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Abstract Business Process Management (BPM) is a

central element of today’s organizations. Over the years

its main focus has been the support of business pro-

cesses (BPs) in highly controlled domains. However -

in the current era of Big Data and Internet-of-Things -

several real-world domains are becoming cyber-physical

(e.g., consider the shift from traditional manufactur-

ing to Industry 4.0), characterized by ever-changing re-

quirements, unpredictable environments and increasing

amounts of data and events that influence the enact-

ment of BPs. In such unconstrained settings, BPM pro-

fessionals lack the needed knowledge to model all pos-

sible BP variants/contingencies at the outset. Conse-

quently, BPM systems must increase their level of au-

tomation to provide the reactivity and flexibility neces-

sary for process management.

On the other hand, the Artificial Intelligence (AI) com-

munity has concentrated its efforts on investigating dy-

namic domains that involve active control of computa-

tional entities and physical devices (e.g., robots, soft-

ware agents, etc.). In this context, Automated Plan-

ning, which is one of the oldest areas in AI, is conceived

as a model-based approach to synthesize autonomous

behaviours in automated way from a model.

In this paper, we discuss how automated planning tech-

niques can be leveraged to enable new levels of automa-

tion and support for solving concrete problems in the

BPM field that were previously tackled with hard-coded

solutions. To this aim, we first propose a methodol-

ogy that shows how a researcher/practitioner should

approach the task of encoding a concrete problem as

an appropriate planning problem. Then, we discuss the
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required steps to integrate the planning technology in

BPM environments. Finally, we show some concrete ex-

amples of the successful application of planning tech-

niques to the different stages of the BPM life cycle.

Keywords Business Process Management · Auto-

mated Planning in AI · Process Management Systems ·
Process Adaptation · Process Mining

1 Introduction

Business Process Management (BPM) is a central ele-

ment of today’s organizations due to its potential for

increased productivity and saving costs. For this rea-

son, BPM research has focused on overseeing how work

is performed in an organization by managing and op-

timising its business processes (BPs) [107,3]. In order

to support the design, automation, execution and mon-

itoring of BPs, a dedicated generation of information

systems, called Process Management Systems (PMSs),

has become increasingly popular over the last decade

[26,27].

From its origins, the BPM philosophy has been

strongly influenced by the principles of scientific man-

agement by Frederick Taylor [32], and is built on the

idea that there always exists an underlying fixed BP

that can be used to automate the work and executed like

a program from a PMS [26,107]. The required steps that

have made this idea a reality consist of: (i) performing

an up-front effort to identify a BP (i.e., a structured

abstraction of a real workflow) that can be executed

many times; (ii) formalizing it in a process model that

captures the ways in which tasks are carried out to ac-

complish a business objective, often with the help of an

explicit control flow expressed through a suitable graph-
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ical notation, such as the standard BPMN1; and (iii)

automating the BP routing with a PMS that properly

assigns tasks to process participants (e.g., softwares or

humans), so that several instances of the same BP can

be run many times repeatedly. Since there may be some

variation in the handling of individual instances, one

can customize in advance a BP model by implement-

ing specific variants of the BP itself, e.g., by adding or

deleting process branches according to some customiza-

tion options that determine how to handle all possible

predictable situations that may happen at run-time [7,

53]. For routine BPs enacted in highly controlled busi-

ness domains (e.g., financial and accounting domains),

this approach works perfectly [107,27].

In the current era of Big Data and Internet-of-

Things (IoT), we are witnessing the transformation

of traditional working domains (e.g., manufacturing,

healthcare, emergency management, etc.) into new

challenging cyber-physical domains (e.g., Industry 4.0

[55,57], Health 2.0 [106,16], smart emergency manage-

ment [49,61,71], etc.). Such domains are characterized

by the presence of heterogeneous Information Technol-

ogy (IT) components (e.g., robots, machines, sensors,

etc.) that, on the one hand, perform complex tasks in

the “physical” real world to achieve a common goal,

and on the other hand monitor in detail the evolution

of the concrete BP instances being executed, by pro-

ducing huge amount of data and events that may dra-

matically influence the proper enactment of BPs [82,

100].

Under such dynamic conditions, the requirements

imposed by the BPM philosophy, i.e., of having BPs

fully specified a priori and that are executed as rigid

plans of actions by a PMS, are too restrictive [94]:

– in domains that are to a large extent unclear and/or

unpredictable, accurate BP modeling can not al-

ways be completed prior to execution. This is mainly

due to lack of domain knowledge and complexity

of tasks combination and branch conditions, which

would require the use of a large and complex set of

rules to determine in advance how to handle all pos-

sible situations that may happen at run-time [28];

– even for well-defined BPs, the combination and se-

quence of tasks may vary from instance to instance,

due to changes in the execution context (such as user

preferences and business rules), or changes in the en-

vironment (such as unplanned exceptions or exoge-

nous events). In such cases, BP instances should be

adapted case by case (e.g., by adding, removing or

generating an alternative sequence of tasks) by ex-

ploiting information gathered at run-time. However,

1 The Business Process Modeling Notation (BPMN) is the
ISO standard (ISO/IEC 19510:2013) for modeling BPs.

it is considered impossible to determine at design-

time all potential adaptations that may be needed

at run-time [94].

To tackle the above issues, BPM is in need of tech-

niques that go beyond hard-coded solutions that put all

the burden on IT professionals, which often lack the

needed knowledge to model all possible contingencies

at the outset, or this knowledge can become obsolete as

BP instances are executed and evolve, by making use-

less their initial effort. Therefore, there are compelling

reasons to introduce intelligent techniques that act au-

tonomously to provide the reactivity and flexibility nec-

essary for process management [22]. This matter is very

actual, and was recently discussed in the keynote talks

given by Rick Hull (BPM 2016 [48]) and Miguel Valdes

(BPM 2017 [105]) at the major scientific international

conference of Business Process Management.

On the other side, the challenge of building com-

putational entities and physical devices (e.g., robots,

software agents, etc.) capable of autonomous behaviour

under dynamic conditions is at the center of the Arti-

ficial Intelligence (AI) research from its origins. At the

the core of this challenge lies the action selection prob-

lem, often referred as the problem of selecting the action

to do next. Traditional hard-coded solutions require to

consider every option available at every instant in time

based on the current context and pre-scripted plans

to compute just one next action. Consequently, they

are usually biased and tend to constrain their search in

some way. For AI researchers, the question of action se-

lection is: what is the best way to constrain this search?

To answer this question, the AI community has tack-

led the action selection problem through two different

approaches [36], one based on learning and the other

based on modeling.

In the learning-based approach, the controller that

prescribes the action to do next is learned from the

experience. Learning methods, if properly trained on

representative datasets, have the greatest promise and

potential, as they are able to discover and eventually in-

terpret meaningful patterns for a given task in order to

help make more efficient decisions. For example, learn-

ing techniques were recently applied in BPM (see [64])

for predicting future states or properties of ongoing ex-

ecutions of a BP. However, a learned solution is usually

a “black box”, i.e., there is not a clear understanding

of how and why it has been chosen. Consequently, the

ability to explain why a learned solution has failed and

fix a reported quality bug may become a complex task.

Conversely, in the model-based approach the con-

troller in charge of action selection is derived automat-

ically from a model that expresses the dynamics of the

domain of interest, the actions and goal conditions. The
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key point is that all models are conceived to be general,

i.e., they are not bound to specific domains or problems.

The price for generality is computational : The problem

of solving a model is computationally intractable in the

worst case, even for the simplest models [36].

While we acknowledge that both the learning and

model-based approaches to action selection exhibit dif-

ferent merits and limitations, in this paper we focus

on a specific model-based approach called Automated

Planning. Automated planning is the branch of AI that

concerns the automated synthesis of autonomous be-

haviours (in the form of strategies or action sequences)

for specific classes of mathematical models represented

in compact form. In recent years, the automated plan-

ning community has developed a plethora of plan-

ning systems (also known as planners) that embed

very effective (i.e., scale up to large problems) domain-

independent heuristics, which have been employed to

solve collections of challenging problems from several

Computer Science domains.

In this paper, which extends our previous work [66]

in several directions2, we discuss how automated plan-

ning techniques can be leveraged for solving real-world

problems in BPM that were previously tackled with

hard-coded solutions by enabling new levels of automa-

tion and support for BPs. To this aim, we first in-

vestigate under which conditions planning is feasible

for tackling concrete problems in the BPM field, and

how people familiar with BPM can encode their pro-

cess knowledge in a planning problem. Then, we discuss

the required steps to integrate and exploit the planning

technology in PMSs. Finally, we show some concrete

examples of the successful application of planning tech-

niques to the different stages of the BPM life cycle.

