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• for any question: smaldone at diag.uniroma1.it

•the code of this demonstration is available at: 
https://github.com/FilippoSmald1/Robotis-OP3-MPC-walking

•ROS based gazebo simulation of OP3 walking

•the same implementation on the DART dynamic simulator is 
available upon request 

information
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•the available platform is Robotis OP3

•open source robot
https://github.com/ROBOTIS-GIT/ROBOTIS-OP3

•hardware:
            -20 dof, position controlled
            -encoders, imu
            -camera
            -main controller: INTEL NUC i3, 8 GB RAM

•the hardware necessarily constrains our solution to the problem
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the OP3 robot
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•software:
            -Linux Mint 16
            -ROS Kinetic
            -custom real-time control 
             manager
            -arbitrary sampling time for 
             motor commands
            -C++ (convenient for real-time 
             control), python

•the software framework gives us enough versatility for our 
solution in spite of the hardware
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the OP3 robot
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•pros:
     -open source
     -ROS based 
     -modular (easy to upgrade)
     -easy maintenance
     -easy set up
     -GitHub issues responsiveness

         -low cost, < 20k € in 2021
•cons:

     -position controlled actuators
     -comes without F/T sensors
     -comes without any range sensors
     -large and slippery feet
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the OP3 robot
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•high level description: “make a humanoid navigate to reach a 
goal”

•applications: environment exploration, data acquisition, object 
transportation

 
•what does navigation require?

                                         -motion planning
                                         -trajectory generation
                                         -control
                                         -localization and mapping
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problem statement



Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•decompose the big problem into small problems and identify the 
solution for each one of them

•the robot has a standard initial configuration

•the task will be realized by composing three
  different motions:

          -reach a configuration to start walking
          -walk and reach the goal 
          -come back to the initial configuration

•let’s keep it simple: use time pre-programmed motion modes 
(stand up, walk, sit down)
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addressing the problem
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•use a hierarchical approach

•for each motion mode generate proper body 
  cartesian trajectories (e.g. CoM, feet, arms)

•track them with a kinematic controller  

•note that:
            -kinematic control is the most 
             practical choice with position
             controlled actuators
            -we assume that we do not need 
             localization nor mapping
            -there exist different solutions to this problem
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addressing the problem
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block scheme

stand up motion 
generator

sit down motion 
generator

walking motion 
generator

clock kinematic
controller

direct 
kinematics

       denote the pose and its time derivative

   

arm swing 
commands
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kinematic controller and direct kinematics

stand up motion 
generator

sit down motion 
generator

walking motion 
generator

clock kinematic
controller

direct 
kinematics

arm swing 
commands
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10

• input: reference pose and velocity of CoM and a foot (left or 
right), denoted as swing foot 

why?
-humanoid as fixed base manipulator 
 where the base frame coincides with a 
 supporting foot

   -CoM and swing foot are regarded as 
    End-Effector frames 
   -regulation via multi-task kinematic 

control law

•output: joint position commands

   

6 DoF for each leg
12 DoF in total

arm and head 
joints are not 
considered

kinematic controller and direct kinematics

support foot frame
swing foot frame

CoM frame
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the two blocks work in this way:
•get joint positions        from encoder readings 
•compute direct kinematics from        to get 
•compute Jacobians from       (support-CoM, support-swing)
•stack the Jacobians
•compute the joint velocities as 

• integrate to get the joint position commands

   

kinematic controller and direct kinematics

damped pseudoinverse of 
stacked jacobians reference velocities position error gains position error

sampling time
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•damped least squares to prevent singularity issues

•the direct kinematics and the Jacobians are computed with 
efficient recursive algorithms which use the robot URDF (Unified 
Robot Description Format), provided by the manufacturer

•state of the art C++ libraries for these computations: kdl, rbdl, 
pinocchio

•the choice of the gain matrix is crucial

•the choice of the sampling time is also crucial

   

kinematic controller and direct kinematics
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a quick look at the code - left support foot
    ...
    left_leg_fk_solver->JntToCart(q0_left_leg, x_left_leg_fk);
    for (int i = 0; i < 12; i++) {
       if (i<6) q0_sf_to_swg(i) = q0_left_leg(i);
       else q0_sf_to_swg(i) = q0_right_leg(11-i); 
    }
    left_foot_to_right_foot_fk_solver->JntToCart(q0_sf_to_swg, x_sf_to_swg);
    CoM_pose_meas.segment(0,3) = Eigen::Vector3d(x_left_leg_fk.p(0),x_left_leg_fk.p(1),x_left_leg_fk.p(2));  
    swg_pose_meas.segment(0,3) = Eigen::Vector3d(x_sf_to_swg.p(0),x_sf_to_swg.p(1),x_sf_to_swg.p(2));  
    x_left_leg_fk.M.GetRPY(CoM_pose_meas(3),CoM_pose_meas(4),CoM_pose_meas(5));  
    x_sf_to_swg.M.GetRPY(swg_pose_meas(3),swg_pose_meas(4),swg_pose_meas(5));  

