Explaining Non-Compliance of Business Process
Models through Automated Planning

Fabrizio Maria Maggi!, Andrea Marrella?,
Giuseppe Capezzuto?, and Abel Armas Cervantes?

! University of Tartu, Estonia
f.m.maggiQut.ee
2 Sapienza Universita di Roma, Ttaly
lastname@diag.uniromal.it
3 The University of Melbourne, Australia
abel.armascervantes@unimelb.edu.au

Abstract. Modern companies execute business processes to deliver
products and services, whose enactment requires to adhere to laws and
regulations. Compliance checking is the task of identifying potential vi-
olations of such requirements prior to process execution. Traditional ap-
proaches to compliance checking employ formal verification techniques
(e.g., model checking) to identify which process paths in a process model
may lead to violations. However, this diagnostics is, in most of the cases,
not rich enough for the user to understand how the process model should
be changed to solve the violations. In this paper, we present an approach
based on finite-state automata manipulation to identify the specific pro-
cess activities that are responsible to cause violations and, in some cases,
suggest reparative actions to be applied to the process model to solve the
violations. We show that our approach can be expressed as a planning
problem in Artificial Intelligence, which can be efficiently solved by state-
of-the-art planners. We report experimental results using synthetic case
studies of increasing complexity to show the scalability of our approach.

1 Introduction

This paper falls within the scope of Business Process Management (BPM), an
active area of research that is based on the observation that each product and/or
service that a company provides to the market is the outcome of a number of
activities [13]. Business processes (BPs) are the key instruments for organizing
such activities and understanding their interrelationships.

BPs are described using process models, which capture the ways in which BP
activities are carried out to accomplish a business objective, often with the help
of an explicit control flow expressed through a suitable graphical notation, such
as the ISO/IEC 19510:2013 standard BPMN. The BPM philosophy is built on
the idea that there always exists a BP model that can be used to automate the
BP execution. For this reason, process modeling is recognized as one of the most
important steps in the BPM lifecycle [13], and the modeling task is nowadays
supported by advanced techniques and tools that assist (human) process design-
ers in the definition of the BP model. Nonetheless, despite all efforts, design flaws
in BP models may still occur, and their impact may range from syntactically



incorrect models that cannot be properly executed to catastrophic faults that
yield legal aftermaths [20]. Consequently, a large branch of research in BPM has
focused on devising techniques for BP verification, with the aim of identifying
and fixing errors prior to BP execution.

The bulk of the research on BP verification has been devoted to check
domain-independent correctness criteria that depend exclusively on the structure
of BP models, such as proper termination, absence of deadlocks, etc. (e.g., see [1,
7,17]). However, the design of a BP requires also that its model adheres to sev-
eral existing domain-dependent compliance requirements set by managers, laws,
national and international regulations and standards. For instance, the Italian
Ministry of Economy and Finance enforces rules to control financial processes
in the public sector. The task of identifying potential violations of compliance
requirements in a BP model is known as compliance checking [28].

Existing approaches to compliance checking employ formal verification tech-
niques (e.g., model checking) to explain violations through a path in the BP from
the initial to the error state [6] or by detecting which specific activity [2] or de-
cision [20] has triggered a violation. However, such techniques do not identify all
the activities of a BP path that can cause violations of compliance requirements.
On the other hand, performing this task in a manual way can be time-consuming
and error-prone since the amount of compliance requirements to be checked, as
well as the number of activities that violate them, can be large.

In this paper, we tackle the above issues by presenting a compliance checking
approach to identify all those activities of a BP model violating compliance
requirements and ezplaining the causes that lead to the violations. The starting
points of our approach are a BP model represented in BPMN and a list of
compliance requirements expressed as temporal declarative rules with the well-
established DECLARE [25] language, which enjoys formal semantics grounded in
Linear Temporal Logic with finite execution semantics (LTLy) [26]. Then, our
approach leverages the fact that: (i) BPMN models can be converted into Petri
nets [12], which can be automatically unfolded to derive execution paths of the
BP model; and (i) any LTLy formula ¢ can be translated into a non-deterministic
finite-state automaton (NFA) that accepts all paths satisfied by ¢ [10]. Based on
this, we provide a technique, based on NFA manipulations, to detect all activities
in any path of the BP model that violate a formula. We also show that such a
technique can be expressed as a planning problem in Artificial Intelligence (AI),
which can be efficiently solved by state-of-the-art planners.

