
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2021/2022

Solution of Problem 1

(a) The geometric constraint on the robot motion is expressed as

x2 + y2 + z2 = r2.

By differentiating w.r.t. time, one obtains the corresponding kinematic constraint,
which is Pfaffian:

x ẋ+ y ẏ + z ż = 0 or aT q̇ = 0 with aT = (x y z)T

(b) From a global viewpoint, the configuration q of the robot must belong to a 2-dimensional
subset of IR3, i.e., the sphere (a manifold). From a local viewpoint, its generalized
velocity q̇ is limited to a 2-dimensional subspace of IR3, i.e., the null space of aT (q),
which is the tangent plane at q. Therefore, both global and local mobility are restricted.

(c) A basis for N (aT (q)) consists of the following vector fields (other choices are possible)

g1(q) =

 y
−x
0

 g2(q) =

 z
0
−x


and thus the kinematic model is

q̇ = g1(q)u1 + g2(q)u2 or

 ẋ
ẏ
ż

 =

 y
−x
0

u1 +

 z
0
−x

u2

One easily finds

g3(q) = [g1, g2] (q) =

 0
z
−y


and being

rank (g1(q) g2(q) g3(q)) = rank

 y z 0
−x 0 z
0 −x −y

 = 2

the robot is not controllable, as expected.
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Solution of Problem 2

The (2, 3) chained form is

ż1 = v1

ż2 = v2

z3 = z2 v1

The first two equations are simple integrators. Therefore, it is trivial to design v1 and
v2 so as to drive z1 and z2 to their destination in finite time. After this, one may use the
sinusoidal controls suggested by the problem: choosing appropriately their parameters, also
z3 will go to its destination, while z1 and z2 will go back to where they started from, i.e.,
their destination.

(a) A possible algorithm is this:

Phase 1 Set v1 = sign(z1,f − z1,i) and v2 = sign(z2,f − z2,i) for t ∈ [0, T1], with
sign(0) = 0 and T1 = max(|z1,f − z1,i|, |z2,f − z2,i|). At the end of this phase, z1
and z2 will be at z1,f and z2,f , respectively, while z3 will be at a certain value1

z3(T1).

Phase 2 Set v1 = a sinω(t − T1) and v2 = b cosω(t − T1) for t ∈ [T1, T1 + 2π/ω],
with the constraint a b π/ω2 = z3,f − z3(T1). At the end of this phase, z1 and z2
will return to z1,f and z2,f , respectively, while z3 will be at z3,f .

(b) Phase 1 contains no parameters. In Phase 2 we have three parameters (a, b and ω) which
must be chosen so as to satisfy one constraint (abπ/ω2 = z3,f − z3(T1)). Parameters
a and b will be the amplitudes of the Phase 2 inputs, and therefore they should be
chosen keeping into account existing bounds on the available inputs. These parameters
also affect the trajectory: since z1 and z2 during Phase 2 trace an ellipse2, a and b will
determine the shape of this ellipse. In particular, a > b (a < b) will give an ellipse
elongated along z1 (z2). As for ω, it will determine the duration of Phase 2 and
therefore the total time needed to go from zi to zf .

(c) Being zi = (0, 0, 0) and zf = (1, 1, 1), the duration of Phase 1 is T1 = max(1, 1) = 1.
Assuming that ω is chosen arbitrarily, the dotal duration of the motion will be 1+2π/ω.
The trajectory on the z1, z2 plane will be a line from (0, 0) to (1, 1) in Phase 1, followed
by an ellipse in Phase 2.

1It is easy to compute z3(T1) in closed form by integrating the chained form equations under the Phase
1 inputs.