Overall, the major purpose of this contribution is

to show how the synergy between automated planning

techniques and BPM can allow the realization of intelli-

gent solutions that effectively tackle relevant challenges

from the BPM domains.

To be more specific, while in Section 2 we intro-

duce some preliminary notions on automated planning

necessary to understand the rest of the paper, in Sec-

tion 3 we propose a methodology that shows how a

researcher/practitioner should approach the task of en-

coding a concrete problem as an appropriate planning

problem. Then, in Section 4, we discuss the required

steps to concretely integrate the planning technology in

PMSs, and in Section 5 we show how instances of some

well-known problems from the BPM literature (such as

process modeling, process adaptation of running BPs

2 For readability purposes, the details of the additional con-
tributions with respect to our previous work [66] are explained
in Section 7.

and conformance checking) can be represented as plan-

ning problems for which planners can find a correct

solution in a finite amount of time. Finally, in Section 6

we discuss related work on the use of planning both in

the BPM field and in other BPM-related Computer Sci-

ence domains, and in Section 7 we conclude the paper

by providing a critical discussion about the general ap-

plicability of planning techniques in BPM and tracing

future work.

2 Automated Planning

Automated planning addresses the problem of generat-

ing autonomous behaviours (i.e., plans) from a model

that describes how actions work in a domain of inter-

est, what is the initial state of the world and the goal

state to be achieved. To this aim, automated planning

operates on explicit representations of states and ac-

tions that are expressed in compact form through ded-

icated languages. Such representations can be “navi-

gated” exploiting a collection of different search algo-

rithms, whose main purpose is to find a “path” con-

sisting of actions that allow to achieve the goal state

starting from the initial state.

In a nutshell, as shown in Fig. 1, automated plan-

ning is made up of three “ingredients”: models, lan-

guages and algorithms. In the following sections, we

introduce such ingredients, which are required to au-

tomatically “cook” a plan.

2.1 Planning Models and Algorithms

There exist several forms of planning models in the AI

literature, which result from the application of some or-

thogonal dimensions [34]: uncertainty in the initial state

(fully or partially known) and in the actions dynamics

(deterministic or not), the type of feedback (full, partial

or no state feedback) and whether uncertainty is repre-

sented by sets of states or probability distributions.

The simplest form of planning where actions are de-

terministic, the initial state is known and plans are ac-

tion sequences computed in advance is called Classi-

cal Planning. According to [36], the formal model un-

derlying classical planning can be described as: M =

〈S, s0, SG, A, f, c〉, where:

– S is a finite and discrete set of states;

– s0 ∈ S is the known initial state;

– SG ⊆ S is the non-empty set of goal states;

– A(s) ∈ A is the set of actions in A that are applica-

ble in each state s ∈ S;
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Fig. 1 A planner takes a compact representation of a planning problem over a certain class of models and automatically
produce a plan.

– f(a, s) is a deterministic transition function where

s′ = f(a, s) is the state that follows s after doing

action a ∈ A(s);

– c(a, s) is a positive action cost for doing action a in

the state s.

For the classical planning model, a plan is a sequence

of applicable actions a0, . . . , an ∈ A that generates a

state sequence s0, . . . , sn+1 ∈ S, where s0 is the initial

state and sn+1 is a goal state. The cost of the plan is

the sum of the action costs c(ai, si), with i = 0, . . . , n.

A plan is optimal if it has minimum cost; conversely,

a satisfying plan does not prove any guarantee other

than the correctness of the solution.

For classical planning, according to [15], the gen-

eral problem of coming up with a plan is PSPACE-

complete. Many planning problems, however, involve

more expressive features that are not part of this ba-

sic model, with a consequent increase of the complexity

to find a plan. For example, if we consider also non-

deterministic actions, when the features characterizing

a state are fully observable, the problem to generate a

plan is EXPTIME-complete (in the description of the

state), or - even worse - 2EXPTIME-complete in case

of partial observability, cf. [96].

In this paper, we do not aim at providing a

complete description of all possible planning mod-

els/languages/algorithms available in the literature3,

but we aim at showing how a planning-based approach

can be concretely applied to BPM. For this reason, we

will focus on the classical planning model, which is suf-

ficiently expressive to tackle several complex challenges

of the BPM field (cf. Section 5). In addition, we no-

tice that, even if the classical approach of solving plan-

ning problems can be too restrictive for environments in

which information completeness can not be guaranteed,

it is often possible to solve non-classical planning prob-

3 A tutorial introduction to planning models and algo-
rithms can be found in [36].

lems using classical planners by means of well-defined

transformations [35].

Despite its complexity, the field of classical plan-

ning has experienced spectacular advances (in terms of

scalability) in the last 20 years, leading to a variety of

concrete state-of-the-art planners that are able to feasi-

bly compute plans with thousands of actions over huge

search spaces for real-world problems containing hun-

dreds of propositions. Such progresses have been pos-

sible because state-of-the-art planners employ powerful

heuristic functions that are automatically derived by

the specific problem and allow to intelligently drive the

search towards the goal. These efforts have led to devel-

opment of a sort of “science of search algorithms and

heuristics” for planning, which has allowed researchers

to confine the inherent complexity of planning within a

set of hard instances, while keeping most cases of prac-

tical interest efficiently solvable [63]. Among the most

relevant state-of-the-art planners, we report the plan-

ners FF [45], Fast-Downward [42], LAMA [95], LPG-td

[38] and Probe [62].

2.2 Planning domain Definition Language (PDDL)

The previous section suggests that the representation of

a planning problem - actions, states and goals - should

make it possible for planning algorithms to take advan-

tage of the logical structure of the problem. The effort

of the planning community was to find a language ex-

pressive enough to describe a wide variety of problems,

but restrictive enough to allow efficient algorithms to

operate over it and researchers to exchange benchmark

problems and compare results [97]. In 1998, the various

planning formalisms used in AI have been systematized

within a standard syntax called Planning Domain Def-

inition Language, or PDDL [79].

PDDL is a de-facto standard to formulate a compact

representation of a planning problem PR = 〈I,G,PD〉,
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where I is the description of the initial state of the

world, G is the desired goal state, and PD is the plan-

ning domain.

A planning domain PD is built from a set of proposi-

tions describing the state of the world in which planning

takes place (a state is characterized by the set of propo-

sitions that are true) and a set of actions A that can be

executed in the domain. An action schema a ∈ A is of

the form a = 〈Para,Prea,Eff a,Costa〉, where Para is

the list of input parameters for a, Prea defines the pre-

conditions under which a can be executed, Eff a speci-

fies the effects of a on the state of the world and Costa
is the cost of executing a.

Both preconditions and effects are stated in terms

of the propositions in PD, which can be represented

through boolean predicates. PDDL allows for advanced

propositional operator declarations including negated

preconditions and universal/existential quantification

of objects. The effects of actions can be also conditional

(when-effects) and can include special numeric fluents

to express the actions’ cost. PDDL includes also the

ability of defining domain objects and of typing the pa-

rameters that appear in actions, predicates and numeric

fluents. In a state, only actions whose preconditions are

fulfilled can be executed. The values of propositions in

PD can change as result of the execution of actions,

which, in turn, lead PD to a new state.

The above specification of a planning problem PR
allows to fully accommodate the classical planning

model. A planner that takes in input PR is said to

be domain-independent, since it is able to automati-

cally produce a plan P (i.e., a controller that specifies

which actions are required to transform the initial state

I into a state satisfying the goal G), without knowing

what the actions and domain stand for.

It is worth to notice that, over the years, the plan-

ning community has developed several variants and

extensions of PDDL to enable the representation of

the different planning models available in the litera-

ture (e.g., to capture durative and nondeterministic ac-

tions, multi-valued variables, partial observability, etc.).

Among them, in this paper we focus on the classical

fragment of PDDL 2.1 [30], which is considered to be

the most radical evolution compared to the original ver-

sion of the language and is nowadays supported by the

majority of state-of-the-art domain-independent plan-

ners 4.