We have implemented a plug-in of the Apromore BP analytics platform (cf.
http://apromore.org/) that realizes our approach by employing the FAST-
DOWNWARD planner (cf. http://www.fast-downward.org/) to solve the com-
pliance checking problem. To motivate the employment of planning techniques,
we performed several experiments that show how the complexity of the problem
is large and that a technique is necessary that can scale up adequately.

The rest of the paper is organized as follows. Section 2 introduces a running
example that will be used to explain our approach. In Section 3, we provide the
relevant background necessary to understand the paper. Section 4 presents an
overview of our compliance checking approach, while Section 5 discusses how to
reduce the compliance checking problem to a planning problem in AI. Then, in
Section 6, we report on experiment results performed on synthetic case studies of
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Fig. 1: BPMN model of the running example (original figure in [13])

growing complexity that show the scalability of our approach, while, in Section
7, we discuss related work. Finally, in Section 8, we conclude the paper.

2 Running Example

Fig. 1 shows the BPMN model of a running example taken from [13], which
will be used in the rest of the paper. It describes a BP for claim handling. A
claim is initially created and recorded. Then, a decision is taken on the claim. In
case of acceptance, an offer of benefit is made, the claim discharge is prepared,
and the benefit payment is recorded. Finally, in parallel, the claim is closed
and the outgoing payment is made. In case of rejection, the claim is marked as
“rejected”. After this, it is possible to review the claim rejection, and in case the
claim rejection is not accepted, the claim can be recorded again.

Supposing that this BP is executed in an insurance agency, we can realisti-
cally assume that, due to internal regulations or new governmental rules: (i) the
review of the claim rejection is not allowed anymore; (i) due to the previous
rule, the rejection of the claim cannot be followed by a new recording; (7i4) if the
outgoing payment has not been executed, then the claim cannot be closed. Given
these compliance requirements, we want to identify the parts of the BPMN model
that are not compliant, explain the violations and, in some cases, suggest repara-
tive actions to be applied to the BPMN model to make it compliant with the re-
quirements. Note that techniques based on model checking produce a diagnostics
based on counterexamples specifying, for example, that the path (Create claim,
Record claim, Decide on claim, Reject claim, Review claim rejection, Record claim,
Decide on claim, Offer benefit, Prepare claim discharge, Record benefit payment,
Close claim, Operate ongoing payment) is not compliant with the requirements.
However, starting from this information, it is hard to pinpoint what is the reason
why each requirement is violated and what to do to solve such violations.

3 Background

3.1 BPMN and Petri nets

Many notations have been introduced to represent BPs, such as BPMN, EPC,
YAWL or UML Activity Diagrams [13]. These languages allow process designers
to specify aspects linked to different perspectives, ranging from expressing the



ordering with which activities need to be executed and the mutual exclusions
among activities (control-flow perspective) to modeling the objects manipulated
by activities and the resources allowed to execute them. In this paper, we focus
on the core sub-set of BPMN,* which is considered the de-facto standard for
modeling BPs. Specifically, to make our approach work, we impose the following
syntactic restrictions: (i) the admissible flow objects for a BPMN model are
activities, start and end events, intermediate events (if they can be translated
into activities), exclusive and parallel gateways, and a flow relation is used to
connect them; (i) the model provides a finite number of start events and end
events; (iii) any admissible flow object is on a path from a start to an end event.
The use of core BPMN is not a significant limitation, since it realistically allows
us to cover the majority of modeling needs [13].

If, on the one hand, BPMN provides an intuitive way for BPM users to
model BPs, on the other hand, it is characterized by an ambiguous semantics.
Therefore, in order to explain the technical aspects of our approach, we needed
a simple language with clear semantics. For this reason, we opted for Petri nets
(PNs) [24], which provide the formal foundations of the core sub-set of BPMN
[12] and have proven to be adequate for modeling BPs [1]. This is especially
true when the focus is only on the control-flow perspective, which is the case
in this paper. A PN is a directed bipartite graph with two node types: places
(graphically represented by circles) and transitions (graphically represented by
squares) connected via directed arcs. Technically, a PN is a triple (P, T, F') where
P and T are the set of places and transitions, respectively, such that PNT = ()
and FF C (P x T)U (T x P) is the flow relation.