    sf_pose << desired.leftFootPos, desired.leftFootOrient;
    CoM_pose_des << desired.comPos, desired.torsoOrient; 
    CoM_pose_des(2) = CoM_pose_des(2);
    swg_pose_des << desired.rightFootPos, desired.rightFootOrient;
    CoM_pose_des = vvRel(CoM_pose_des, sf_pose); 
    swg_pose_des = vvRel(swg_pose_des, sf_pose); 
    CoM_pose_des(0) = CoM_pose_des(0);
  
    Eigen::VectorXd v_des, pos_des, pos_meas;
    v_des = Eigen::VectorXd::Zero(12);
    v_des.segment(0,3) = desired.comVel;
    v_des.segment(6,3) = desired.rightFootVel;
    pos_des = Eigen::VectorXd::Zero(12);
    pos_meas = Eigen::VectorXd::Zero(12);
    pos_des << CoM_pose_des, swg_pose_des;
    pos_meas << CoM_pose_meas, swg_pose_meas; 

    if (left_foot_to_right_foot_jacobian_solver->JntToJac(q0_sf_to_swg, J_leftf_to_rightf_leg) < 0) {
       ROS_ERROR( "jacobian error");
    }
    J_left_leg_to_right = J_leftf_to_rightf_leg.data;
    if (left_leg_jacobian_solver->JntToJac(q0_left_leg, J_left_leg) < 0) {
       ROS_ERROR( "jacobian error");
    }
    J_left_leg_ = J_left_leg.data;
    J_stacked << J_left_leg_, Eigen::MatrixXd::Zero(6,6), J_left_leg_to_right;

    Eigen::VectorXd q_dot = J_stacked.transpose() * (J_stacked*J_stacked.transpose() + Id*sigma).inverse() * (v_des + gains*(pos_des-pos_meas));
    for (int i = 0; i < 6; i++) q_left_leg(i) = q0_left_leg(i) + (1.0/rate)*q_dot(i);
    for (int i = 0; i < 6; i++) q_right_leg(5-i) = q0_right_leg(5-i) + (1.0/rate)*q_dot(i+6);

  ...

   

kinematic controller and direct kinematics

use kdl forward 
kinematic routine to 
compute the current 
CoM and swing foot 
pose

stack the 
measurements, the 
reference poses (in the 
current support foot 
frame) and velocities

use kdl jacobian solver 
to compute the 
Jacobians and then 
stack them

compute kinematic 
control law and 
integrate to get 
reference joint 
positions 13
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stand up motion 
generator

sit down motion 
generator

walking motion 
generator

clock kinematic
controller

direct 
kinematics

arm swing 
commands

stand up and sit down motion
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•start from a pose      and reach a target pose      in     seconds

•simply raise/lower the CoM while 
  holding steady the swing foot

•in practice, it is only required a 
  trajectory for the vertical CoM 
  component

•use for instance a third order polynomial to reach a target pose 
with zero velocity in 

•at each time     the output of these blocks is 
   

stand up and sit down motion
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stand up motion 
generator

sit down motion 
generator

walking motion 
generator

clock kinematic
controller

direct 
kinematics

arm swing 
commands

walking motion
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•objective: walk to reach the goal (planar ground)

• legged locomotion: exert forces towards the environment to 
move the robot

•forces are exerted through foot contact with the ground

•the robot must maintain dynamic balance at all times

•approach: 
           -plan suitable contacts, i.e. design a footstep plan
           -generate CoM and ZMP trajectories to realize a  
            dynamically balanced gait over the footstep plan
           -generate also swing foot trajectories 
   

walking motion
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• footstep plan: cartesian positions and timings (step duration)

• left and right feet alternate during locomotion

•single and double support alternate during locomotion

• let’s keep it simple: 
    -assign a step duration, e.g.,                    (single and double
     support duration)
    -choose a sagittal reference velocity  
    -the stride length on the     component is obtained as                
    -the     component of the footsteps, named as      , alternates
     (left and right support foot)

walking motion - footstep plan
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walking motion - footstep plan

x y t

0 -Ly 0

Lx Ly Ts

2Lx -Ly 2Ts

3Lx Ly 3Ts

... ... ...

in world frame coordinates
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•objective: realize the footstep plan

•relevant quantities: CoM and ZMP

•generate CoM/ZMP trajectories so 
  that the robot is dynamically balanced

•use a simplified model: the Linear 
  Inverted Pendulum (LIP)

•forward walking motion with constant
  footstep orientation: the sagittal and 
  coronal components are decoupled

   

walking motion - gait generation

natural frequency
CoM ZMP
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• linear MPC formulation: anticipation!

