# Autonomous and Mobile Robotics Midterm Class Test, 2023/2024

#### Problem 1

Consider the vehicle shown in figure, consisting of a rear-wheel drive car towing a trailer. The trailer is a rigid body with an axle carrying two fixed wheels, and is connected to the car through a revolute joint located at a distance  $\ell_h$  from the rear wheel axle.



- 1. Write the kinematic constraints to which the robot is subject, and derive a kinematic model for it.
- 2. In the special case  $\ell_h = 0$ , prove that the Cartesian coordinates of the midpoint of the trailer wheel axle are flat outputs for the system.

#### Problem 2

Consider a bicycle robot of length  $\ell$  with rear-wheel drive.

- 1. Write a kinematic model of the robot in which the control inputs are the driving acceleration  $a_v = \dot{v}$  and the steering acceleration  $a_\omega = \dot{\omega}$ .
- 2. Define as outputs the Cartesian coordinates  $\boldsymbol{y} = (y_1, y_2)$  of a point *P* located at a distance *b* from the front wheel along the direction of the wheel itself. Design a feedback controller for driving  $\boldsymbol{y}$  along a desired trajectory  $\boldsymbol{y}_d(t)$  and provide the corresponding block scheme.

*Hints:* (1) find an invertible mapping between the time derivative (of a suitable order) of the outputs and the control inputs (2) work as much as possible in matrix format.

[continues on back page]

### Problem 3

Consider again the bicycle robot of Problem 2, and assume that a digital control scheme is used, where the inputs  $a_v$  and  $a_\omega$  are constant within each sampling interval of duration  $T_s$ . The sensing equipment includes (1) a range finder mounted on the front wheel, that measures range and bearing of a known landmark placed at  $(x_l, y_l)$  (2) an encoder that measures the rotation  $\Delta \alpha$  of the *rear* wheel around the *horizontal* wheel axis during each sampling interval (3) an encoder that measures the rotation  $\Delta \phi$  of the *front* wheel around the *vertical* wheel axis during each sampling interval.

Build a localization system for estimating in real time the complete *state* of the robot. Provide the filter equations (be sure to define all symbols), together with a block scheme including all the signals involved in the process and showing how each sensor is used.

## Problem 4

Are the following claims *true* or *false*? Answer and provide a short explanation.

- (a) Consider a quadruped robot with  $N_1$  revolute joints carrying a manipulator with  $N_2$  revolute joints. Its configuration space is  $\mathbb{R}^3 \times (SO(2))^{N_1+N_2}$ .
- (b) A geometric constraint always implies a holonomic kinematic constraint.
- (c) In a car-like robot, pure rolling implies that the two front wheels cannot have the exact same orientation in general, while the rear wheels can.
- (d) Consider path planning based on flat outputs for a car-like robot. The initial and final values of the orientation  $\theta$  generate two boundary conditions for the interpolation, whereas the initial and final values of the steering angle  $\phi$  do not.
- (e) A unicycle robot can follow arbitrary Cartesian trajectories, whereas a car-like robot cannot.