At any time, places in a PN may contain a discrete number of marks called
tokens, drawn as black dots. Any distribution of tokens over the places, formally
represented by a total mapping M : P — N, represents a configuration of the net
called a marking. When PNs are used to represent BPs, transitions are associated
with BP activities, and more specifically to activity labels, and markings indicate
the BP state [1]. Since concrete executions of BPs have a start and an end, PNs
need to be associated with an initial (respectively final) marking, characterized
by the presence of one token in at least one of the starting (respectively ending)
places of the PN and no tokens in any other place. The semantics of a PN defines
how transitions route tokens through the net so that they correspond to a BP
execution. Due to page limit, we refer to [1,24] for the semantics of PNs. In
this paper, we focus on 1-bounded PNs (a.k.a. safe PNs), which impose that the
number of tokens in all places is at most 1 in all reachable markings, including
the initial one. Safe PNs are the basis for best practices in BP modeling, and the
behavior allowed by most of real-world BPs can be represented as safe PNs [18].

3.2 Declarative Temporal Rules and Finite State Automata

In order to provide automated support for compliance checking, compliance re-
quirements need to be expressed in a formal language. This, in turn, allows for
leveraging mature Al techniques. In this work, we focus on rules that can be
expressed using Linear Temporal Logic with finite execution semantics (LTLy).
We refer to [10] for the complete syntax and semantics of LTLy.

4 Notice that our approach can easily be transferred to other BP modeling languages.



Since the direct use of temporal logics is inappropriate for most process
analysts that conduct BP modeling, we decided to use DECLARE [25] for the
specification of compliance requirements. DECLARE is a declarative modeling
language that allows us to describe a set of (temporally extended) rules that
must be satisfied throughout the BP execution. Unlike procedural models, where
all allowed executions must be explicitly represented, in DECLARE, the orderings
of activities are implicitly specified by rules and anything that does not violate
them is possible during execution. The semantics of DECLARE is grounded on
LTL;. A DECLARE model D = (Z,7p) consists of a set of activities Z involved
in a BP and a collection of temporal rules mp defined over such activities.

Among all possible LTL; rules, some specific patterns have been singled out
as particularly meaningful for expressing DECLARE models. For instance, if we
indicate as Rev activity Review claim rejection, absence(Rev) means that activ-
ity Rev cannot ever be performed; if we indicate as Rej activity Reject claim
and as Rec activity Record claim, not succession(Rej, Rec) means that if Rej
is performed, Rec cannot eventually be performed; finally, if we indicate
as Pay activity Operate outgoing payment and as Close activity Close claim,
precedence(Pay, Close) imposes that activity Pay must precede Close.

Given a BPMN model, the problem we want to address in this paper is
to identify and explain all potential violations of DECLARE rules in the model.
To this end, we exploit the well-known equivalence between (regular) languages
and automata: any LTLy formula ¢ can be associated with a non-deterministic
finite-state automaton (NFA) A that accepts exactly all paths satisfying ¢ [10].
Formally, such NFA is a tuple A = (¥,Q, qo,0, F), where: (i) X is the input
alphabet; (1) Q is the finite set of automaton states; (iii) qo € Q is the initial
state; (iv) 6 C Q x X x Q is the transition relation; and (v) F C Q is the set of
final states. Let t = ey --- e, be a path such that e; € X' (with 1 < i < n) and
A the NFA associated with an LTLy formula ¢. A computation of A on t is a
SequUence o = o — q1 -+ - 1 — g, such that, for i = 0,...,n—1, there exists
a transition ¢; —+ ¢; 41 € 0. Since A is non-deterministic, there exist, in general,
many computations of A on the path t. We say that A accepts t if there exists
a computation ¢ on t such that the last state is final, i.e., belongs to F'.

3.3 Automated Planning

Planning systems are problem-solving algorithms that operate on explicit rep-
resentations of states and actions [16]. PDDL [15] is the standard Planning
Domain Definition Language; it allows us to formulate a planning problem
P = (I,G,Pp), where I is the description of the initial state of the world,
G is the desired goal state, and Pp is the planning domain. A planning domain
Pp is built from a set of propositions describing the state of the world (i.e., the
set of propositions that are true) and a set of operators (2 (i.e., actions) that
can be executed. An action schema a € §2 is of the form a = (Par,, Pre,, Eff ),
where Par, is the list of input parameters for a, Pre, defines the preconditions
under which a can be executed, and Eff , specifies the effects of a on the state
of the world. Both Pre, and Eff, are stated in terms of propositions in Pp,
represented as boolean predicates and numeric fluents.