Example 1 We show now how the reachability analy-

sis of procedural BPs, which is a well-known problem

in the BPM community [2], can be easily expressed in

4 cf. http://icaps-conference.org/index.php/main/

competitions

PDDL and solved using state-of-the-art planners. De-

spite many notations (yet presenting an ambiguous se-

mantics) have been introduced to represent procedural

BPs, such as BPMN, EPC, YAWL or UML Activity Di-

agrams [27], the reachability analysis of BPs is usually

performed by converting BP models into Petri nets [25],

which have a clear semantics and are proven to be suf-

ficiently adequate to model crucial aspects of BPs [1,

24].

A Petri net N = (P, T, F ) is a directed graph with

a set P of nodes called places and a set T of transi-

tions [83]. The nodes are connected via directed arcs

F ⊆ (P ×T )∪(T ×P ). Connections between two nodes

of the same type are not allowed. Places are represented

by circles and transitions by rectangles. Fig. 2(a) illus-

trates an example of Petri net. Given a transition t ∈ T ,
•t is used to indicate the set of input places of t, which

are the places p with a directed arc from p to t (i.e.,

such that (p, t) ∈ F ). For example, •a = {start}. Sim-

ilarly, t• indicates the set of output places, namely the

places p with a direct arc from t to p. For example, a•

= {p1,p2}. At any time, a place can contain zero or

more tokens, drawn as black dots. The state of a Petri

net, a.k.a. marking, is determined by the number of to-

kens in places. Therefore, a marking m is a function

m : P → N.

In any run of a Petri net, the number of tokens in

places may change, i.e., the Petri net marking. A tran-

sition t is enabled at a marking m iff each input place

contains at least one token, i.e., ∀ p ∈ •t, m(p) > 0. A

transition t can fire at a marking m iff it is enabled. As

result of firing a transition t, one token is “consumed”

from each input place and one is “produced” in each

output place. Specifically, firing a transition t at mark-

ing m leads to a new marking m′. This is denoted as

m
t−→ m′.

When Petri nets are used to represent BPs, tran-

sitions are associated with BP activities, more specifi-

cally to activity labels, and markings indicate the pro-

cess state [2]. Executions of BPs have a start and end.

Therefore, Petri nets need to be associated with an ini-

tial m0 and final marking mn.

Based on the foregoing, the reachability problem of

a Petri net can be defined as follow: Given a Petri net

N with an initial marking m0 and a target marking mn,

find a sequence of transition firing σ = 〈t1, . . . , tn〉 ∈ T ∗

that leads from m0 to mn, such that m0
t1−→ m1

t2−→
. . .

tn−→ mn. If such a firing sequence σ exists, mn is said

to be reachable from m0 (this is denoted as m0
σ−→ mn).

In Fig. 2(a) it is shown an instance of this problem

where, in the initial marking, start is the only place that

contains a token. The goal is to find a sequence of tran-

sitions firing such that the final marking is achieved,
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Fig. 2 Reachability analysis of business processes through Petri nets.

i.e., when there is one token in place end and no tokens

in the other places (cf. Fig. 2(d)).

The problem can be easily expressed in PDDL [97].

From a technical point of view, the description of a

planning problem PR = 〈I,G,PD〉 is organized in two

separate files describing, respectively, the planning do-

main PD and the specific problem instance to be solved,

represented through the initial state I and the goal G.

Notice also that in PDDL parameters are distinguished

by a ’?’ character at front, and the dash ’-’ is used to

assign types to the parameters.

(define (domain petri-net)

(:objects place transition)

(:predicates (token ?p - place)

(input_place ?t - transition

?p - place)

(output_place ?t - transition

?p - place))

(:action fire

:parameters (?t - transition)

:precondition (forall (?p - place)

(and (input_place ?t ?p)

(token ?p)))

:effect (and (forall (?p - place)

(when (input_place ?t ?p)

(not (token ?p))))

(forall (?p - place)

(when (output_place ?t ?p)

(token ?p)))

(increase (total_cost) 1))

)

)

In the planning domain PD, the domain objects are

the places and transitions of the Petri net. To capture

all possible markings of the Petri net and their evo-

lution after transitions firing, we define three boolean

predicates and one numeric fluent in PD, as follows:

(token ?p - place). It holds if p contains a token in

the currently reached marking.

(input place ?t - transition ?p - place). It

holds iff p is an input place of t.

(output place ?t - transition ?p - place). It

holds iff p is an output place of t.

(total cost). This numeric fluent keeps track of the

cost of the plan found.

A single planning action fire is required to make

the Petri net firing. The precondition of the action is

that each place p ∈ •t is enabled, i.e., it contains (at

least) a token. The effect is to change the marking ac-

cording to the firing rules, i.e., by consuming one token

from input places of t and producing one token in any

of the output places of t. It is worthy observing how

the firing of a transition makes total cost of the plan

increases of a unitary value.

(define (problem pr1) (:domain petri-net)

(:objects start p1 p2 p3 p4 end - place

a b c d e f - transition)
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(:init

(token start) (= (total_cost 0))

(input_place a start) (output_place a p1)

(output_place a p2) (input_place b p1)

(output_place b p3) (input_place c p2)

(output_place c p4) (input_place d p1)

(input_place d p2) (output_place d p3)

(output_place d p4) (input_place e p3)

(input_place e p4) (output_place e end)

(input_place f p3) (input_place f p4)

(output_place f start)

)

(:goal (and (token end) (not (token start))

(not (token p1)) (not (token p2))

(not (token p3)) (not (token p4)))

)

(:metric minimize (total_cost))

)

Concerning the specific problem instance to be

solved, we first declare the concrete domain objects

involved in the planning problem, i.e., all places and

transitions of the Petri net in Fig. 2. Then, the initial

state I encodes the topology of the Petri net and the

initial marking, i.e., it specifies instances to the predi-

cates input place, output place and token. The goal

state G reflects the reaching of the final marking in Fig.

2(d). Readers should notice that, if the purpose is to

minimize the total cost of the plan, the planning prob-

lem also contains the following specification: (:metric

minimize (total-cost)).

Fig. 2 shows a possible solution to the problem,

which consists of first firing transition a (state S1, cf.

Fig. 2(b)), then on firing transition d (state S2, cf. Fig.

2(c)), and finally on firing transition e (state S3, cf. Fig.

2(d)). Since S3 is a state satisfying the goal condition

of the planning problem, the solution found is a valid

plan. Furthermore, since we assumed that the cost of

any fire action is equal to 1 (i.e., the cost of the plan

will correspond to its length), then the plan found is

optimal, as it contains the minimum number of plan-

ning actions to solve the reachability problem. ut
For the sake of simplicity, in the previous exam-

ple we have assumed a Petri net to be 1-bounded, also

known as safe. A Petri net is safe if in any reachable

marking from the initial marking, no place ever contains

more than 1 token. Safeness is not a large limitation,

as the behavior allowed by real BPs can be often rep-

resented as safe Petri nets [2]. However, with a simple

modification of the encoding, we could extend the rea-

soning also to non-safe Petri nets.

Coming back to the complexity of classical plan-

ning, it is worth to notice that computing optimal plans

is harder than computing satisfying plans, as the for-

mer involves a universal claim about the space of all

plans [36]. Even if the problem of computing a plan is

intractable in the worst case [15], yet currently large

classical planning problems can be solved very quickly.

3 A Methodology to Build Planning Problems

The planning paradigm (in particular in its classical set-

ting) provides a valuable set of theoretical and practical

tools to tackle several potential challenges addressed by

the BPM community. Of course, to exploit the benefits

of the planning paradigm, it is necessary to reformu-

late such challenges in the form of planning problems

in PDDL. This requires a fundamental shift in how one

thinks about the specification of a problem. The “tra-

ditional” way consists of building a formal/semi-formal

structure of the problem, codifying it in a suitable pro-

gramming language and defining a dedicated algorithm

that reasons over such a structure to find a possible

solution to the problem, i.e., the focus is on “how” to

tackle the problem. Conversely, if one aims at lever-

aging on the planning paradigm, the focus moves on

“what” information is required to represent the prob-

lem in PDDL.

