Autonomous and Mobile Robotics Midterm Class Test, 2021/2022

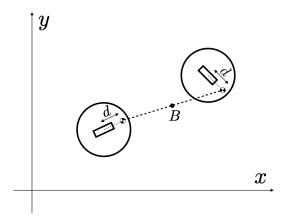
Problem 1

Consider a point robot moving in 3D space, with configuration q = (x, y, z). Now assume that the robot is constrained to move over the surface of a sphere centered at the origin and having radius r.

- (a) Write the geometric constraint on the robot motion and the corresponding kinematic constraint.
- (b) Discuss local and global mobility of the robot.
- (c) Derive a kinematic model of the robot and study its controllability.

Problem 2

Consider a (2,3) chained form. It is easy to verify that the application of the control inputs


$$v_1 = a \sin \omega t$$
$$v_2 = b \cos \omega t$$

over the time interval $[0, 2\pi/\omega]$ brings z_1 , z_2 back to their initial values and causes a displacement of z_3 equal to $ab\pi/\omega^2$. Exploiting this fact (no need to prove it), design a 2-phase algorithm for planning a trajectory that moves the chained form system from any initial configuration z_i to any final configuration z_f . Moreover:

- (a) provide a pseudocode description of the algorithm;
- (b) discuss which are its free parameters and how to choose their values;
- (c) assuming $z_i = (0, 0, 0)$ and $z_f = (1, 1, 1)$, compute the total time needed for reaching z_f and draw the trajectory of the system on the z_1, z_2 plane.

Problem 3

Consider a team composed by two identical unicycle robots. Assume that the barycenter of each robot is located along the sagittal axis at a distance d from the wheel center.

- (a) Design a feedback control law that drives the barycenter $B = (x_b, y_b)$ of the team along a given trajectory $x_b^*(t), y_b^*(t)$.
- (b) Draw a block scheme of the control system, and indicate which variables must be known for its implementation.
- (c) Assume that each robot is equipped with (i) a wheel encoder and (ii) a range finder (located at the wheel center) that measures both the distance to the other robot and the distance to a known landmark. Design a localization algorithm for estimating the variables needed for implementing the proposed controller. Provide equations (be sure to define all symbols) and a block scheme.