In recent years, the planning community has developed a plethora of planners
that embed very effective (i.e., scaling up to large problems) search heuristics,
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Fig. 2: Petri net derived from the BPMN model in Fig. 1

which have been employed to solve collections of challenging problems from sev-
eral Computer Science domains [22]. There exist several forms of planning in
the AI literature. In this paper, we focus on planning techniques characterized
by fully observable and static domains, i.e., we rely on the classical planning
assumption of a “perfect world description” [16]. A solution for a planning prob-
lem is a sequence of operators—a plan—whose execution transforms the initial
state I into a state satisfying the goal G. To find a plan, we represent planning
domains and problems making use of the STRIPS fragment of PDDL 2.1 [15]
enhanced with the numeric features provided by the same language for keeping
track of the costs of planning actions and synthesize plans satisfying pre-specified
metrics.

4 The Approach

Our approach to compliance checking relies on 4 main steps to be performed
in sequence. First of all, in order to be properly enacted, the approach requires
that a process analyst provides as inputs: (i) a BPMN model to be checked for
compliance; (4i) a list of compliance requirements expressed as temporal rules
in DECLARE [25]; (744) a severity function that assigns non-negative costs to the
detected violations (see also Section 5).

With a BPMN model and a set of DECLARE rules as inputs, we rely on
well-established transformation algorithms to convert these representations into
their corresponding formal counterparts. In particular, we first translate the
BPMN model into a PN by leveraging the technique described in [12]. In Fig. 2,
we show the PN derived from the BPMN model of Fig. 1. The black-colored
transitions are invisible transitions, i.e., they do not represent actual pieces of
work, but their introduction is sometimes necessary to properly represent the
process behavior. Then, we generate all the paths allowed by the PN, i.e., all the
complete executions of the PN from the initial to the final marking(s). To this
aim, we compute the complete prefix unfolding [23] of the PN, which provides a
finite behavioral representation of the model. Since PNs can contain cycles, i.e.,
infinite paths (possibly of infinite length), we adopt the technique defined in [3]
for computing the unfolding of the PN. This technique truncates the unfolding
once all possible markings of the PN have been observed so that only a finite
number of paths of finite length is generated.

We also translate the LTL ¢ formula ¢, associated to each input DECLARE rule,
into a NFA that accepts exactly all paths satisfied by ¢, using the technique
developed in [10]. For example, the DECLARE rules defined in Section 2 can be
represented with the NFAs shown in Fig. 3.

At this point, we invoke an external planner that is in charge of identifying
the violations of the compliance requirements in any path extracted from the PN.
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Fig. 4: Visualization in Apromore

In particular, the violations are identified both wrt. each individual requirement
(by using the local automata represented in Fig. 3) and wrt. their conjunction
(by using a global automaton given by the product of all the local automata).

We address this problem by resorting to cost-optimal planning, a form of
classical planning where actions have costs, and where a successful plan of min-
imal cost (defined as the sum of the costs of the component actions) has to be
found. The intuition behind our solution is that actions capture wrong/missing
activities (having non-zero costs defined by the severity function) in the execu-
tion path under observation, and the goal is to make the path compliant with
the behavior expressed in the automata at a minimal cost. To this aim, the plan-
ner implements a technique based on NFA manipulations, which is extensively
presented in Section 5 together with its encoding in PDDL.

Finally, we visually present to the process analyst the violations of the com-
pliance requirements on the input BPMN model. Fig. 4 shows the resulting
visualization of the running example. The figure is a screenshot of a plug-in
implementing the proposed technique available in the Apromore advanced BP
analytics platform.? The visualization uses a color coding to suggest the amount
of paths that support a given change. If 100% of paths support the removal of
an activity, then the activity is greyed out; if from 66% to 99% of paths support
this removal, then the activity is highlighted in orange; if from 33% to 66% of
paths support the removal, then the activity is highlighted in yellow. Similarly,
the plug-in shows the percentage of paths supporting the addition of an activity
and, in case all paths agree with the addition, the plug-in suggests to add the
activity to the model. Note that the plug-in provides a way to automatically
repair the model. In particular, the grayed out elements can be removed and the
suggested additions can be confirmed. In the running example, the tool suggests
to remove Review claim rejection, since all paths support this operation, whereas
this is not the case for the violations related to Close claim and Record claim,
since these operations are not supported by all paths.

5 Apromore is an open source platform, and the code as well as the links to the cloud
versions of Apromore can be found at http://apromore.org/



A screencast showing how the plug-in developed in Apromore works is pub-
licly available at: https://youtu.be/pVcv5DSSt5A.