As a matter of fact, research into classical planning

has for decades concentrated on theoretical issues [78],

e.g., on the performances of search algorithms [39], the

computational complexity of plan generation [15,8], the

expressiveness of the classical model [108] and the re-

alization of frameworks for planning engines [42]. This

has created a gap between the research area of theoret-
ical (but often unrealistic) planning on the one hand,

and real-world planning on the other. Whereas the main

assumption of domain-independent planning should be

the logical separation between the planning problem

and the planning engine, the preferred trend has always

been the encoding of planning problem representations

in a “planner-friendly” way, mostly trying to accom-

modate “what planners can handle”. As a consequence,

even if several knowledge engineering (KE) methods ex-

ist to help developing and encoding the planning prob-

lems in PDDL, they had relatively little attention in the

planning literature. In addition, as investigated by the

work [101], a major issue of current KE approaches is

that - for being utilized - they require a strong expertise

in specific AI-oriented languages, such as PDDL, OWL,

OCL, etc. If we look at BPM users, it is evident that

this requirement might negatively affect the use of such

approaches, since BPM users may not have the required

expertise in languages that are not widely known in the

BPM community.
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Fig. 3 A four-steps methodology to reformulate problems as planning problems.

For this reason, in this paper we have developed a

concise four-steps methodology (cf. Fig. 3) that shows

how a researcher/practitioner in BPM should approach

the task of encoding a real-world problem as an appro-

priate planning problem. Instead of modeling a problem

directly in the PDDL language, which can be complex

for non-AI experts, the proposed methodology employs

a simple semi-formal language for modeling planning

problems and points out that the role of the designer

is to reshape a concrete problem into a object-centric

way rather than in an action-centric way, by identify-

ing and specifying, in this exact order: (i) the domain

objects and their potential hierarchy; (ii) the properties

and relations involving domain objects; (iii) a number

of relevant cases (i.e., initial and goal states, defined

over instances of domain objects) to be potentially han-

dled; (iv) a set of actions, together with their precondi-

tions and effects, whose execution allows to modify the

properties and relationships of domain objects. These

four steps, which will be discussed in the following sec-

tions, can be iterated several times in order to refine the

descriptions of objects/properties/cases/actions until a

satisfactory representation has been obtained.

The proposed methodology, even if never compre-

hensively described before, has been successfully ap-

plied and evaluated against real BPM users in our previ-

ous work [69], where the target was to demonstrate that

modeling the contextual knowledge of BPs executed

in dynamic and knowledge-intensive contexts using a

planning-oriented approach (leveraging our methodol-

ogy), and then generating the procedural BP model

through a state-of-the-art planner, can be more effec-

tive than directly modeling the BP in BPMN.

Being able to complete the four steps of the method-

ology allows to state that a particular problem can be

encoded as a planning problem and potentially tackled

using planning technologies. Notice that our method-

ology does not aim at acting as a tutorial for directly

encoding a problem in PDDL, where more details can

be added to the problem, such as the cost of execut-

ing single actions, etc. Conversely, its aim is to enable

researchers/practitioners to understand if and under

which conditions planning is feasible for tackling a real-

world problem in BPM. In fact, as shown in Fig. 3, only

after having enacted all the four steps of the method-

ology, the user has acquired the right understanding of

the problem to decide if it is worth (or not) to con-

cretely encode it in PDDL.

3.1 Representation of domain objects

The starting point for enacting our methodology is the

availability of a description of the real-world problem

of interest. Usually, such descriptions are provided in

natural language and/or diagrammatic form, and out-

line the kind of problem to be solved, its main features

and the ways it can be brought about. For example, in

the case of the reachability analysis of BPs, a possible

description of the problem is the one provided at the

beginning of Example 1.

Of course, problem descriptions are usually not

structured and discuss issues at different level of gran-

ularity. The main challenge is to extract the portion of

reality that is being encoded as a planning problem at

an appropriate level of detail. For example, in the reach-

ability analysis problem, we are interested in plans that

involve the firing of transitions considering input and

output places of such transitions, so that, starting from

an initial marking, the intermediate marking of places

can change until a target marking is achieved. A useful

strategy at this stage is to formulate example problems

and descriptions of their possible solutions, also in a di-

agrammatic way, such as the sequence of firing shown

in Fig. 2.

Our methodology is object-centric, i.e., it drives a

user to represent a problem focusing on the relevant

objects that are manipulated in the range of the prob-

lem itself. Thus, starting from a description of the prob-

lem, a user should first identify a list of domain objects,

which represent logical containers of purely domain in-

formation in the problem domain space. In short, a do-

main object groups several (object) instances of interest

that share common properties and behaviours.
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For example, in the reachability analysis problem,

we can define two domain objects, place and transi-

tion, and as many object instances as are the places

and transitions of interest. Sometimes it is also possible

to build domain objects in a hierarchic way, by collect-

ing objects together into a super-object, e.g., the object

node can be potentially defined as a super-object of

place and transition.

3.2 Representation of properties and relationships of

domain objects

Once selected the domain objects of interest, the second

step consists of identifying the properties and relation-

ships that involve domain objects and that are relevant

for solving the problem under consideration, i.e., the

idea is that every problem instance that a planner will

be asked to solve should be describable in terms of these

properties and relationships.

We can express them as a set of ground boolean

atomic terms v1[y1], v2[y2], ..., vm[ym] ∈ V that range

over a set of tuples (i.e., unordered sets of zero or more

attributes) y1, y2, . . . ym of domain objects. Argument

types of an atomic term (taken from the set of domain

objects previously defined) represent the finite domains

over which the atomic term is interpreted.

Considering our example, for the domain objects

place and transition, the following atomic terms are

suggested: input place(t - transition, p - place)

and output place(t - transition, p - place) for

expressing the fact that a place is in the set of in-

put/output places of a transition, and token(p -

place) to specify that a place actually contains a to-

ken.

At this stage, we can make a binary distinction be-

tween two types of atomic terms, those whose truth

value may change during the course of planning are

called dynamic, while the remaining atomic terms

are called static. In our example, atomic terms in-

put place and output place are static, since they

are used to define the structure of the Petri net of in-

terest, which never changes in the range of a specific

problem instance. On the other hand, atomic term to-

ken(p - place) is dynamic, as it can change after the

enactment of a firing action.

Such a distinction is important, because the set of

dynamic atomic terms before and after performing any

action manipulating their value can be seen as two dif-

ferent world states Si and Si+1. A state Si is a complete

assignment of values to dynamic atomic terms in V and

is the result of i actions performed so far. Therefore,

atomic terms in V may be thought of as “properties”

of the world whose values may vary across states.

3.3 Representation of relevant cases

Modeling a planning problem involves representing how

a plan pursues its goals. The goal may vary depending

on the specific case C to be handled. A case C reflects

an instantiation of the set of atomic terms V with a

starting state initc and a goal state goalc. Both states

are represented as conjunctions of atomic terms.

In initc, one can instantiate only the static and dy-

namic atomic terms necessary for representing what is

known about the initial state, i.e., the atomic terms that

are initially true. On the other hand, goalc is repre-

sented as a conjunction of those dynamic atomic terms

we want to make true or false (in this case, the operator

¬ can be used) after the execution of a plan. Notice that

a case contains also the instantiation of domain objects

dom objc that are deemed relevant for the case itself.

For example, in the specific instance of the reach-

ability analysis problem of Fig.2, the case C can be

defined as follows:

case C –>

dom objc:

–> place :
{

start, p1, p2, p3, p4, end
}

–> transition :
{

a, b, c, d, e, f
}

initc:

–> token(start), input place(a,start),

–> output place(a,p1), output place(a,p2 ),

–> input place(b,p1 ), output place(b,p3),

–> input place(c,p2 ), output place(c,p4 ),

–> input place(d,p1 ), input place(d,p2 ),

–> output place(d,p3 ), output place(d,p4 ),

–> input place(e,p3 ), input place(e,p4 ),

–> output place(e,end), input place(f,p3 ),

–> input place(f,p4 ), output place(f,start)

goalc:

–> token(end), ¬token(start),

–> ¬token(p1 ), ¬token(p2 ),

–> ¬token(p3 ), ¬token(p4 )

Of course, in a real world problem there is a wide range

of cases to handle. Consequently, the designer should

identify a certain number of relevant cases that can be

potentially represented with the domain objects and

atomic terms previously specified. If this is not the

case, according to Fig. 3, the designer can try to adapt

the existing domain objects and atomic terms in order

accommodate all the relevant cases to be solved.

3.4 Representation of actions

Once domain objects, atomic terms and a number of

relevant cases have been identified, it is the required
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to define the ways in which the world states (i.e., com-

plete assignments of values to dynamic atomic terms)

may change. To this aim, a set of individual actions

a1, . . . an ∈ A, described as single steps that consume

input data and produce output data, must be specified.

