstances (that may or may not be foreseen) and to modify its structure accord-
ingly. In dynamic scenarios, traditional manual implementation of exception handlers
at design time is not feasible for the process designer, who has to anticipate all potential
problems and ways to overcome them in advance [5]. Furthermore, many unanticipated
exceptional circumstances may arise during process execution, and their handling re-
quires a manual intervention of a domain expert at run-time. However, the complexity
of the operational context may transform the manual definition of a recovery procedure
at run-time in a time-consuming and error-prone task. To tackle the above issues, we
present the first working version of SmartPM, a Process Management System (PMS)
that is able to automatically adapt dynamic processes at run-time when unanticipated
exceptions occur, thus requiring no specification of recovery policies at design-time.
Demonstration Scenario. We consider the emergency management situation described
in Fig. 1(a), in which a train derailment is depicted in a grid-type map. A possible con-
crete realization of an incident response plan for our scenario is shown in Fig. 1(c),
through a BPMN process composed of three parallel branches, with tasks instructing
first responders to act for evacuating people from train coaches, taking pictures of the
locomotive, and assessing the gravity of the accident. To execute the process, a response
team is sent to the derailment scene. The team is composed of four first responders,
called actors, and two robots, initially all located at location cell loc00. It is assumed
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Fig. 1. A train derailment situation; area and context of the intervention.

that actors are equipped with mobile devices for picking up and executing tasks, and
that each provide specific capabilities. For example, act1 is able to extinguish fire and
take pictures, while act2 and act3 can evacuate people from train coaches. The two
robots, in turn, are designed to remove debris from specific locations. When the bat-
tery of a robot is discharged, act4 can charge it. In order to carry on the response plan,
all actors and robots ought to be continually inter-connected. The connection between
mobile devices is supported by a fixed antenna located at loc00, whose range is lim-
ited to the dotted squares in Fig. 1(a). Such a coverage can be extended by robots rb1
and rb2, which have their own independent (from antenna) connectivity to the network
and can act as wireless routers to provide network connection in all adjacent locations.
Due to the high dynamism of the environment, there is a wide range of exceptions that
can ensue. So, suppose for instance that actor act1 is sent to the locomotive’s location,
by assigning to it the task GO(loc00, loc33) in the first parallel branch. Unfortunately,
however, the actor happens to reach location loc03 instead. The actor is now located at
a different position than the desired one and is out of the network connectivity range
(cf. Fig. 1(a)). Therefore, the PMS initially has to find a recovery procedure to bring
back full connectivity, and then find a way to re-align the process. To that end, provided
robots have enough battery charge, the PMS may first instruct the first robot to move
to cell loc03 in order to re-establish network connection to actor act1, and then instruct
the second robot to reach location loc23 in order to extend the network range to cover
the locomotive’s location loc33. Finally, task GO(loc03, loc33) is reassigned to actor
act1 (cf. Fig. 1(b)). The corresponding updated process is shown in Fig. 1(d), with the
encircled section being the recovery procedure. We note that the execution of a dynamic
process can be also jeopardized by the occurrence of exogenous events (e.g., a fire burnt
up into a coach) that could change, in asynchronously manner, some contextual proper-
ties of the scenario, by possibly requiring the process to be adapted accordingly.
The SmartPM Approach and System. The SmartPM approach builds on the dualism
between an expected reality, the (idealized) model of reality that is used by the PMS
to reason, and a physical reality, the real world with the actual values of conditions
and outcomes. Process execution steps and exogenous events have an impact on the
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Fig. 2. A screenshot of the SmartPM Definition Tool (a) and the Task Handler (b).

physical reality and any deviation from the expected reality results in a mismatch to be
removed to allow process progression. At this point, an external state-of-the-art planner
is invoked to synthesise a recovery procedure that adapts the faulty process instance.
The implementation of the SmartPM approach relies on three architectural layers that
cover the modeling, execution and monitoring stages of the process life-cycle.

The Presentation Layer provides a GUI-based tool called SmartPM Definition Tool3

(cf. Fig. 2(a)), which assists the process designer in the definition of the process model
at design-time. Process knowledge is represented as a domain theory that includes all
the contextual information of the domain of concern, such as the people/services that
may be involved in performing the process, the tasks, the data and so forth. Data are rep-
resented through some atomic terms that range over a set of data objects, which depict
entities of interest (e.g., locations, capabilities, services, etc.), while atomic terms can be
used to express properties of domain objects (and relations over objects). For example,
the term At[act : Actor] = (loc : Location type) is used for recording the position
of each actor in the area. In addition, the designer can define complex terms. They are
declared as basic atomic terms, with the additional specification of a well-formed first-
order formula that determines the truth value for the complex term. For example, the
complex term Connected[act : Actor] can be defined to express that an actor is con-
nected to the network if s/he is in a covered location or if s/he is in a location adjacent
to a location where a robot is located. Tasks are collected in a specific repository and
are described in terms of preconditions - defined over atomic and complex terms - and
effects, which establish their outcomes. Finally, a process designer can specify which
exogenous events may be catched at run-time and which atomic terms will be modi-
fied after their occurrence. Once a valid domain theory is ready, the process designer
uses the BPMN graphical editor provided by the SmartPM Definition Tool to define the
process control flow among a set of tasks selected from the tasks repository.

The Execution Layer is in charge of managing and coordinating the execution of
dynamic processes. First of all, the domain theory specification is translated into situ-
ation calculus and IndiGolog [1] readable formats.4 The situation calculus is a logical

3 It was developed with the JGraphX graphical library (http://www.jgraph.com/).
4 The formal model underlying the SmartPM system is described in [4].
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language designed for representing and reasoning about dynamic domains. On top of
that, we use the IndiGolog high-level agent programming language for the specifica-
tion of the process control flow. Hence, an executable model is obtained in the form
of an IndiGolog program to be executed through an IndiGolog engine. To this end, we
customized an existing IndiGolog engine5 to (i) manage the process routing and decide
which tasks are enabled for execution; (ii) collect exogenous events from the exter-
nal environment; (iii) monitor contextual data to identify changes or events which may
affect process execution. Specifically, after each task completion (or exogenous event
occurrence), the physical and expected realities are updated to reflect the actual and
intended outcome of task performance (or the contextual changes produced by an ex-
ogenous event). If the two realities are misaligned, the running process instance needs
to be adapted. Process participants interact with the engine through a Task Handler, an
interactive GUI-based application that supports the visualization of assigned tasks and
allows to notify task completion by selecting an appropriate outcome (cf. Fig. 2(b)).

To enable the automated synthesis of a recovery procedure, the Adaptation Layer
of SmartPM relies on the capabilities provided by a PDDL-based planner component
(the LPG-td planner [3]), which assumes the availability of a planning problem, i.e., an
initial state and a goal to be achieved, and of a planning domain definition that includes
the actions to be composed to achieve the goal, the domain predicates and data types.
Specifically, if process adaptation is required, (i) we translate the domain theory defined
at design-time into a planning domain, (ii) the physical reality into the initial state of
the planning problem and (ii) the expected reality into the goal state of the planning
problem. The planning domain and problem are the input for the planner component. If
the planner is able to synthesize a recovery procedure, the plan is converted into an exe-
cutable IndiGolog process so that it can be enacted by the IndiGolog engine. Otherwise,
if no plan exists for the current planning problem, the control passes back to the process
designer, who can try to manually adapt the process instance. More information about
SmartPM can be found at: http://www.dis.uniroma1.it/˜smartpm.
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