5 Compliance Checking as Planning

In this section, we first demonstrate that the problem of identifying violations
of compliance requirements in a BP path can be solved with a technique based
on NFA manipulations (Section 5.1), and then we show how this technique can
be encoded as a planning problem in PDDL (Section 5.2).

5.1 A NFA Manipulations Technique for Compliance Checking

Let us consider a BP path t = (e1, ..., €x—1, €k, €441, ---, €,) and an LTL; formula
$. We are interested in “transforming” t into a new path £ that is compliant with
¢. To realize this transformation, we consider two kinds of violations, which can
be caused by wrong or missing activities, respectively. For example, suppose that
er € t violates ¢: e is said to be wrong wrt. ¢, and its deletion from ¢ results
in a new path ¢ = (€1, ..y €k—1,€kt1, -, €n) that is compliant with ¢. Similarly,
a missing activity p can be added to a non-compliant path ¢ at position &k (with
1 <k <n+1) to make it compliant wrt. ¢. After the addition, the resulting
compliant path is £ = (€1, ..., €k_1,D; €k Chi1y ) En)-

The addition and deletion actions allow us to understand if the reason of a
non-compliance path is due to the absence/presence of missing/wrong activities
in t. Furthermore, these two actions are characterized by two values for the cost
quantifying the severity of the violation found. The final cost of the transfor-
mation will be the sum of the number of deletion multiplied by the deletion
cost plus the number of addition multiplied by the addition cost. Given what
explained above, we can define the compliance checking problem as follows:

Definition 1 (Compliance Checking). Given a BP path t and an LTLy for-

mula ¢ such that t violates ¢, find a path t that satisfies ¢ and such that the
transformation cost is minimal.

Compliance checking can be addressed by resorting to NFA. To see this,
let t = (e1,...,en) be a BP path, ¢ the LTL; rule to check ¢t against, and
A = (¥,Q,q0,9, F) the corresponding NFA, which we call the constraint au-
tomaton. From t, we define a further automaton, called the path automaton,
T = (X4, Qu, b, 6, Fy), where: (1) Xy = {e1,...,en}; (ii) Q1 = {q,...,¢.} is
a set of n 4 1 states; (i14) §; = Uizothn_l(qf?6z’+1;¢]f+1>; (iv) F* = {q},}. By
construction, 7 is deterministic and accepts only t.

Next, we augment 7 and 4 to make them suitable to our definition of com-
pliance checking, i.e., by adding transitions related to addition and deletion of
activities. From T, we generate the automaton 7+ = (X", Qy, ¢, 6;", F;), where:

— X7 contains all the activities in %, plus: one new activity del_p, for all
activities p € X; and one new activity add_p, for all activities p € X U X;

— &, contains all the transitions in &;, plus: a new transition (g, del_p, ¢'), for
all transitions (q,p,q’) € &; and, for all activities p € X' U X} and states
q € Q¢, a new transition (g, add_p, q).



For example, if we indicate as Crt activity Create claim, and as Dec activity
Decide on claim, the augmented path automaton 7 associated to path t., =
(Crt, Rec, Dec, Rej, Rev), derived from the BP model of our running example, is
shown in Fig. 5.

Crt m Rec m Dec Q Rej /t.\ Rev @

2 L3 5 6

U del_Crt U del_Rec U del_Dec U del_Rej U del_Rev

add * add * add * add * add *

start —( t1

Fig. 5: Example of augmented path automaton

Similarly, from A, we obtain an automaton A" = (X*,Q,qo, ", F), such
that: (i) XF contains all the activities in 3, plus: one new activity add_p, for all
activities p € X; and one new activity del_p, for all activities p € X U X}; and
(i) 6 contains all the transitions in §, plus: one new transition (g, del_p, q) for
all ¢ € @Q and p € YU Xy; and one new transition (g, add_p, ¢’) for all transitions
{(q,p,q’) € §. For instance, the DECLARE rules defined in our running example can
be represented with the three augmented constraint automata shown in Fig. 6.

Intuitively, AT accepts all paths ¢ that satisfy ¢ and have been ob-
tained by adding/removing missing/wrong activities to/from ¢, with the ad-
ditions/deletions explicitly marked. For instance, if we consider path t., and its
augmented path automaton in Fig. 5, neither the constraint automata in Fig. 3
nor their augmented versions in Fig. 6 accept t.,. However, if we “repair” t., by
removing Rev at the end, and we explicitly mark the repair with del_Rev, then all
the augmented automata accept the new path #., = (Crt, Rec, Dec, Rej, del_Rev).

