
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2023/2024

Solution of Problem 1

Assimilate all two-wheel axles to a single wheel located at the axle midpoint. The vehicle has then
three wheels: the car front wheel, the car rear wheel, and the trailer wheel.

Let (x, y) be the Cartesian coordinates of the (contact point of the) car rear wheel. A convenient
choice of generalized coordinates is q = (x, y, θ, φ, θt) (see figure), i.e., a set of generalized coordinates
for the car plus the absolute orientation of the trailer.
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The kinematic constraints acting on the robot are the following (one pure rolling condition for
each wheel):

ẋ sin θ − ẏ cos θ = 0

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0

ẋt sin θt − ẏt cos θt = 0,

where (xf , yf ) and (xt, yt) are the Cartesian coordinates of the car front wheel and the trailer wheel,
respectively. Being

xf = x+ ` cos θ

yf = y + ` sin θ

and

xt = x− `h cos θ − `t cos θt (1)

yt = y − `h sin θ − `t sin θt, (2)

it is easy to obtain the following expression for the Pfaffian kinematic constraints

ẋ sin θ − ẏ cos θ = 0

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0

ẋ sin θt − ẏ cos θt + `h θ̇ cos(θ − θt) + `t θ̇t = 0,

or, in matrix form

 sin θ − cos θ 0 0 0
sin(θ + φ) − cos(θ + φ) −` cosφ 0 0

sin θt − cos θt `h cos(θ − θt) 0 `t




ẋ
ẏ

θ̇

φ̇

θ̇t

 = AT (q)q̇ = 0.
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The submatrix consisting of the first two rows and the first four columns of AT coincides with the
constraint matrix for the car. A basis {g1, g2} for the 2-dimensional null space of AT can then be
easily written by augmenting the input vector fields gcar

1 , gcar
2 of the car with suitable fifth elements.

The fifth element of g2 is obviously 0, whereas the fifth element α of g1 can be found by imposing

(
sin θt − cos θt `h cos(θ − θt) 0 `t

)


cos θ
sin θ

(tanφ)/`
0
α

 = 0.

One easily obtains

g1(q) =


cos θ
sin θ

(tanφ)/`
0

sin(θ − θt)
`t

− `h cos(θ − θt) tanφ
` `t

 g2(q) =


0
0
0
1
0

 .

The kinematic control system is then1

q̇ = g1(q) v + g2(q)ω,

where v and ω are respectively the driving and the steering velocity of the car.
The last part of the problem deals with the particular case `h = 0. To prove that (xt, yt) are flat

outputs, we must show that the state q and inputs v, ω can be reconstructed algebraically from xt,
yt and their time derivatives. Let us start by the reconstruction formula for θt:

θt = arctan ẏt/ẋt,

which is a consequence of the pure rolling constraint for the trailer wheel. Then, setting `h = 0 in
eqs. (1–2) we obtain the reconstruction formulas for x, y

x = xt + `t cos θt = xt + `t cos(arctan ẏt/ẋt) (3)

y = yt + `t sin θt = yt + `t sin(arctan ẏt/ẋt), (4)

and by differentiating these we can easily derive the reconstruction formula for v, since

v = ±
√
ẋ2 + ẏ2.

Similarly, the reconstruction formulas for the remaining state variables θ, φ and control input ω can
be easily found by considering that

θ = arctan ẏ/ẋ

φ = arctan ` θ̇/v

and that ω = φ̇.

1This kinematic model is associated to the choice of q made at the beginning. A different choice (e.g., q′ =
(x, y, θ, φ, δ), with δ = θ − θt) would have led to a different model, although equivalent via a change of coordinates.
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Solution of Problem 2

The kinematic model of the rear-wheel drive bicycle with acceleration inputs is readily written as

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v
tanφ

`
φ̇ = ω

v̇ = av

ω̇ = aω,

with the usual meaning of symbols. Note that in this model the state consists of the configuration
q = (x, y, θ, φ) augmented with the driving and steering velocity v and ω.

From simple geometry, the coordinates of point P are computed as

y1 = x+ ` cos θ + b cos(θ + φ)

y2 = y + ` sin θ + b sin(θ + φ).

To perform feedback linearization for these outputs, we start by computing their first-order time
derivatives. Using the equations of the kinematic model, one gets:

ẏ1 = (cos θ − tanφ (sin θ + b sin(θ + φ)/`)) v − b sin(θ + φ)ω

ẏ2 = (sin θ + tanφ (cos θ + b cos(θ + φ)/`)) v + b cos(θ + φ)ω,

or, in matrix form,

ẏ = T (q)

(
v
ω

)
, (5)

where

T (q) =

(
t11(q) t12(q)
t21(q) t22(q)

)
=

(
cos θ − tanφ (sin θ + b sin(θ + φ)/`) −b sin(θ + φ)
sin θ + tanφ (cos θ + b cos(θ + φ)/`) b cos(θ + φ).

