
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2022/2023

Solution of Problem 1

(a) The robot configuration space is the 3-dimensional manifold C = SO(2)× IR×SO(2).

(b) Angular momentum conservation is a Pfaffian constraint:

(
m(d+ `)2 0 J

) φ̇
˙̀

θ̇

 = 0 i.e., aT (q)q̇ = 0 (1)

A basis for N (aT (q)) consists of the following vector fields

g1(q) =

 1
0

−m(d+`)2

J

 g2(q) =

 0
1
0


and the corresponding kinematic model is

φ̇ = u1

˙̀ = u2 (2)

θ̇ = −m(d+ `)2

J
u1

This kinematic model is the most appropriate, since u1 and u2 are clearly the velocity
inputs of the two leg joints (revolute and prismatic, respectively), which are in fact
directly actuated.

(c) From a local viewpoint, mobility is obviously restricted by the angular momentum
conservation constraint. In fact, at any q the generalized velocity q̇ must belong to
the null space of aT (q), i.e., a 2-dimensional subspace of the tangent space IR3.

To investigate global mobility, we study the controllability of the kinematic model.
One easily finds

g3(q) = [g1, g2] (q) =

 0
0

2m(d+`)
J


where the third component is never zero being ` ≥ 0. Therefore, we have

rank (g1(q) g2(q) g3(q)) = 3

and the kinematic model is controllable. This means that the conservation of angular
momentum is a nonholonomic constraint for this robot. We can then conclude that
global mobility is not restricted, as the robot can reach any configuration in C.
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(d) In our kinematic model, the dynamics of ` is a simple integrator. Therefore, choosing
the velocity input of the prismatic joint as

u2 = k`(h− d− `) k` > 0 (3)

will guarantee exponential convergence of ` to h − d, and therefore of the total leg
length to h.

As for θ, we can obtain the same situation with the following input transformation:

u1 = − J

m(d+ `)2
v1

which is always invertible. With this choice, the dynamics of θ becomes

θ̇ = −m(d+ `)2

J
u1 = v1

Exponential convergence of θ to zero is obtained by choosing the new input as

v1 = −kθ θ kθ > 0

The original velocity input for the revolute joint is finally computed as

u1 = kθ
J

m(d+ `)2
θ (4)

Note that implementation of the feedback control law (3–4) only requires measurements
of ` and θ (not φ).

(e) If d = 0, the kinematic model (2) becomes

φ̇ = u1

˙̀ = u2 (5)

θ̇ = −m`2

J
u1

This model is differentially flat with flat outputs φ, θ. In fact, from the last equation
of (5) we can write

`2 = − J θ̇

mu1
= − J θ̇

m φ̇

from which we get the reconstruction formula1 for `:

` =

√
− J
m

θ̇

φ̇

As for reconstruction of the inputs, we have immediately

u1 = φ̇

1Note that constraint (1) implies that θ̇ and φ̇ always have opposite sign, so the formula is well-posed.
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while computing the time derivative of ` as given by the reconstruction formula we
obtain

u2 = ˙̀ =
J(θ̇ φ̈− θ̈ φ̇)

2 φ̇

√
−mJφ̇ θ̇

For path planning, it is convenient to consider the geometric version of the kinematic
model (5):

φ′ = ũ1

`′ = ũ2 (6)

θ′ = −m`2

J
ũ1

where the prime symbol (′) denotes differentiation with respect to the path parameter
s and the tilde symbol (̃ ) is used to distinguish the geometric inputs from the original
velocity inputs.

Since the flat outputs are φ and θ, an algorithm for path planning is the following:

1. Let φ(s) = as + b, with s ∈ [0, 1]. Compute a and b that satisfy φ(0) = φi and
φ(1) = φf . The associated geometric input is ũ1(s) = φ′(s) = a, for any s.

2. Let θ(s) = cs3 + ds2 + es+ f , with s ∈ [0, 1]. Compute c, d, e and f that satisfy
θ(0) = θi, θ(1) = θf and the additional boundary conditions

θ′(0) = −m`2i
J

a

θ′(1) = −
m`2f
J

a

where we have used the last equation of (6) and the fact that ũ1(s) = a.

3. Reconstruct the remaining state variable `(s) and the second geometric input
ũ2(s) using the previous reconstruction formulas.
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Solution of Problem 2

A localization system for the hopping robot can be designed using the EKF. To this end, first
use Euler method to derive the following discrete-time motion model from the continuous-
time model (2)

φk+1 = φk + Ts u1,k

`k+1 = `k + Ts u2,k

θk+1 = θk − Ts
m(d+ `k)

2

J
u1,k

where Ts is the sampling interval. This model is assumed to be perturbed by a white gaussian
noise with zero mean and known covariance.

The measurements of the joint encoders, respectively denoted by ∆φ and ∆`, will be
used to reconstruct the actual values of u1,k = ∆φk/Ts and u2,k = ∆`k/Ts.

The only exteroceptive measurement is γ. A simple geometric computation gives

tan(θ + γ) =
zb − z
xz − x

leading to the following measurement model:

yk = γk = arctan
zb − zk
xz − xk

− θk

with the first term in the right-hand side consisting of known quantities (the location of the
beacon is known while xk, zk are made available by the external vision system). Also this
model is assumed to be perturbed by a white gaussian noise with zero mean and known
covariance.

The rest of the solution is straightforward: linearize the motion and measurement models
(the first is nonlinear, the second is actually affine in the state) and then write the EKF
equations. In the block scheme, the joint encoders will be used in the prediction stage of
the filter, while the bearing sensor will be used to compute the innovation in the correction
stage.
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Solution of Problem 3

(a) FALSE. The Lie bracket itself is aligned with the zero motion line, but the total final
displacement is not. In general, the displacement after a Lie Bracket maneuver is given
by a quadratic term in ε, which is aligned with the Lie bracket, plus higher-order terms
in ε. In the case of a unicycle, the higher-order terms are not zero. This can be easily
proven graphically by drawing the motion of the robot during the maneuver (drive
forward with v = 1 for ε seconds, then steer in the CCW direction with ω = 1 for ε
seconds, then drive backwards with v = −1 for ε seconds, and finally steer in the CW
direction with ω = −1 for ε seconds).

(b) TRUE. The orientation of the front and rear wheels of the car will determine the ICR
for the car, around which all points of the car, including the trailer hitch point, are
instantaneously rotating. This allows to determine the position of the ICR for the
trailer as shown in the figure. Note that the trailer hitch point is simultaneously
rotating around both ICRs.

(c) TRUE. In fact, the two speeds are the same only if the bicycle is moving in a straight
line. In any other case, both wheels move instantaneously along arcs of circles centered
at the ICR, with the radius of front wheel circle always larger than the radius of the
rear wheel. Therefore, the front wheel must move at a higher speed.

(d) FALSE. Although computing the error only requires measurements of x and y, θ is
still needed for the feedback transformation, both in the static and in the dynamic
controllers.

(e) FALSE. It is used because V is positive semidefinite rather than definite.
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