2This intuitive fact can be proven by integrating the first two equations of the chained form under the
Phase 2 inputs and verifying that the solutions z1 and z2 are the parametric equations of an ellipse.
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Solution of Problem 3

Let (xi, yi, θi) be the configuration vector of each unicycle (i = 1, 2). The coordinates of each
barycenter are

xci = xi + d cos θi (1)

yci = yi + d sin θi (2)

while the barycenter of the team (masses are identical) is located at

xb =
xc1 + xc2

2
(3)

yb =
yc1 + yc2

2
(4)

(a) Input-output linearization is the most convenient approach. The output is the position
of the team barycenter, while the inputs are the driving and steering velocities of each
robot. Using the kinematic model of the two unicycles, one easily obtains

ẋb =
v1 cos θ1 − dω1 sin θ1 + v2 cos θ2 − dω2 sin θ2

2

ẏb =
v1 sin θ1 + dω1 cos θ1 + v2 sin θ2 + dω2 cos θ2

2

that is

(
ẋb
ẏb

)
=

1

2

(
cos θ1 −d sin θ1 cos θ2 −d sin θ2
sin θ1 d cos θ1 sin θ2 d cos θ2

)
v1
ω1

v2
ω2

 =
1

2
T (θ1, θ2)u (5)

where T is the 2×4 decoupling matrix and u is the 4-dimensional vector collecting all
velocity inputs. Matrix T has clearly rank 2 if d 6= 0. Under this assumption, we may
use the linearizing feedback3

u = 2T#(θ1, θ2)a (6)

where T# = T T (TT T )−1 is the 4×2 pseudoinverse of T and the 2-dimensional vector
a = (a1, a2) represents the new inputs. Using (6) in (5) we get a linear (simple
integrators) input-output map: (

ẋb
ẏb

)
=

(
a1
a2

)
Therefore, we can achieve global exponential tracking by simply setting

a1 = ẋ∗b + k1(x
∗
b − xb) (7)

a2 = ẏ∗b + k2(y
∗
b − yb) (8)

with k1, k2 > 0. The actual velocity inputs for the unicycle are obtained plugging (7–8)
in (6).

3Note that (6) provides the least-squares linearizing feedback, but other choices are possible. For example,
we one may add a null-space term to optimize (locally) a certain cost function. This null-space term will
have no effect on the output tracking.
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(b) The variables needed to implement the control law (6–7–8) are θ1, θ2 for the decoupling
matrix and xb, yb for the output error; in turn, the computation of xb, yb via (3–4)
and (1–2) requires the knowledge of x1, y1, θ1 and x2, y2, θ2. Therefore, our controller
is centralized: it assumes knowledge of the states of all robots and generated control
inputs for all robots.

(c) As just noted, to implement the proposed controller we need an estimate of the config-
uration of both unicycles. To this end, we can design a localization module based on
the EKF.

A discrete-time motion model is readily written as

x1,k+1 = x1,k + Ts v1,k cos θ1,k

y1,k+1 = y1,k + Ts v1,k sin θ1,k

θ1,k+1 = θ1,k + Ts ω1,k

x2,k+1 = x2,k + Ts v2,k cos θ2,k

y2,k+1 = y2,k + Ts v2,k sin θ2,k

θ2,k+1 = θ2,k + Ts ω2,k

where Ts is the sampling interval. This motion model is assumed to be perturbed by
a white gaussian noise with zero mean and known covariance.

For the i-th robot (i = 1, 2), the measurement ∆φi of the wheel encoder is used to
reconstruct the actual value of vi,k = r∆φi/Ts, where r is the wheel radius. Since we
have no measurement of the wheel orientation, the commanded value of ωi,k will be
used (i.e., the value computed via the control law).

The measurements are the distance between the robots and the distance of each robot
from the landmark. This leads to the following measurement model:

hk =


√

(x2,k − x1,k)2 + (y2,k − y1,k)2√
(xL − x1,k)2 + (yL − y1,k)2√
(xL − x2,k)2 + (yL − y2,k)2


where xL, yL are the known coordinates of the landmark. Also this model is assumed
to be perturbed by a white gaussian noise with zero mean and known covariance.

Note that, although each robot provides its own measurement of the inter-robot dis-
tance, we are going to use only one of the two (if we duplicated the first component of
hk, its Jacobian matrix Hk would not be full rank). Another possibility is to use the
average of the distance measurements.

The rest of the solution is straightforward: linearize the motion and measurement
models and then write the EKF equations. In the block scheme, the wheel encoders
will be used in the prediction stage of the filter, while the range finders will be used in
the correction stage.
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