The selection of actions should be performed by hav-

ing in mind that an action specification defines what

must be done in order to transform the current state

of the world Si to a new state Si+1. For this reason,

starting from the informal description of the problem

of interest, actions can be identified as those operators

whose enactment changes the value of (at least) a dy-

namic atomic term. In this direction, a good strategy

to identify and build proper action specifications is to

verify that:

– the action can be executed in some reachable world

state;

– the action always affects a non-empty set of dynamic

atomic terms;

– there exist at least an action that can be executed

in the starting state initc of the case c under con-

sideration;

– any atomic term in the goal state goalc of the case

c under consideration should be affected by at least

one action.

To be more concrete, each action is annotated with

preconditions and effects. Preconditions are logical con-

straints defined as a conjunction of static and dynamic

atomic terms, and they must be satisfied before the ac-

tion is applied. As a consequence, an action ai ∈ A
can only be performed in a given world state Si if that

state satisfies the preconditions Pi of that activity, i.e.,

if Pi ⊆ Si.
Each action has also a set of effects that establish

the outcome of an action after its execution by chang-

ing the current world state Si into a new world state

Si+1. Effects can be of two kinds. Necessary effects al-

ways change the value of some dynamic atomic term

when the action is executed. Conditional effects are as-

sociated to a condition consisting of a conjunction of

atomic terms; if such a condition holds when the action

is executed, then the effect is enacted.

We can describe the effects of an action ai as a set

of atomic terms Ri that ai removes from Si, and an-

other set of atomic terms Li that ai adds to Si so that

the overall result is the new state Si+1. Ri is called the

remove-list of ai, whereas Li is called the add-list of ai.

These entities are illustrated in Fig. 4. For their defi-

nition, we have taken inspiration from STRIPS, which

is the simplest and oldest classical planning language

originally developed by Fikes and Nillson in 1971 [29]

for drastically reducing the expressiveness of a planning

problem.

Fig. 4 The anatomy of an action in our methodology.

For example, in the reachability analysis problem,

we can build the action fire for executing enabled tran-

sitions by considering that:

– it requires one parameter for representing the spe-

cific transition to be fired (i.e., transition(t)).

The action can be specified as: fire(t - transi-

tion);

– this action can only be executed if any input place

place(p) of transition(t) contains at least a to-

ken, i.e., both atomic terms input place(t,p) and

token(p) hold. These are the action’s precondi-

tions;

– this action provides two conditional effects for (re-

spectively) removing tokens from the input places

of transition(t) and adding tokens to the out-

put places of transition(t). This means that a

new state Si+1 is produced by removing from S
the atomic term token(p) (i.e., the remove-list)

if input place(t,p) holds, and adding the atomic

term token(p) to S (that is the add-list) if out-

put place(t,p) holds.

The specification of the action fire can be compactly

described as follows:

fire(t - transition):

Pfire: forall(p - place) {input place(t,p),

token(p)}
Rfire: forall (p - place) {if

(
input place(t,p)

)
–> token(p)}
Lfire: forall (p - place) {if

(
output place(t,p

)
–> token(p)}

Note that universal/existential quantification of objects

in preconditions and effects is allowed to assert that a

property or relation, expressed with an atomic term,

holds for all instances of a domain object. Then, while

the definition of actions without preconditions that are

always executable in any reachable state is possible, the

designer should avoid to specify actions that provide no

effects, since their execution would not contribute to the

progress of the states.

In addition, coming back to the previous discussion

on how to wisely selecting proper actions, the designer

should consider to specify: (i) at least an action that

is executable in the starting state, in a way that its

preconditions are satisfied by the instances of (some)

atomic terms in the starting state; (ii) a number of

actions whose (combined) execution allows to achieve
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all the instances of the atomic terms in the goal state.

Concerning this last point, we notice that it is not re-

quired that any action affects all the atomic terms in

the goal state, but it would be desirable that for any

atomic term in the goal state there exists at least one

action that manipulates it.

These are the minimum requirements that allow to

build a candidate plan that is executable from the start-

ing state and that is able to potentially achieve the goal

state. In our example of reachability analysis, the ac-

tion fire(t - transition) satisfies alone all the above

requirements. Of course, a designer can provide more

actions manipulating some atomic term, in a way that

the effects of one action can match the preconditions

of another action, allowing the actions to be connected

into a sequence.

The proper completion of the four steps of the method-

ology guarantees that the problem of interest can be en-

coded as a classical planning problem in PDDL 2.1 and

that is potentially solvable using state-of-the-art plan-

ning technologies. Note that the target of the method-

ology is not of driving a user to encode a planning

problem directly in PDDL. For this task, several KE

approaches from the planning community already exist

in the research literature, as discussed at the beginning

of this section. Conversely, our methodology aims at

enabling researchers/practitioners to understand if and

under which conditions planning is feasible for tackling

a real-world problem from the BPM community.

4 Integrating Planning Technology with PMSs

In the previous section, we have proposed a four-steps

methodology that drives a researcher/practitioner in re-

formulating a real-world problem into a planning prob-

lem. The next step is to encode the problem in PDDL

and investigate how to concretely exploit state-of-the-

art planning technologies to tackle challenges addressed

by the BPM community. This requires to establish a

tight collaboration between a BPM execution environ-

ment, i.e., a PMS, and a state-of-the-art planner.

Despite the variety of functionalities that a PMS can

offer, the core features of such a software system reside

in the modeling, automation, execution and monitor-

ing of BPs. In the left-hand part of Fig. 5, the main

components of a PMS (as identified in [26]) are shown,

namely:

– the process modeling tool, which offers functionali-

ties to create, modify, annotate (with business rules

and additional data), and store/retrieve (into/from

a dedicated repository) BP models;

– the execution engine, which uses a BP model to de-

termine the logical/temporal order in which the ac-

tivities of a BP have to be executed, create exe-

cutable process instances and distribute work items

to qualified and authorized BP participants in order

to enact a BP from start to end;

– the worklist handler, which is the component

through which BP participants are offered work

items and commit to these;

– the external services, which can be invoked by

the execution engine to delegate the enactment of

some BP activities to external software applications

across the organization;

– the administration and monitoring tools, which are

required to deal with all operational matters of

a PMS and to monitor the performance and the

progress of the running BPs. In addition, such tools

allow to record the execution of a BP step-by-step

in the form of execution logs, which consist of traces

of execution-related events.

On the other hand, a state-of-the-art planner can

be seen as a black box, i.e., no expertise of the internal

working of the planner is required to build a plan. The

right-hand part of Fig. 5 shows the conceptual architec-

ture of a state-of-the-art planner. Central to the planner

is the solver, which is fed by a PDDL planning domain

and a PDDL planning problem to produce a plan that

achieves a certain goal starting from a (given) initial

state.

In order to integrate a state-of-the art planner with

a PMS, an additional component is required, namely

the Synchronization component. The Synchronization

component acts as unique entry point for incoming

commands from the PMS to the planner; it enables

communication and enforces synchronization between

them. It includes three main components:

– the Domain Builder and the Problem Builder com-

ponents, which build, respectively, a PDDL plan-

ning domain and a PDDL planning problem starting

from a description of the domain objects, relation-

ships between them, actions and a case (cf. sections

2 and 3);

– the Plan Builder component, which - on the one

hand - is used to properly configure the planner with

specific instructions to customize the plan synthe-

sis (e.g., by selecting the specific search algorithm

for building a plan), and - on the other hand - to

translate a (synthesized) plan in a format that is

interpretable by the PMS.

State-of-the-art planners can be invoked as services

that are external to the PMS. Of course, which exact
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Fig. 5 The architecture of a PMS (left-hand part, original figure in [26]) and its integration with state-of-the-art planning
technology.

PMS component interacts with a planner depends on

the specific problem to be tackled. For example,

– if the planner is used to generate new process mod-

els, the interaction most likely involves the process

modeling tool and/or the repository of BP models,

e.g., see [69];

– if the planner is used to synthesize recovery pro-

cedures, a connection between the planner and the

execution engine of the PMS is needed to retrieve

information on the state of the faulty process to be

adapted, e.g., see [73,74];

– if the planner is used to compute trace alignment

in conformance checking, information about process

models and event logs must be retrieved from the

repository of BP models and the repository of exe-

cution logs, e.g., see [18,60].

The effort to integrate planning technology with

PMSs does not go beyond installing the planner and de-

veloping the Synchronization component in a way that

it enables to build (on-demand) the planning problem

formulation, invoke the planner and interpret the plan

returned by the planner in a format understandable by

the PMS.

