Autonomous and Mobile Robotics
Prof. Giuseppe Oriolo

Humanoid Locomotion:
a Demonstration

Filippo Smaldone

DIPARTIMENTO DI INGEGNERIA INFORMATICA
AUTOMATICA E GESTIONALE ANTONIO RUBERTI

SAPIENZA

&Y UNIVERSITA DI ROMA

information

*for any question: smaldone at diag.uniromal..it

*the code of this demonstration is available at;:
https://github.com/FilippoSmald | /Robotis-OP3-MPC-walking

*ROS based gazebo simulation of OP3 walking

*the same implementation on the DART dynamic simulator is
available upon request

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

https://github.com/FilippoSmald1/Robotis-OP3-MPC-walking

the OP3 robot

*the available platform is Robotis OP3

*open source robot
https://github.com/ROBOTIS-GIT/ROBOTIS-OP3

* hardware:
-20 dof, position controlled
-encoders, imu

-camera
-main controller: INTEL NUC i3, 8 GB RAM

*the hardware necessarily constrains our solution to the problem

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

https://github.com/ROBOTIS-GIT/ROBOTIS-OP3

the OP3 robot

e software:

-Linux Mint |6

-ROS Kinetic

-custom real-time control
manager

-arbitrary sampling time for
motor commands

-C++ (convenient for real-time
control), python

*the software framework gives us enough versatility for our
solution in spite of the hardware

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

the OP3 robot

*pros:
-open source
-ROS based
-modular (easy to upgrade)
-easy maintenance
-easy set up
-GitHub issues responsiveness
-low cost, < 20k € in 2021
*cons:
-position controlled actuators
-comes without F/T sensors
-comes without any range sensors
-large and slippery feet

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

problem statement

*high level description: “make a humanoid navigate to reach a
goal”

*applications: environment exploration, data acquisition, object
transportation

*what does navigation require!

-motion planning
(-trajectory generation
_-control)
-localization and mapping

B

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

addressing the problem

*decompose the big problem into small problems and identify the
solution for each one of them

*the robot has a standard initial configuration

*the task will be realized by composing three
different motions:
-reach a configuration to start walking
-walk and reach the goal
-come back to the initial configuration

*|let’s keep it simple: use time pre-programmed motion modes
(stand up, walk, sit down)

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

addressing the problem

*use a hierarchical approach

*for each motion mode generate proper body
cartesian trajectories (e.g. CoM, feet, arms)

*track them with a kinematic controller

*note that:
-kinematic control is the most
practical choice with position
controlled actuators
-we assume that we do not need
localization nor mapping
-there exist different solutions to this problem

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 7

block scheme

arm swing
k k
Ve refsPeref commands l

k k
VirefrPfref
™\ 4

-
clock stand up motion > kinematic
generator controller
. / \
f w 4
I sit down motion Pcm
enerator k
\ 5 J pf,m
[h (di h qk7m
walking motion rect <+
— kinematics
generator
\ y, \. y,

P, v denote the pose and its time derivative

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

kinematic controller and direct kinematics

(¥

r

stand up motion
clock

generator

_ y

r B
sit down motion

 — SE—

generator

_ y

r B
walking motion
generator

_ y

k
c,ref

k k
VirefrPfref
N

~

arm swing
y, l

p’g,mf commands

kinematic

controller

direct
kinematics

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

kinematic controller and direct kinematics

*input: reference pose and velocity of CoM and a foot (left or
right), denoted as swing foot

why?
-humanoid as fixed base manipulator T
where the base frame coincides with a el

supporting foot
-CoM and swing foot are regarded as
End-Effector frames
-regulation via multi-task kinematic
control law

arm and head
joints are not
considered

support foot frame

*output: joint position commands

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 10

kinematic controller and direct kinematics

the two blocks work in this way:

*get joint positions ¢" from encoder readings

*compute direct kinematics from "™ to get p’c‘“,m,pfc,m

e compute Jacobians from ¢"™ (support-CoM, support-swing)
*stack the Jacobians

*compute the joint velocities as

" Tk T /agk k AN
k Jéc (vc,ref> + K (pc,ref o pc,m)
T = | gk vk k _ mk

f1 L f.,ref pf,fr'ef pf,m 1

damped pseudoinverse of/ A)

stacked jacobians reference velocities position error gains position error

*integrate to get the joint position commands
qk—l—l,ref _ qk,m 4 5qk

sampling time

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

kinematic controller and direct kinematics

*damped least squares to prevent singularity issues
*the direct kinematics and the Jacobians are computed with
efficient recursive algorithms which use the robot URDF (Unified

Robot Description Format), provided by the manufacturer

*state of the art C++ libraries for these computations: kd|, rbdl|,
pinocchio

*the choice of the gain matrix is crucial

*the choice of the sampling time is also crucial

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 12

kinematic controller and direct kinematics

a quick look at the code - left support foot

left_leg_fk_solver->JntToCart(q0_left_leg, x_left_leg_fk); \
for (inti=0;i<12; i++) {

if (i<6) q0_sf to_swg(i) = q0_left_leg(i); u§e kd| f.OFWElI"Fl

else q0_sf to_swg(i) = q0_right_leg(11-i); kinematic routine to
) >
left_foot_to_right foot fk_solver->JntToCart(q0_sf _to_swg, x_sf to_swg); comp ute the current
CoM_pose_meas.segment(0,3) = Eigen::Vector3d(x_|eft_leg_fk.p(0),x_|eft_|eg_fk.p(1),x_Ieft_Ieg_fk.p(Z)); CoM and swing foot
swg_pose_meas.segment(0,3) = Eigen::Vector3d(x_sf _to_swg.p(0),x_sf to_swg.p(1),x_sf _to_swg.p(2));
x_left_leg_fk.M.GetRPY(CoM_pose_meas(3),CoM_pose_meas(4),CoM_pose_meas(5)); J pose
x_sf_to_swg.M.GetRPY(swg_pose_meas(3),swg_pose_meas(4),swg_pose_meas(5)); \
sf_pose << desired.leftFootPos, desired.leftFootOrient;
CoM_pose_des << desired.comPos, desired.torsoOrient;
CoM_pose_des(2) = CoM_pose_des(2);
swg_pose_des << desired.rightFootPos, desired.rightFootOrient; stack the
CoM_pose_des = vvRel(CoM_pose_des, sf_pose);
swg_pose_des = vwRel(swg_pose_des, sf_pose); measurements, the
CoM_pose_des(0) = CoM_pose_des(0); > reference poses (in the
Eigen::VectorXd v_des, pos_des, pos_meas; current support foot
v_des = Eigen::VectorXd::Zero(12); f d lociti
v_des.segment(0,3) = desired.comVel, rame) and velocities
v_des.segment(6,3) = desired.rightFootVel;
pos_des = Eigen::VectorXd::Zero(12);
pos_meas = Eigen::VectorXd::Zero(12);
pos_des << CoM_pose_des, swg_pose_des; J
pos_meas << CoM_pose_meas, swg_pose_meas; \
if (left_foot_to_right_foot_jacobian_solver->JntToJac(q0_sf_to_swg, J_leftf_to_rightf leg) < 0) { use kdl jaCObian solver
\ ROS_ERROR("jacobian error"); to compute the
J_left_leg_to_right = J_leftf_to_rightf_leg.data; Jacobians and then
if (left_leg_jacobian_solver->JntToJac(q0_left_leg, J_left_leg) < 0) {