•ZMP as decision variable

•formulation: track a reference ZMP trajectory, while maintaining 
dynamic balance and ensuring that the CoM is bounded with 
respect to the ZMP (the LIP is unstable!)

•solve at each iteration a quadratic program (QP) with linear 
constraints

•efficient state of the art solvers are available, e.g., hpipm 
  https://github.com/giaf/hpipm

   

walking motion - gait generation
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walking motion - gait generation
•reference ZMP trajectory:

•dynamic balance: ZMP inside the support polygon, formulated as 
a linear inequality constraint 

•bounded CoM w.r.t. the ZMP through a stability constraint 
(Scianca et al, “MPC for Humanoid Gait Generation: Stability and 
Feasibility”, T-RO, 2020), formulated as a linear equality constraint
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• let      and     be vectors collecting the decision variables over 
the prediction horizon

• let         and         be vectors collecting the sampled reference 
ZMP trajectory over the prediction horizon 

• let 

solve at each time step the following QP is solved:

subject to:
•ZMP constraints
•stability constraint

walking motion - gait generation
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• integrate over a sampling interval the LIP dynamics using the first 
decision variable obtained from the QP and get the reference 
CoM position and velocity   

•generate a swing foot trajectory to reach the next target 
footstep during single support phases

•use for instance a third order polynomial for the     and       
components of the swing foot trajectory

•use a parabolic trajectory for the    component

•arm swing commands: sinusoidal trajectory for the shoulder joint

walking motion - gait generation
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a quick look at the code 
   

     
   ...
    decisionVariables_x = solveQP_hpipm(costFunctionH_xy, costFunctionF_x, A_ineq_xy, Zmin_x, Zmax_x, Aeq_x, beq_x);
   decisionVariables_y = solveQP_hpipm(costFunctionH_xy, costFunctionF_y, A_ineq_xy, Zmin_y, Zmax_y, Aeq_y, beq_y);
    …

    ...
   state_x = A_xy*state_x + B_xy*decisionVariables_x(0);
   state_y = A_xy*state_y + B_xy*decisionVariables_y(0);

   next.comPos << state_x(0), state_y(0), comTargetHeight;
   next.comVel << state_x(1), state_y(1), 1.0;
   next.comAcc << eta*eta * (state_x(0) - decisionVariables_x(0)), eta*eta * (state_y(0) - decisionVariables_y(0)), 1.0;
   next.zmpPos << decisionVariables_x(0), decisionVariables_y(0), 1.0;

   if (walkState.footstepCounter > 1 && walkState.footstepCounter <= n_steps+1) 
      next = WalkingSwingFoot(current, next, walkState, ftsp_and_timings);

   

walking motion - gait generation

compute QP using 
hpipm

integrate LIP to get 
next CoM reference

store the reference 
states into a useful 
data structure

evaluate the swing 
foot trajectory at the 
current time instant
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motion mode management

stand up motion 
generator

sit down motion 
generator

walking motion 
generator

clock kinematic
controller

direct 
kinematics

arm swing 
commands
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•motion modes change at fixed times

•wait some time          before starting the motion

•stand up motion is executed until time           is reached

•walking motion is performed until time          is reached 
(required time to physically execute the footstep sequence)

•the robot reaches its original configuration by executing a sit 
down motion, concluded at time 

   

motion mode management

27



Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

•real-time computations on the robot computer: hard 
computational timing constraints

•test the algorithm in simulation first (gazebo, DART)
•Sim-To-Real gap: if it works in simulation, it is not 100% 
guaranteed that it works on the real robot

•robotics is mainly open source, but sometimes not well 
documented

•possible improvements:
                                -footstep planner
                                -3D ground
                                -more sophisticated whole body 
                                 controller
                                -localization and mapping

concluding remarks
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experiment time
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on going research - robust gait generation

•disturbances in MPC can cause constraint violation: in humanoid 
gait generation this can imply the loss of dynamic balance as well 
as instability

•different ways to address the problems: disturbance observers 
for persistent perturbations, constraint restriction for robustness 
to uncertainties, step position and timing adaptation for push 
recovery 

•we published a contribution for each of the different 
methodologies and we are now working on a unified framework
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on going research - robust gait generation

31



Oriolo: AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone)

on going research - 3D walking and running

•LIP model assumes constant CoM height: for 3D motions such as 
stair climbing and running, this assumption must be removed

•use the Variable Height Inverted Pendulum (VH-IP)

•this model is nonlinear: a nonlinear MPC formulation is required

•we address the problem by computing the vertical motion first 
and then solving for the horizontal dynamics, considering them as 
a time-varying linear system

•simple but effective method (real-time implementation on OP3)
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on going research - 3D walking and running
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