Notice that, since PDDL is independent from the

specific planning system employed, one can seamlessly

integrate with the PMS different state-of-the-art plan-

ners compliant with PDDL, as the problem formulation

remains unchanged when moving from one planner to

the other. This means that by converting a BPM prob-

lem into a planning problem, one can switch from a

planner to another and from a searching algorithm to

another with no or very limited effort.

5 What Automated Planning has done for

BPM

In this section, we show how instances of some well-

known problems from the BPM literature can be rep-

resented as planning problems for which planners can

find a correct solution in a finite amount of time. Specif-

ically, a number of research works exist on the use of

planning techniques in the context of BPM, covering

the various stages of the process life cycle (cf. Fig. 6).

For the design-time phase, existing literature has

focused on exploiting planning to automatically gen-

erate: (i) candidate procedural BP models, describing

which activities can be executed next in order to achieve

some business goals starting from a complete descrip-

tion of the BP domain; and (ii) declarative models rep-

resented as execution constraints that the BP has to

satisfy at run-time, thus providing more flexibility dur-

ing BP execution. Some research works also exist that

use planning to deal with problems for the run-time

phase, e.g., to monitor and adapt running procedural

BPs to cope with anomalous situations. Finally, for the

diagnosis phase, the literature reports some works that

use planning to perform conformance checking against

procedural and declarative BP models. In the following

sections we discuss in the detail how the use of planning

has contributed to tackle the above research challenges

from BPM literature.

5.1 Planning for the Automated Generation of Process

Models

Process modeling is the first and most important step in

the BPM life cycle, which intends to provide a high-level
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Fig. 6 Planning-based contributions in the various stages of
the BPM life-cycle.

specification of a business process that is independent

from implementation and serves as a basis for process

automation and verification. Traditional process mod-

els are usually well-structured, i.e., they reflect highly

repeatable and predictable routine work with low flex-

ibility requirements. All possible options and decisions

that can be made during process enactment are stati-

cally pre-defined at design-time and embedded in the

control-flow of the process.

Challenge. Current BPM technology is generally

based on rigid BP models making its application dif-

ficult in dynamic and possibly evolving domains, where

pre-specifying the entire BP model is not always pos-

sible. This problem can be mitigated through specific

approaches to process variability [53], which allow one

to customize a base BP model by implementing specific

variants of the BP itself. However, this activity is time-

consuming and error-prone when more flexible BPs are

to be modeled, due to their context-dependent nature

that make it difficult to specify all the potential tasks

interactions and BP variants in advance. A second so-

lution consists of using declarative languages to model

BPs. Instead of describing in a procedural way the or-

der of activities to be performed, declarative languages

define constraints between BP activities that must not

be violated during BP execution. If, on the one hand,

these languages allow for a high degree of flexibility, on

the other hand, this freedom leads to understandabil-

ity issues, since providing a clear representation of all

possible BP executions becomes too complex for hu-

mans as the number of constraints increases on the BP

model. Consequently, the presence of mechanisms that

facilitate the design phase of flexible BPs by allowing

the automated generation of their underlying models is

highly desirable [22].

Application of Planning. The work [99] presents

the basic idea behind the use of planning techniques

for the automated generation of a procedural process

model. Process activities can be represented as plan-

ning actions together with their preconditions and ef-

fects stating what contextual data may constrain the

process execution or may be affected after an activity

completion. The planning domain is therefore enriched

with a set of propositions that characterize the con-

textual data describing the process domain. Given an

initial description of the process domain, the target is

to automatically obtain a plan (i.e., a process model

and its control-flow) that consists of process activities

contextually selected and ordered in a way to satisfy

some business goals.

In the research literature, there are four main ap-

proaches that use planning on the basis of the gen-

eral schema outlined above. In [91], the authors ex-

ploit a planner for modeling processes in SHAMASH, a

knowledge-based system for the design of business pro-

cesses. The planner, which is fed with a semantic repre-

sentation of the process knowledge, produces a parallel

plan of activities that is translated into SHAMASH and

presented graphically to the user. The obtained plan

proposes the scheduling of parallel activities that may

handle time and resource constraints. Notice that the

emphasis here is on supporting processes for which one

has complete knowledge.

The work [28] is based on learning activities as plan-

ning operators and feeding them to a planner that gen-

erates the process model. An interesting result concerns

the possibility of producing process models even though

the activities may not be accurately described. In such

cases, the authors use a best-effort planner that is al-

ways able to create a plan, even though the plan may

be incorrect. By refining the preconditions and effects

of planning actions, the planner will be able to pro-

duce several candidate plans, and after a finite number

of refinements, the best candidate plan (i.e., the one

with the lowest number of unsatisfied preconditions) is

translated into a process model.

In the SEMPA approach [43], process actions are

semantically described by specifying their input/output

parameters with respect to an ontology implemented

in OWL. Starting from such a knowledge, planning is

used to derive an action state graph (ASG) consisting

of those actions whose execution leads to a given goal

from a pre-specified initial state. Then, a process model

represented as an UML activity diagram is extracted

from the ASG by identifying the required control flow

for the process. Interestingly, the planning algorithm

implemented in SEMPA provides the ability to build

the ASG in presence of initial state uncertainty and

with different conflicting goals.
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The works [67,69] refer to a technique based on

partial-order planning algorithms and declarative spec-

ifications of process activities in PDDL for synthesizing

a library of process templates to be enacted in contex-

tual scenarios. The resulting templates guarantee that

concurrent activities of a process template are effec-

tively independent one from another (i.e., they cannot

affect the same data) and are reusable in a variety of

partially specified contextual environments. A key char-

acteristic of this approach is the role of contextual data

acting as a driver for process templates generation.

Whereas the above works focused on generating

procedural BP models, the work [56] proposes an ap-

proach that leverages on planning via model check-

ing [40] to synthesize multiple candidate plans (in form

of sequences of activities) satisfying a set of declarative

constraints defined on BP activities at design-time. The

target here is to provide a human modeler with a priori

experience of how a declarative BP model may possibly

evolve at run-time.

5.2 Planning for Process Adaptation

Process Adaptation is the ability of a process to re-

act to exceptional circumstances (that may or may not

be foreseen) and to adapt/modify its structure accord-

ingly [94]. Exceptions can be either anticipated or unan-

ticipated. An anticipated exception can be planned at

design-time and incorporated into the process model,

i.e., a (human) process designer can provide an excep-

tion handler which is invoked during run-time to cope

with the exception. Conversely, unanticipated excep-

tions generally refer to situations, unplanned at design-

time, that may emerge at run-time and can be de-

tected by monitoring discrepancies between the real-

world processes and their computerized representation.

Challenge. In many dynamic application domains

(e.g., emergency management, smart manufacturing,

etc.), the number of possible anticipated exceptions is

often too large, and traditional manual implementa-

tion of exception handlers at design-time is not fea-

sible for process designers, who have to anticipate all

potential problems and ways to overcome them in ad-

vance. Furthermore, anticipated exceptions cover only

partially relevant situations, as in such scenarios many

unanticipated exceptional circumstances may arise dur-

ing process execution. The management of processes

in dynamic domains requires that BPM environments

provide real-time monitoring and automated adaptation

features during process execution, in order to achieve

the overall objectives of the processes still preserving

their structure by minimising any human interven-

tion [22].

Application of Planning. The first work dealing with

this research challenge is [50]. It discusses how planning

can be interleaved with process execution to suggest

compensation procedures or the re-execution of activ-

ities if some anticipated failure arises. The work [33]

presents an approach for enabling automated process

instance change in case of activity failures occurring

at run-time that lead to a process goal violation. The

approach relies on a partial-order planner for the gen-

eration of a new complete process model that complies

with the process goal. The generated model is substi-

tuted at run-time to the original process that included

the failed task.

The above works use planning to tackle anticipated

exceptions or to completely redefine the process model

when some activity failure arises. However, in dynamic

domains, it would be desirable to adapt a running pro-

cess by modifying only those parts of the process that

need to be changed/adapted and keeps other parts sta-

ble, by avoiding to revolutionize the work list of activ-

ities assigned to the process participants [22].

