
Autonomous and Mobile Robotics
Prof. Giuseppe Oriolo

Humanoid Locomotion:
a Demonstration

Filippo Smaldone

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

• for any question: smaldone at diag.uniroma1.it

•the code of this demonstration is available at:
https://github.com/FilippoSmald1/Robotis-OP3-MPC-walking

•ROS based gazebo simulation of OP3 walking

•the same implementation on the DART dynamic simulator is
available upon request

information

1

https://github.com/FilippoSmald1/Robotis-OP3-MPC-walking

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•the available platform is Robotis OP3

•open source robot
https://github.com/ROBOTIS-GIT/ROBOTIS-OP3

•hardware:
 -20 dof, position controlled
 -encoders, imu
 -camera
 -main controller: INTEL NUC i3, 8 GB RAM

•the hardware necessarily constrains our solution to the problem

2

the OP3 robot

https://github.com/ROBOTIS-GIT/ROBOTIS-OP3

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•software:
 -Linux Mint 16
 -ROS Kinetic
 -custom real-time control
 manager
 -arbitrary sampling time for
 motor commands
 -C++ (convenient for real-time
 control), python

•the software framework gives us enough versatility for our
solution in spite of the hardware

3

the OP3 robot

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•pros:
 -open source
 -ROS based
 -modular (easy to upgrade)
 -easy maintenance
 -easy set up
 -GitHub issues responsiveness

 -low cost, < 20k € in 2021
•cons:

 -position controlled actuators
 -comes without F/T sensors
 -comes without any range sensors
 -large and slippery feet

4

the OP3 robot

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•high level description: “make a humanoid navigate to reach a
goal”

•applications: environment exploration, data acquisition, object
transportation

•what does navigation require?

 -motion planning
 -trajectory generation
 -control
 -localization and mapping

5

problem statement

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•decompose the big problem into small problems and identify the
solution for each one of them

•the robot has a standard initial configuration

•the task will be realized by composing three
 different motions:

 -reach a configuration to start walking
 -walk and reach the goal
 -come back to the initial configuration

•let’s keep it simple: use time pre-programmed motion modes
(stand up, walk, sit down)

6

addressing the problem

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•use a hierarchical approach

•for each motion mode generate proper body
 cartesian trajectories (e.g. CoM, feet, arms)

•track them with a kinematic controller

•note that:
 -kinematic control is the most
 practical choice with position
 controlled actuators
 -we assume that we do not need
 localization nor mapping
 -there exist different solutions to this problem

7

addressing the problem

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone) 8

block scheme

stand up motion
generator

sit down motion
generator

walking motion
generator

clock kinematic
controller

direct
kinematics

 denote the pose and its time derivative

arm swing
commands

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

9

kinematic controller and direct kinematics

stand up motion
generator

sit down motion
generator

walking motion
generator

clock kinematic
controller

direct
kinematics

arm swing
commands

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

10

• input: reference pose and velocity of CoM and a foot (left or
right), denoted as swing foot

why?
-humanoid as fixed base manipulator
 where the base frame coincides with a
 supporting foot

 -CoM and swing foot are regarded as
 End-Effector frames
 -regulation via multi-task kinematic

control law

•output: joint position commands

6 DoF for each leg
12 DoF in total

arm and head
joints are not
considered

kinematic controller and direct kinematics

support foot frame
swing foot frame

CoM frame

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

the two blocks work in this way:
•get joint positions from encoder readings
•compute direct kinematics from to get
•compute Jacobians from (support-CoM, support-swing)
•stack the Jacobians
•compute the joint velocities as

• integrate to get the joint position commands

kinematic controller and direct kinematics

damped pseudoinverse of
stacked jacobians reference velocities position error gains position error

sampling time

11

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•damped least squares to prevent singularity issues

•the direct kinematics and the Jacobians are computed with
efficient recursive algorithms which use the robot URDF (Unified
Robot Description Format), provided by the manufacturer

•state of the art C++ libraries for these computations: kdl, rbdl,
pinocchio

•the choice of the gain matrix is crucial

•the choice of the sampling time is also crucial

kinematic controller and direct kinematics

12

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

a quick look at the code - left support foot
 ...
 left_leg_fk_solver->JntToCart(q0_left_leg, x_left_leg_fk);
 for (int i = 0; i < 12; i++) {
 if (i<6) q0_sf_to_swg(i) = q0_left_leg(i);
 else q0_sf_to_swg(i) = q0_right_leg(11-i);
 }
 left_foot_to_right_foot_fk_solver->JntToCart(q0_sf_to_swg, x_sf_to_swg);
 CoM_pose_meas.segment(0,3) = Eigen::Vector3d(x_left_leg_fk.p(0),x_left_leg_fk.p(1),x_left_leg_fk.p(2));
 swg_pose_meas.segment(0,3) = Eigen::Vector3d(x_sf_to_swg.p(0),x_sf_to_swg.p(1),x_sf_to_swg.p(2));
 x_left_leg_fk.M.GetRPY(CoM_pose_meas(3),CoM_pose_meas(4),CoM_pose_meas(5));
 x_sf_to_swg.M.GetRPY(swg_pose_meas(3),swg_pose_meas(4),swg_pose_meas(5));