Thus, given a BP path ¢ and many LTLf rules ¢y, ..., ¢,, compliance checking
is equivalent to searching for a “repaired path” ¢ accepted by both 7+ and
Al ... Al (ie., the augmented constraint automata for all LTL ¢ rules), with a
minimal number of add/delete activities. We next show how to take advantage
of the planning technology to efficiently search for the desired repaired path.

5.2 Encoding in PDDL

In this section, we show how, given a set of augmented constraint automata
Af, ., Al obtained from n LTL; formulas ¢1,..,¢,, and an augmented path
automaton 7 T obtained from a path ¢, we build a cost-optimal planning domain
Pp and a problem instance P in PDDL. Pp and P can be used to feed any state-
of-the-art planners accepting PDDL 2.1 specification, as discussed in Section 3.3.
A solution plan for P amounts to the set of interventions of minimal cost to repair
the path wrt. the LTL; formulas.

Planning Domain. In Pp, we provide two abstract types: activity and state.
The first captures the activities involved in a transition between two different
states of a constraint/path automaton. The second is used to uniquely identify
the states of any constraint automaton (through the sub-type automaton_state)
and of the path automaton (through the sub-type path_state). To capture the
structure of the automata and to monitor their evolution, we defined four domain
propositions as boolean predicates in Pp:
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— (path 7t1 - path_state 7e - activity ?t2 - path_state) holds if there ex-
ists a transition in the path automaton between two states t1 and t2, being
e the activity involved in the transition.

— (automaton 7sl - automaton _state 7e - activity 7s2 - automaton_state)
holds if there exists a transition between two states s1 to s2 of a constraint
automaton, being e the activity involved in the transition.

— (cur_state ?s - state) holds if s is the current state of a constraint/path
automaton.

— (final_state 7s - state) holds if s is a final state of a constraint/path
automaton.

Furthermore, we define a numeric fluent total-cost to keep track of the cost of
the violations. Notice that: (i) in PDDL, parameters are written with a question
mark character ‘?’ in front, and the dash character ‘-’ is used to assign types to
parameters; and (7i) we remain consistent with the PDDL terminology, which
allows for both the values of predicates and fluents to change as a result of the
execution of an action.

Planning actions are used to express the repairs on the original path t. Each
action is characterized by its preconditions and effects, stated in terms of the
domain propositions. In our encoding, we have defined three actions to perform
synchronous moves in the path automaton and in the constraint automata, or
to add/remove activities to/from the path automaton. In the following example,
we suppose that both actions add and del have cost equal to 1. We notice that
their cost can be customized to properly define the severity of a violation.

~

raction sync
:parameters (7tl - path_state 7e - activity ?7t2 - path_state)
:precondition (and (cur_state 7tl1) (path ?7tl 7e 7t2))
:effect(and (not (cur_state ?t1)) (cur_state 7t2)
(forall (?s1 ?s2 - automaton_state)
(when (and (cur_state ?s1)
(automaton ?sl 7e ?7s2))
(and (not (cur_state ?s1)) (cur_state 7s2))))))

(:action add (:action del
:parameters (7e - activity) :parameters (?7tl - path_state
:effect (and (increase (total-cost) 1) 7e - activity
(forall (?s1 ?s2 - automaton_state) ?7t2 - path_state)
(when (and (cur_state 7s1) :precondition (and (cur_state 7t1)
(automaton ?7sl ?e 7s2)) (path 7t1 7e 7t2))
(and (not (cur_state ?s1)) :effect(and (increase (total-cost) 1)

(cur_state ?s2)))))) (not (cur_state ?7t1)) (cur_state 7t2)))

We modeled sync and del in such a way that they can be applied only if there
exists a transition from the current state t1 of the path automaton to a subse-
quent state t2, being e the activity involved in the transition. Notice that, while
del yields a single move in the path automaton, sync yields, in addition, one

10



Path Length Search Time Search Time (entire Search Time Search Time (entire Search Time Search Time (entire