In this direction, the SmartPM approach and sys-

tem [73,74] provides a planning-based mechanism that

requires no predefined handler to build on-the-fly the

recovery procedure required to adapt a running process

instance. Specifically, adaptation in SmartPM can be

seen as reducing the gap between the expected reality,

i.e., the (idealized) model of reality that reflects the in-

tended outcome of the task execution, and the physical

reality, i.e., the real world with the actual values of con-

ditions and outcomes. A recovery procedure is needed

during process execution if the two realities are differ-

ent from each other. A misalignment of the two realities

often stems from errors in the tasks outcomes (e.g., in-

correct data values) or is the result of exogenous events

coming from the environment. If the gap between the

expected and physical realities is such that the process

instance cannot progress, the SmartPM system invokes

an external planner to build a recovery procedure as

a plan, which can thereby resolve exceptions that were

not designed into the original process. This technique is

challenged in an emergency management domain where

mobile technologies and environmental sensors are em-

ployed to execute BP activities. Notice that a similar

framework to tackle process adaptation through plan-

ning is also adopted in the research works [70,72,76].

In SmartPM, the problem of automatically synthe-

sizing a recovery procedure is encoded as a classical

planning problem in PDDL. The planning domain con-

sists of propositions that characterize the contextual

data describing the process domain. Planning actions
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are built from a repository of process activities anno-

tated with preconditions and effects expressed over the

process domain. Then, the initial state reflects the phys-

ical reality at the time of the failure, while the goal state

corresponds to the expected reality. A classical plan-

ner (in this specific case, the LPG-td planner [38]) fed

with such inputs searches for a plan that may turn the

physical reality into the expected reality by adapting

the faulty process instance. In [75], the effectiveness of

SmartPM is also demonstrated by adapting a BP com-

ing from the smart manufacturing domain.

A similar adaptation strategy is applied in [14],

which proposes a goal-driven approach for service-based

applications to adapt business processes to run-time

context changes. Process models include service annota-

tions describing how services contribute to the intended

goal. Contextual properties are modeled as state tran-

sition systems capturing possible values and possible

evolutions in the case of precondition violations or ex-

ternal events. Process and context changes that prevent

goal achievement are managed through an adaptation

mechanism based on service composition via planning.

Finally, the work [10] proposes a runtime mecha-

nism that uses dependency scopes for identifying crit-

ical parts of the processes whose correct execution

depends on some shared variables and intervention

processes for solving potential inconsistencies between

data. Intervention processes are automatically synthe-

sised through a planner based on Constraint Satisfac-

tion Problem (CSP) techniques. While closely related to

SmartPM, this work requires specification of a (domain-

dependent) adaptation policy, based on volatile vari-

ables and when changes to them become relevant.

5.3 Planning for Conformance Checking

Within the discipline of process mining, conformance

checking is the problem of verifying whether the ob-

served behavior stored in an event log is compliant with

the process model that encodes how the process is al-

lowed to be executed to ensure that norms and reg-

ulations are not violated. The notion of alignment [4]

provides a robust approach to conformance checking,

which makes it possible to exactly pinpoint the devia-

tions causing nonconformity with a high degree of de-

tail. An alignment between a recorded process execu-

tion (log trace) and a process model is a pairwise match-

ing between activities recorded in the log (events) and

activities allowed by the model (process activities).

Challenge. In general, a large number of possible

alignments exist between a process model and a log

trace, since there may exist manifold explanations why

a trace is not conforming. It is clear that one is inter-

ested in finding the most probable explanation, i.e., one

of the alignments with the least expensive deviations

(i.e., optimal alignments), according to some function

assigning costs to deviations. The existing techniques to

compute optimal alignments against procedural [5] and

declarative [59] process models provide ad-hoc imple-

mentations of the A* algorithm. The fact is that when

process models and event logs are of considerable size

the existing approaches do not scale efficiently due to

their ad-hoc nature and they are unable to accomplish

the alignment task. In the era of Big Data, scalable ap-

proaches to process mining are desperately necessary,

as also advocated by the IEEE Task Force in Process

Mining [4].

Application of planning. In case of procedural mod-

els represented as Petri Nets, the work [60] proposes an

approach and a tool to encode the original algorithm

for trace alignment [5] as a planning problem in PDDL.

Specifically, starting from a Petri net N and an event

log L to be aligned, for each log trace σL ∈ L it is built:

– a planning domain PD, which encodes the propo-

sitions needed to capture the structure of N and

to monitor the evolution of its marking, and three

classes of planning actions that represent “align-

ment” moves: synchronous moves (associated with

no cost), model moves and log moves;

– a planning problem PR, which includes a number

of constants required to properly ground all the do-

main propositions in PD; in this case, constants will

correspond to the place and transition instances in-

volved in N .

Then, the initial state of PR is defined to capture the

exact structure of the specific log trace σL of interest

and the initial marking of N , and the goal condition

is encoded to represent the fact that N is in the final

marking and σL has been completely analyzed. At this

point, for any trace of the event log, an external plan-

ner is invoked to synthesize a plan to reach the final

goal from the initial state, i.e., a sequence of alignment

moves (each of which is a planning action) that estab-

lish an optimal alignment between σL and N .

In the work [58], the authors report on a planning-

based technique that extends what was proposed in

[60], by removing the total-ordering assumption of trace

events and tackling the issue of aligning partially-

ordered traces - i.e., having a coarse granularity for the

event timestamps - to Petri nets.

Relatively close to [60] is the work [23] where au-

thors use planners to recover the missing recording

of events in log traces. The concept of missing event

recordings is very similar to model moves in [60]. How-
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ever, in [23] it is assumed that all executions are com-

pliant with the model and, hence, every event that is

present in the incomplete log trace is assumed to be

correct. In other words, they do not foresee log moves.

In case of declarative process models, where rela-

tionships among process activities are implicitly de-

fined through logical constraints expressed in the well-

known LTLf (Linear Temporal Logic on finite traces)

formalism, the work [18] leverages on planning tech-

niques to search for optimal alignments. A planning

domain is encoded to capture the structure of the finite

state automata (augmented with special transitions for

adding/removing activities to/from a log trace) corre-

sponding to the individual LTLf constraints that com-

pose the declarative model. The same can be done for

the specific trace to be aligned, which is represented

as a simple automaton that consists of a sequence of

states. In addition, the definition of specific domain

propositions allows to monitor the evolution of any au-

tomaton. At this point, the initial state of the planning

problem is encoded to capture the exact structure of

the trace automaton and of every constraint automa-

ton. This includes the specification of all the existing

transitions that connect two different states of the au-

tomata. The current state and the accepting states of

any trace/constraint automaton are identified as well.

Then, the goal condition is defined as the conjunction

of the accepting states of the trace automaton and of

all the accepting states of the constraint automata. At

this point, a planner is invoked with such inputs to

synthesize a plan that establishes an optimal alignment

between the declarative model and the log trace of in-

terest.

A previous work tackling the same issue of aligning

trace logs to declarative process models using classical

planning is presented in [19]. However, differently from

[18], in [19] the authors need to determine, for each log

trace, a bound on the maximum number of instances

of each process activity needed to align the trace. How-

ever, such a bound is not minimal, i.e., more activity

instances than those needed for the alignment may be

incorporated in the planning problem. This may dra-

matically increase the search space.

Notably, both the works [60] and [18] report on re-

sults of experiments conducted with several planners

fed with combinations of real-life and synthetic event

logs and processes. The results show that, when pro-

cess models and event-log traces are of considerable

size, their planning-based approach outperforms the ex-

isting approaches based on ad-hoc implementations of

the A* algorithm [5,59] even by several orders of mag-

nitude, and they are always able to properly complete

the alignment task (while the existing approaches often

run out of memory).

Finally, under the umbrella of the approaches devel-

oped for the diagnosis stage of the BPM life-cycle, the

work [65] shows how classical planning can be used to

efficiently solve the problem of checking compliance re-

quirements expressed in terms of LTLf rules, by point-

ing at the BP activities in a BPMN model where com-

pliance is breached.

6 Related Work

The AI community has been involved with research

on BPM for several decades, and some works have in-

vestigated the role that automated planning technolo-

gies can play in the construction of PMSs that man-

age complex BPs, while remaining robust, reactive, and

adaptive in the face of both environmental and tasking

changes. One of the first works dealing with this re-

search challenge is [84], which describes how techniques

from the planning community could be leveraged for

synthesizing new BPs and repairing previously defined

BPs that are no longer suitable for a given situation.

The work [9] discusses at high level how the use of an

intelligent assistant based on planning techniques may

suggest compensation procedures or the re-execution

of activities if some anticipated failure arises during

the process execution. In [50] the authors describe how

planning can be interleaved with process execution and

plan refinement, and investigates plan patching and

plan repair as means to enhance flexibility and respon-

siveness. Similarly, the approach presented in [92] high-

lights the improvements that a legacy workflow appli-

cation can gain by incorporating planning techniques

into its day-to-day operation.