 sf_pose << desired.leftFootPos, desired.leftFootOrient;
 CoM_pose_des << desired.comPos, desired.torsoOrient;
 CoM_pose_des(2) = CoM_pose_des(2);
 swg_pose_des << desired.rightFootPos, desired.rightFootOrient;
 CoM_pose_des = vvRel(CoM_pose_des, sf_pose);
 swg_pose_des = vvRel(swg_pose_des, sf_pose);
 CoM_pose_des(0) = CoM_pose_des(0);

 Eigen::VectorXd v_des, pos_des, pos_meas;
 v_des = Eigen::VectorXd::Zero(12);
 v_des.segment(0,3) = desired.comVel;
 v_des.segment(6,3) = desired.rightFootVel;
 pos_des = Eigen::VectorXd::Zero(12);
 pos_meas = Eigen::VectorXd::Zero(12);
 pos_des << CoM_pose_des, swg_pose_des;
 pos_meas << CoM_pose_meas, swg_pose_meas;

 if (left_foot_to_right_foot_jacobian_solver->JntToJac(q0_sf_to_swg, J_leftf_to_rightf_leg) < 0) {
 ROS_ERROR("jacobian error");
 }
 J_left_leg_to_right = J_leftf_to_rightf_leg.data;
 if (left_leg_jacobian_solver->JntToJac(q0_left_leg, J_left_leg) < 0) {
 ROS_ERROR("jacobian error");
 }
 J_left_leg_ = J_left_leg.data;
 J_stacked << J_left_leg_, Eigen::MatrixXd::Zero(6,6), J_left_leg_to_right;

 Eigen::VectorXd q_dot = J_stacked.transpose() * (J_stacked*J_stacked.transpose() + Id*sigma).inverse() * (v_des + gains*(pos_des-pos_meas));
 for (int i = 0; i < 6; i++) q_left_leg(i) = q0_left_leg(i) + (1.0/rate)*q_dot(i);
 for (int i = 0; i < 6; i++) q_right_leg(5-i) = q0_right_leg(5-i) + (1.0/rate)*q_dot(i+6);

 ...

kinematic controller and direct kinematics

use kdl forward
kinematic routine to
compute the current
CoM and swing foot
pose

stack the
measurements, the
reference poses (in the
current support foot
frame) and velocities

use kdl jacobian solver
to compute the
Jacobians and then
stack them

compute kinematic
control law and
integrate to get
reference joint
positions 13

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

stand up motion
generator

sit down motion
generator

walking motion
generator

clock kinematic
controller

direct
kinematics

arm swing
commands

stand up and sit down motion

14

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•start from a pose and reach a target pose in seconds

•simply raise/lower the CoM while
 holding steady the swing foot

•in practice, it is only required a
 trajectory for the vertical CoM
 component

•use for instance a third order polynomial to reach a target pose
with zero velocity in

•at each time the output of these blocks is

stand up and sit down motion

15

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

stand up motion
generator

sit down motion
generator

walking motion
generator

clock kinematic
controller

direct
kinematics

arm swing
commands

walking motion

16

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•objective: walk to reach the goal (planar ground)

• legged locomotion: exert forces towards the environment to
move the robot

•forces are exerted through foot contact with the ground

•the robot must maintain dynamic balance at all times

•approach:
 -plan suitable contacts, i.e. design a footstep plan
 -generate CoM and ZMP trajectories to realize a
 dynamically balanced gait over the footstep plan
 -generate also swing foot trajectories

walking motion

17

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

• footstep plan: cartesian positions and timings (step duration)

• left and right feet alternate during locomotion

•single and double support alternate during locomotion

• let’s keep it simple:
 -assign a step duration, e.g., (single and double
 support duration)
 -choose a sagittal reference velocity
 -the stride length on the component is obtained as
 -the component of the footsteps, named as , alternates
 (left and right support foot)

walking motion - footstep plan

18

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

walking motion - footstep plan

x y t

0 -Ly 0

Lx Ly Ts

2Lx -Ly 2Ts

3Lx Ly 3Ts

...

in world frame coordinates

19

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•objective: realize the footstep plan

•relevant quantities: CoM and ZMP

•generate CoM/ZMP trajectories so
 that the robot is dynamically balanced

•use a simplified model: the Linear
 Inverted Pendulum (LIP)

•forward walking motion with constant
 footstep orientation: the sagittal and
 coronal components are decoupled

walking motion - gait generation

natural frequency
CoM ZMP

20

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

• linear MPC formulation: anticipation!