(isolated rules) model) (isolated rules) model) (isolated rules) model)
0 const. violated | 5 constraints | 10 constraints | 15 constraints |
10 615 146 1,189 282 1,763 1,764
25 725 164 1,454 295 2,181 1,792
35 732 165 1,508 300 2,256 1,799
50 T4 172 1,542 311 2,292 1,801
1 const. violated | 5 constraints 10 constraints 15 constraints |
10 599 147 1,173 414 1,769 3,716
25 646 156 1,304 421 1,971 3,665
35 719 166 1,450 439 2,181 3,889
50 747 172 1,481 458 2,250 4,091
3 const. violated | 5 constraints 10 constraints 15 constraints
10 596 158 1,164 558 1,727 5,700
25 725 187 1,422 586 2,160 6,186
35 752 196 1,518 618 2,286 6,432
50 771 201 1,535 631 2,319 6,710
5 const. violated | 5 constraints 10 constraints 15 constraints |
10 614 162 1,214 625 1,838 6,113
25 760 207 1,552 626 2,310 6,362
35 767 211 1,569 628 2,364 6,401
50 801 219 1,651 641 2,506 6,612

Table 1: Experimental results: the time (in milliseconds) is the average per path

move per constraint automaton (all to be performed synchronously). In partic-
ular, a synchronous move is performed in each constraint automaton for which
there exists a transition involving activity e connecting s1 — the current state
of the automaton — to a state s2. Finally, add is performed only for transitions
involving activity e connecting two states of any constraint automaton, with the
current state of the path automaton that remains the same after the execution
of the action.

Planning Problem. In P, we first define a finite set of constants required to
properly ground all the domain propositions defined in Pp. In our case, con-
stants correspond to the state and activity instances involved in the path au-
tomaton and in any constraint automaton. Secondly, we define the initial state
of P to capture the exact structure of the path automaton and any constraint
automaton. This includes the specification of all the existing transitions that
connect two states of the automata. The current state and the final states of
any path/constraint automaton are identified as well. Thirdly, to encode the
goal condition, we first pre-process each constraint automaton by: (i) adding a
new dummy state with no outgoing transitions; (i) adding a new special action,
executable only in the final states of the original automaton, which makes the
automaton move to the dummy state; and (%ii) including in the set of final states
only the dummy state. Then, we define the goal condition as the conjunction
of the final states of the path automaton and of all the constraint automata. In
this way, we avoid using disjunctions in goal formulas, which are not supported
by all planners. Finally, as our purpose is to minimize the total cost of the plan,
‘P contains the following specification: (:metric minimize (total-cost)).

6 Evaluation

In order to investigate the level of scalability of our planning-based approach, we
performed (with our tool) several synthetic experiments employing BP models
and compliance requirements of increasing complexity. First, we created 4 BPMN
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models with an increasing number of parallel branches.® Then, we converted the
BPMN models into Petri nets and unfolded them thus obtaining 1121, 800, 961
and 1025 execution paths of average length 10, 25, 35 and 50, respectively.

Secondly, we defined 3 DECLARE models (having the same alphabet of ac-
tivities) containing 5, 10 and 15 rules that are known to be compliant with the
tested BPMN models. Then, to create DECLARE models non-compliant with the
BPMN models, we changed some of the rules in the original DECLARE models
by replacing 1, 3 and 5 rules in each model with their negative counterparts.
In this way, we were able to understand how performance scales up with longer
paths and more DECLARE rules, considering a growing amount of violations. We
point out that real execution paths involve most often less than 50 activities,
and compliance requirements with 15 DECLARE rules are considered to be large.
So, one should consider our test not only as a practical one based on realistic
settings, but also as one that is challenging. We used a standard cost function
with cost 1 for any step that adds/removes activities to/from the input path,
and cost 0 for synchronous moves. We tested our approach on the grounded ver-
sion of the problem presented in Section 5.2. The experiments were performed
with a machine consisting of a 2,7 GHz Intel Core i5 CPU and 8GB RAM. We
configured the FAST-DOWNWARD planner, which is integrated in our tool, to
employ the A* searching algorithm to guarantee the optimality of the solution.

The results of our experiments can be seen in Table 1 and Fig. 7. Concerning
the table, for each combination “path length - size of DECLARE model”, the
table reports the search time (averaged over all paths) required by the planner
for checking the compliance of all the rules included in the DECLARE model: (i)
when tested in isolation (column “Search Time (isolated rules)”); and (i7) when
tested as a conjunction (column “Search Time (entire model)”). Notice also that
the rows of the table are split into clusters according to the number of DECLARE
rules violated by any of the tested paths.