ROS_ERROR("jacobian error"); stack them
}
J_left_leg_ =J_left_leg.data;
J_stacked << J_left_leg_, Eigen::MatrixXd::Zero(6,6), J_left_leg_to_right;)

compute kinematic
Eigen::VectorXd q_dot = J_stacked.transpose() * (J_stacked*J_stacked.transpose() + Id*sigma).inverse() * (v_des + gains*(pos_des-pos_meas));

for (inti = 0; i < 6; i++) q_left_leg(i) = q0_left_leg(i) + (1.0/rate)*q_dot(i); control law and
for (inti=0;i< 6;i++) g_right_leg(5-i) = q0_right_leg(5-i) + (1.0/rate)*q_dot(i+6); integrate to get

reference joint

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F. Smaldone) ~ Positions

stand up and sit down motion

arm swing
k k
Ve refsPeref commands l
y,

k k
VfrefrPfref

-
1d Ub Mot : :
clock stand up motion > kinematic
generator controller
.
— .
sit down motion Pcm
enerator k
: Pfm
4 ™ (.
: : direct
walking motion . .
— kinematics
generator
. J L J

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

stand up and sit down motion
*start from a pose p" and reach a target pose p'in T' seconds

0.24 ¢

*simply raise/lower the CoM while 022
holding steady the swing foot o2

0.18 ¢
E 0.16
N 0.14

*in practice, it is only required a -
trajectory for the vertical CoM 01]
component N

0.06

0 2 . 6 8 10

*use for instance a third order polynomial to reach a target pose
with zero velocity int =T

*at each time ¢ the output of these blocks is p. .. (tx), Ve rer(tr)

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 15

walking motion

arm swing

X commands

k
UerefsPeyref

k k
Viref+Pfref
r A 4

clock stand up motion > kinematic
generator controller

\) .
r . s
|| sitdown motion D
enerator I
— / Pfm
r
walking motion |d-IrGCt |
generator KInematics
\ J

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

walking motion

*objective: walk to reach the goal (planar ground)

*legged locomotion: exert forces towards the environment to
move the robot

*forces are exerted through foot contact with the ground
*the robot must maintain dynamic balance at all times

*approach:
-plan suitable contacts, i.e. design a footstep plan
-generate CoM and ZMP trajectories to realize a
dynamically balanced gait over the footstep plan
-generate also swing foot trajectories

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

walking motion - footstep plan

*footstep plan: cartesian positions and timings (step duration)
*|eft and right feet alternate during locomotion
*single and double support alternate during locomotion

*let’s keep it simple:
-assign a step duration, e.g., T = Ti, + Tys(single and double
support duration)
-choose a sagittal reference velocity v,
-the stride length on the T component is obtained as L, = v, 7
-the y component of the footsteps, named as L, , alternates
(left and right support foot)

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 18

walking motion - footstep plan

in world frame coordinates

A X y t

0 -Ly 0

o T o
2L.x -Ly 2Ts

D L D R ; B
I

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

walking motion - gait generation

>

*objective: realize the footstep plan 7

\\\\\\\

*relevant quantities: CoM and ZMP

*generate CoM/ZMP trajectories so
that the robot is dynamically balanced

*use a simplified model: the Linear

Inverted Pendulum (LIP) Fe=n2(z. — T,
Ye = 772 ('y(_. o 7/::)
*forward walking motion with constant P \
. . . natural frequenc
footstep orientation: the sagittal and T com
coronal components are decoupled 5 g
ey

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

]Y

20

walking motion - gait generation

*linear MPC formulation: anticipation!

* ZMP as decision variable

*formulation: track a reference ZMP trajectory, while maintaining
dynamic balance and ensuring that the CoM is bounded with

respect to the ZMP (the LIP is unstable!)

*solve at each iteration a quadratic program (QP) with linear
constraints

*efficient state of the art solvers are available, e.g., hpipm
https://github.com/giaf/hpipm

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 21

https://github.com/giaf/hpipm

walking motion - gait generation

*reference ZMP trajectory:

*dynamic balance: ZMP inside the support polygon, formulated as
a linear inequality constraint

*bounded CoM w.r.t. the ZMP through a stability constraint

(Scianca et al,"MPC for Humanoid Gait Generation: Stability and
Feasibility”, T-RO, 2020), formulated as a linear equality constraint

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 22

walking motion - gait generation

*let X, and Y, be vectors collecting the decision variables over
the prediction horizon

let X’*/ and Y/*/ be vectors collecting the sampled reference
ZMP trajectory over the prediction horizon

slet AX, =[z. — 22 22 —xl,...]"