To the best of our knowledge, since 2002 there is

no other published work that has proposed a general

methodology for the application of automated planning

techniques to BPM; several works exist, but they are

targeted to the application of planning techniques for

tackling specific challenges in the area of BPM, as thor-

oughly detailed in Section 5.

Another research area (that is highly related to

BPM) where the use of planning contributed to tackle

complex challenges is the one of web service com-

position [11,89,90,6,20]. Among the most interest-

ing works in this area, only few of them employ

domain-independent planners to generate compositions

of atomic web services [80,102,86,52,51]. In [88], plan-

ning technologies are used to obtain service composi-

tion at the knowledge level [77]. In [46] a customization

of the FF (Fast Forward) planner [45] is used to con-

struct service orchestrations from atomic IT entities de-
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scribed in a planning-like manner, while the works [81,

103] employ situation calculus combined with planning

techniques to perform service composition.

As opposed to the works that view services as

atomic planning operators, there is a significant amount

of research [104,12,13] that consider services as stateful,

i.e., with a well-defined related behavioural description

derived from a BPEL specification. In such works the

requirements of the desired composite service are ex-

pressed in a temporal logic-like language, and planning

techniques based on model-checking are used for service

composition.

Finally, it is worth to mention that also in the area of

Ubiquitous Computing there is a massive usage of plan-

ning technologies for dealing with the evolution and the

uncertainty of dynamic environments. Interested read-

ers can refer to the work [37] for a detailed and up to

date literature review on this topic.

7 Discussion and Conclusion

We are at the beginning of a profound transformation of

BPM due to the recent advances in AI research [48]. In

this context, we have shown how Automated Planning

can offer a mature paradigm to introduce autonomous

behaviour in BPM for tackling complex challenges in a

theoretically grounded and domain-independent way.

In this direction, we have first described how a re-

searcher/practitioner should approach the task of en-

coding a real-world problem as an appropriate plan-

ning problem and under which conditions planning is

feasible for processes. Then, we have investigated how

to concretely integrate the planning technology with

PMSs. Finally, we have shown how instances of some

well-known problems from the BPM literature can be

represented as planning problems for which planners

can find a correct solution in a finite amount of time.

One of the motivations of using automated planning

techniques in the context of BPM is to realize methods

and technologies that are more general, flexible, and ori-

ented to the reasoning task in dynamic contexts. Over

the last years, several BP-oriented declarative model-

ing notations, such as Declare [87], Condition Response

Graphs (DCR) [44], Guard-Stage-Milestone (GSM) [47]

and Case Management Model and Notation (CMMN)

[85], have been proposed to tackle this same objective.

Instead of explicitly model the flow of the interactions

among BP activities, Declare and DRC graphs rely (re-

spectively) on a set of temporally extended constraints

and on binary relations supporting decomposition for

implicitly specifying the allowed behavior of a BP. On

the other hand, GSM and CMMN provide a declarative

rule-based framework for specifying artifact-centric BP

models.

The above notations share with automated planning

the declarative nature of the language, which is used not

to model the exact flow of the problem, but to establish

desired results, i.e., specifying what they want to hap-

pen but not how it should happen. The major difference

lies in the generality of the language used. On the one

hand, declarative notations for BPs can be employed to

specify BP models in a declarative way through a set of

constraints or artifacts. However, this means that they

are bound to a specific problem (i.e., the definition of

BP models) and their interpretation is well constrained

in this domain. Conversely, planning models encoded

in PDDL are general, in the sense that a planner can

be fed with the description of any planning problem in

PDDL (as defined in Section 2) without knowing what

the actions and domain stand for, and for any such de-

scription it can synthesize a plan achieving the goal.

Leveraging the planning paradigm (in particular in

its classical setting) may lead to several advantages:

– Planning models are general (see the discussion

above). This generality is intimately tied to the no-

tion of intelligence which requires the ability to deal

with new problems [36].This means that planners

can potentially solve any BPM problem that can be

converted into a planning problem in PDDL.

– Planning models are human-comprehensible, as the

PDDL language allows to describe the planning do-

main and problem of interest in a high-level termi-

nology, which is readily accessible and understand-

able by IT professionals.

– The standardized representation of a planning

model in PDDL allows to exploit a large repertoire of

planners and searching algorithms with very limited

effort; i.e., one can seamlessly update to the recent

versions of the best performing automated planners,

with evident advantages in term of versatility and

customization.

– Planning models, if encoded with the classical ap-

proach, constitute implicit representations of finite

state controllers, and can be thus queried by stan-

dard verification techniques, such as Model Check-

ing.

– BPM environments can invoke planners as exter-

nal services. Therefore, no expertise of the internal

working of the planners is required to build a plan.

– Planning systems employ search algorithms driven

by intelligent heuristics that allow to scale up effi-

ciently to large problems.

On the other hand, although Planning (in particular

in its classical setting) embeds properties desirable for

BPM, it imposes some restrictions for addressing more
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expressive problems, including preferences and nonde-

terministic action effects. Furthermore, planning mod-

els require that actions are completely specified in term

of I/O data elements, preconditions, and effects, and

that the execution context can be captured as part of

the planning domain. These aspects can frame the scope

of applicability of the planning paradigm to BPM, and

an interesting future work would consist of finding rel-

evant counter-examples that may show the boundaries

of such an applicability.

In the AI literature, there exist more advanced

forms of non-classical planning models that can poten-

tially mitigate the above restrictions and used to tackle

further challenging tasks from the BPM literature. For

example:

– Markov Decision Processes (MDPs) [21] and Par-

tially observable MDPs (POMDPs) [93] planning

generalize the model underlying classical planning

by allowing actions with stochastic effects and fully

observable states (in case of MDPs) or partially ob-

servable states (in case of POMDPs). Such planning

models could be employed to simulate and moni-

tor the executions of case-oriented BP models (e.g.,

CMMN), where the effect of the activities is not

always completely predictable at design-time, and

may emerge gradually at run-time on a case-by-case

basis. In addition, the stochastic nature of MDPs

planning provides a natural framework for predicit-

ing features of BPs in the context of research in BP

prediction [64,31].

– Hierarchical Task Planning, or HTN planning, is fo-

cused on the definition of general strategies for solv-

ing problems rather than in representing and solving

the problems themselves [39]. The main feature of

HTN planning is that the dependency among plan-

ning actions can be given in the form of hierarchi-

cally structured networks. As suggested by [41,68],

this feature makes HTN planning particularly suit-

able to tackle the challenge of automatically syn-

thesizing at run-time, i.e., when it becomes clear

what needs to be done at a specific point in the BP,

the “content” (in form of sub-processes of different

granularity) of those BP activities that are under-

specified at design-time [98].

– Temporal planning [17] deals with durative actions

and actions that may overlap in time, i.e., which can

be taken simultaneously. Duration of actions may

vary, and they may have complex interdependen-

cies that determine which combinations are possi-

ble. These features represent a good basis to inves-

tigate trace alignment of procedural and declarative

BPs when the compliance with temporal patterns,

such as the ones introduced in [54], must be satisfied

in addition to the traditional control-flow oriented

constraints.

Of course, the above discussion is not exhaustive,

since several non-classical variants of the classical plan-

ning models exist (cf. [36]), and their usefulness in the

BPM context is yet to be demonstrated. Nonetheless,

the use of classical planning techniques in the BPM

context is still most widespread, thanks to the the ro-

bustness and maturity of the existing state-of-the-art

planning systems, which allow to solve efficiently sev-

eral complex real-world BPM challenges. In addition,

it is often possible to solve non-classical planning prob-

lems using classical planners by means of well-defined

transformations [35].

In this direction, as a further future work, we aim at

developing a rigorous methodology to acquire relevant

literature on the use of classical and non-classical plan-

ning for BPM and derive a common evaluation frame-

work to systematically review and classify the existing

methods.

This paper extends previous work in [66] including

new elements such as: (i) a case study describing how

a practical problem from the BPM domain can be en-

coded in PDDL and solved using planning techniques;

(ii) a methodology that shows how approaching the

task of encoding an appropriate planning problem; (iii)

a discussion about the integration of the planning tech-

nology in PMSs; (iv) a new related work section. Fur-

thermore, all the other sections have been refined and

enhanced to present the material more thoroughly.
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