)
Since the control inputs av, aω do not appear in (5), we differentiate again w.r.t. time, obtaining

ÿ = T (q)

(
av
aω

)
+ Ṫ (q)

(
v
ω

)
.

We can now let2 (
av
aω

)
= T−1(q)

(
u− Ṫ (q)

(
v
ω

))
, (6)

obtaining thus a second-order linear mapping between the output vector y and the new input vector
u = (u1, u2):

ÿ = u.

Globally exponential tracking of the desired trajectory yd(t) is then guaranteed by choosing u as

u =

(
u1
u2

)
=

(
ÿ1d + kp1(y1d − y1) + kd1(ẏ1d − ẏ1)
ÿ2d + kp2(y2d − y2) + kd2(ẏ2d − ẏ2)

)
(7)

as long as the control gains kp1, kd1, kp2, kd2 are positive.

2One may verify that matrix T (q) is always invertible, since its determinant is b/ cosφ.
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Note the following points.

• The final expression of the original control inputs av, aω is found by plugging (7) in (6).
Measurements of the configuration q as well as of the additional state variables v, ω are needed
to carry out this computation.

• The elements of Ṫ (q) can be computed in closed form. For example, we have

ṫ12(q) =
∂ t12
∂q

q̇ = −b cos(θ + φ)(θ̇ + φ̇) = −b cos(θ + φ)(v
tanφ

`
+ ω),

a quantity which can be computed at each instant of time because it only depends on state
variables.
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Solution of Problem 3

Using Euler integration, a discrete-time version of the kinematic model of Problem 2 is written as

xk+1 = xk + vk cos θk Ts

yk+1 = yk + vk sin θk Ts

θk+1 = θk + vk
tanφk

`
Ts

φk+1 = φk+1 + ωk Ts

vk+1 = vk + av,k Ts

ωk+1 = ωk + aω,k Ts.

This motion model is assumed to be perturbed by a white gaussian noise with zero mean and known
covariance.

As for the measurement model, we have a total of four measurements coming from the sensors at
each sampling instant. The first two are the range and bearing of the landmark(

y1k
y2k

)
=

( √
(xf,k − xl)2 + (yf,k − xl)2

atan2(yl − yf,k, xl − xf,k)− φk − θk

)
,

where xf = x+` cos θ and yf = y+` sin θ are the Cartesian coordinates of the front wheel. The third
measurement is the rotation of the rear wheel around the horizontal wheel axis during the sampling
interval

y3k = ∆α =
vk Ts
r

,

where r is the radius of the wheel.3 The fourth and last measurement is the rotation of the front
wheel around the vertical wheel axis during the sampling interval

y4k = ∆φ = ωk Ts.

The measurement model is therefore

y =


y1k
y2k
y3k
y4k


with the previous formulas providing the expression of each component as a function of the state
variables. This model is also assumed to be perturbed by a white gaussian noise with zero mean and
known covariance.

The rest of the solution is straightforward: linearize the motion and measurement models (note
that the last three equations of the former and the last two of the latter are already linear) and then
write the EKF equations.

In the prediction stage, the acceleration inputs av and aω will be needed: one can either use the
nominal values coming from the control module, or estimate them numerically using the two encoder
readings, based on the fact that av = v̇ and aω = ω̇. In the latter case, the encoders will be used
both in the prediction and in the correction stage.

3Here, we are using ∆s = vk Ts = r∆α, where ∆s is the traveled distance.
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Solution of Problem 4

(a) FALSE. It is also necessary to describe the 3D orientation of the quadruped body. The configu-
ration space is therefore IR3 × SO(3)× (SO(2))N1+N2 .

(b) TRUE. Assume h(q) = 0 is the geometric constraint. Then, its continued satisfaction implies
dh/dt = ∂h/∂q q̇ = 0, i.e., a kinematic constraint that is integrable.

(c) TRUE. If the front wheels had the exact same orientation, their zero motion lines would be
parallel and no instantaneous center of rotation would exist in general (unless the car was
traveling in a straight line); as a consequence, the vehicle would slip. To avoid this effect,
the front wheels of a car do not have the same exact orientation when turning, thanks to a
particular device called Ackermann steering.

(d) FALSE. All state variables can be reconstructed from the flat outputs. In the case of the car-like
robot, both θ and φ can be expressed as a function of x, y and their derivatives. Therefore, the
initial and final values of θ and φ generate a total of 4 boundary conditions for the interpolation.

(e) FALSE. In general, the Cartesian trajectory must be such that the associated state trajectory
computed via the flatness reconstruction formulas is continuous, because jumps in the config-
uration variables cannot be executed by the robot. In the case of the unicycle, this condition
boils down to θ being continuous along the trajectory; therefore, Cartesian trajectories with
sharp corners are not allowed.

6