By analyzing Table 1 and Fig. 7, some conclusions can be drawn. Regarding
the experiments performed to check the compliance of a path against the indi-
vidual rules included in a DECLARE model, it is evident that the amount of rule
violations has a small influence on the performance, differently from the size of
the DECLARE models and the length of the paths. The latter two factors have a
major influence on the search time, though not in a dramatic way to preclude
from practical applicability. Conversely, the tests performed against the entire
DECLARE models suggest that the presence of a large number of violations be-
comes the key factor that influences the search time. This is more evident with
the largest DECLARE model consisting of 15 rules. However, the results show that
the approach is feasible for offline reasoning and scales up well when DECLARE
models and paths grow in size.

7 Related Work

In the context of process mining, some techniques have approached the problem
of BP model repair based on event logs [21,14,27,4]. These techniques aim at

5 To guarantee the repeatability of our experiments, at https://goo.gl/ruNRu7, we
provide: the instructions to configure and run the tool; the BPMN and DECLARE
models used for the experiments.
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Fig. 7: Performance of repairing violations through planning

keeping the repaired model as similar as possible to the original model, while
capturing all the possible behaviors from the event log. Some research works also
exist that use planning techniques to deal with trace alignment in the context of
conformance checking [9, 19, 8]. Readers should observe that the aforementioned
approaches use event logs, while our approach is able to compare BP models
and temporal rules.

Approaches addressing a problem that is closer to the one we face in this pa-
per are presented in [6,20]. These approaches provide insights about violations
of temporal rules in BP models through model checking. In [6], the authors use
BPMN-Q to express compliance requirements visually and computational tree
logic (CTL) expressions to formally represent their semantics. Based on these re-
quirements a counterexample is provided to explain possible discrepancies wrt.
an input BPMN model. As already mentioned, model checkers provide coun-
terexamples to explain non-compliance, but the diagnostics can be difficult to
interpret. In [20], the authors aim at reducing the error paths produced by model
checkers to make their diagnostics more user-friendly. This approach provides the
user with diagnostics to understand the root cause of the violations, but it does
not provide detailed feedback to the user in terms of where each compliance
requirement is violated and why, and what to do to solve the non-compliance.
Instead, we try to provide a richer feedback that can be used to adjust the input
BP model in a semi-automatic way.

In [5], the authors introduce a compliance checking approach that identifies 4
pre-defined violation types and, for each of them, generates a resolution strategy
using automated planning. While we adopt a similar technique to the synthesis
of repair strategies, our approach is able to detect violations of any rule that can
be represented as an NFA.

In [11], the authors still deal with compliance checking of a BP model wrt.
temporal rules. However, this work is more focused on finding reparative actions
to be applied to the model to solve the violations. This problem is addressed by
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making some assumptions on the input BP model and compliance requirements.
In particular, the input model needs to be a block-structured Workflow net
without loops. In addition, the compliance requirements can be expressed with
a sub-set of DECLARE and the intersection of the set of the behaviors of the
BP model and the set of the behaviors of the DECLARE rules needs to be non-
empty. These assumptions are needed to solve the repair problem, which is, in
general, extremely challenging. In our contribution, we find a different trade-
off in addressing this problem by providing general insights on where and why
a violation occurs and providing only in some specific cases suggestions about
reparative actions. This allows us to relax the assumptions made in [11]. Our
approach can indeed be applied to any safe PN and any compliance requirement
that can be expressed in LTL;.

For a general introduction to the topic of regulatory compliance checking,
the reader is referred to [29)].

8 Concluding Remarks

Existing approaches to compliance checking employ verification techniques to ex-
plain violations through counterexamples, which can be extremely unintuitive in
the presence of a large number of violations. Consequently, explaining violations
using counterexamples could not be the most suitable solution to understand
how to change BP models to solve non-compliance. To tackle this issue, in this
paper, we have shown how automated planning can be used to efficiently solve
the problem of checking compliance requirements expressed in terms of LTLy
rules, by pointing at the BP activities where compliance is breached.

It is worth noticing that the objective of the evaluation was to stress the
scalability of planning techniques for checking the compliance of single BP paths
and DECLARE models of growing size. However, when BP models include a large
number of parallel gateways and cycles, the number of unfolded BP paths quickly
explodes. As a consequence, part of the complexity moves from the size of BP
paths and DECLARE models to the total amount of BP paths to be checked
for compliance. Therefore, as future work, we aim at improving the presented
technique to make it able to suggest reparative actions in larger sets of paths wrt.
the ones considered in this paper. In addition, we plan to detect non-compliance
that relates to time, resource and data aspects, such as activities that are not
performed by authorized actors or within given deadlines. This problem is far
from being trivial since it is, in general, undecidable. Thus, we need to explore
what kind of expressiveness limitations are required to ensure decidability.
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