•ZMP as decision variable

•formulation: track a reference ZMP trajectory, while maintaining
dynamic balance and ensuring that the CoM is bounded with
respect to the ZMP (the LIP is unstable!)

•solve at each iteration a quadratic program (QP) with linear
constraints

•efficient state of the art solvers are available, e.g., hpipm
 https://github.com/giaf/hpipm

walking motion - gait generation

21

https://github.com/giaf/hpipm

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

walking motion - gait generation
•reference ZMP trajectory:

•dynamic balance: ZMP inside the support polygon, formulated as
a linear inequality constraint

•bounded CoM w.r.t. the ZMP through a stability constraint
(Scianca et al, “MPC for Humanoid Gait Generation: Stability and
Feasibility”, T-RO, 2020), formulated as a linear equality constraint

22

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

• let and be vectors collecting the decision variables over
the prediction horizon

• let and be vectors collecting the sampled reference
ZMP trajectory over the prediction horizon

• let

solve at each time step the following QP is solved:

subject to:
•ZMP constraints
•stability constraint

walking motion - gait generation

23

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

• integrate over a sampling interval the LIP dynamics using the first
decision variable obtained from the QP and get the reference
CoM position and velocity

•generate a swing foot trajectory to reach the next target
footstep during single support phases

•use for instance a third order polynomial for the and
components of the swing foot trajectory

•use a parabolic trajectory for the component

•arm swing commands: sinusoidal trajectory for the shoulder joint

walking motion - gait generation

24

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

a quick look at the code

 ...
 decisionVariables_x = solveQP_hpipm(costFunctionH_xy, costFunctionF_x, A_ineq_xy, Zmin_x, Zmax_x, Aeq_x, beq_x);
 decisionVariables_y = solveQP_hpipm(costFunctionH_xy, costFunctionF_y, A_ineq_xy, Zmin_y, Zmax_y, Aeq_y, beq_y);
 …

 ...
 state_x = A_xy*state_x + B_xy*decisionVariables_x(0);
 state_y = A_xy*state_y + B_xy*decisionVariables_y(0);

 next.comPos << state_x(0), state_y(0), comTargetHeight;
 next.comVel << state_x(1), state_y(1), 1.0;
 next.comAcc << eta*eta * (state_x(0) - decisionVariables_x(0)), eta*eta * (state_y(0) - decisionVariables_y(0)), 1.0;
 next.zmpPos << decisionVariables_x(0), decisionVariables_y(0), 1.0;

 if (walkState.footstepCounter > 1 && walkState.footstepCounter <= n_steps+1)
 next = WalkingSwingFoot(current, next, walkState, ftsp_and_timings);

walking motion - gait generation

compute QP using
hpipm

integrate LIP to get
next CoM reference

store the reference
states into a useful
data structure

evaluate the swing
foot trajectory at the
current time instant

25

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

motion mode management

stand up motion
generator

sit down motion
generator

walking motion
generator

clock kinematic
controller

direct
kinematics

arm swing
commands

26

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•motion modes change at fixed times

•wait some time before starting the motion

•stand up motion is executed until time is reached

•walking motion is performed until time is reached
(required time to physically execute the footstep sequence)

•the robot reaches its original configuration by executing a sit
down motion, concluded at time

motion mode management

27

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•real-time computations on the robot computer: hard
computational timing constraints

•test the algorithm in simulation first (gazebo, DART)
•Sim-To-Real gap: if it works in simulation, it is not 100%
guaranteed that it works on the real robot

•robotics is mainly open source, but sometimes not well
documented

•possible improvements:
 -footstep planner
 -3D ground
 -more sophisticated whole body
 controller
 -localization and mapping

concluding remarks

28

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

experiment time

29

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

on going research - robust gait generation

•disturbances in MPC can cause constraint violation: in humanoid
gait generation this can imply the loss of dynamic balance as well
as instability

•different ways to address the problems: disturbance observers
for persistent perturbations, constraint restriction for robustness
to uncertainties, step position and timing adaptation for push
recovery

•we published a contribution for each of the different
methodologies and we are now working on a unified framework

30

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

on going research - robust gait generation

31

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

on going research - 3D walking and running

•LIP model assumes constant CoM height: for 3D motions such as
stair climbing and running, this assumption must be removed

•use the Variable Height Inverted Pendulum (VH-IP)

•this model is nonlinear: a nonlinear MPC formulation is required

•we address the problem by computing the vertical motion first
and then solving for the horizontal dynamics, considering them as
a time-varying linear system

•simple but effective method (real-time implementation on OP3)

32

Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

on going research - 3D walking and running

33