solve at each time step the following QP is solved:
minx, .y, | Xz — XV + |V = Y72 + BIIAX.|* + BIIAY: |

subject to:
* ZMP constraints
*stability constraint

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

23

walking motion - gait generation

*integrate over a sampling interval the LIP dynamics using the first

decision variable obtained from the QP and get the reference

CoM position and velocity Ulg,refaplg,ref

*generate a swing foot trajectory to reach the next target
footstep during single support phases v’}’ref,p’},ref

*use for instance a third order polynomial for the x and y
components of the swing foot trajectory

*use a parabolic trajectory for the z component

*arm swing commands: sinusoidal trajectory for the shoulder joint

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 24

walking motion - gait generation

a quick look at the code
~

decisionVariables_x = solveQP_hpipm(costFunctionH_xy, costFunctionF_x, A_ineq_xy, Zmin_x, Zmax_x, Aeq_X, beq_Xx); > compute QP using
decisionVariables_y = solveQP_hpipm(costFunctionH_xy, costFunctionF_y, A_ineq_xy, Zmin_y, Zmax_y, Aeq_y, beq_y); hpipm

AN

state_ x = A _xy*state_x + B_xy*decisionVariables x(0);
state_ y = A xy*state_y + B_xy*decisionVariables_y(0);

integrate LIP to get
> next CoM reference

VAN

next.comPos << state x(0), state_y(0), comTargetHeight;
next.comVel << state_x(1), state_y(1), 1.0;

next.comAcc << eta*eta * (state_x(0) - decisionVariables x(0)), eta*eta * (state_y(0) - decisionVariables_y(0)), 1.0; >
next.zmpPos << decisionVariables x(0), decisionVariables_y(0), 1.0;

store the reference
states into a useful
data structure

if (walkState.footstepCounter > 1 && walkState.footstepCounter <= n_steps+1) evaluate the swing
next = WalkingSwingFoot(current, next, walkState, ftsp_and_timings); foot trajectory at the

current time instant

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 25

motion mode management

k k
vc,ref) pc,ref

k k
VirefrPfref

clock stand up motion
generator

sit down motion
generator

walking motion
generator

arm swing
commands

kinematic
controller

%

k
pc,m

k
Pfm

f

L

direct
kinematics

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

26

motion mode management

*motion modes change at fixed times
*wait some time {4+ before starting the motion
*stand up motion is executed until time ?s¢4nq is reached

*walking motion is performed until time 4% is reached
(required time to physically execute the footstep sequence)

*the robot reaches its original configuration by executing a sit
down motion, concluded at time ;¢

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

27

concluding remarks

*real-time computations on the robot computer: hard
computational timing constraints
*test the algorithm in simulation first (gazebo, DART)
*Sim-To-Real gap: if it works in simulation, it is not 100%
guaranteed that it works on the real robot
*robotics is mainly open source, but sometimes not well
documented
*possible improvements:
-footstep planner
-3D ground
-more sophisticated whole body
controller
-localization and mapping

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 28

experiment time

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

29

onh going research - robust gait generation

*disturbances in MPC can cause constraint violation: in humanoid
gait generation this can imply the loss of dynamic balance as well
as instability

*different ways to address the problems: disturbance observers
for persistent perturbations, constraint restriction for robustness
to uncertainties, step position and timing adaptation for push
recovery

*we published a contribution for each of the different
methodologies and we are now working on a unified framework

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 30

onh going research - robust gait generation

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

31

on going research - 3D walking and running

*LIP model assumes constant CoM height: for 3D motions such as
stair climbing and running, this assumption must be removed

*use the Variable Height Inverted Pendulum (VH-IP)

*this model is nonlinear: a nonlinear MPC formulation is required

*we address the problem by computing the vertical motion first
and then solving for the horizontal dynamics, considering them as

a time-varying linear system

*simple but effective method (real-time implementation on OP3)

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone) 32

on going research - 3D walking and running

Oriolo:AMR - Humanoid Locomotion: a Demonstration (by F Smaldone)

33

