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1 Introduction

Mobile robots did not wait to know that they were nonholonomic to plan and
execute their motions antonomously. It is interesting to notice that the first
navigation systems have becn published in the very first International Joint
Confcrences on Artificial Intelligence from the end of the 60’s. These systems
were based on seminal ideas which have been very fruitful in the development
of robot motion planning: as examples, in 1969, the mobile robot Shakey
used a grid-based approach to model and explore its environment [82]; in
1977 Jason used a visibility graph built from the corners of the obstacles
{121]; in 1979 Hilare decomposed its environment into collision-free convex
cells [41].

At the end of the 70's the studics of robot manipulators popularized the
notion of configuration space of a mechanical system [72}; in this space the
“piano” becomes a point. The iwotion planning for a mechanical system
is reduced to path finding for a point in the configuration space. The way
was open to extend the seminal ideas and to develop new and well-grounded
algorithms (see Latombe’s book [59]).

One more decade, and the notion of nonholonomy (also borrowed from
Mechanics) appears in the literature [61] on robot motion planning through
the problem of car parking which was not solved by the pioncering mobile
robot navigation systems. Nonholonomic Motion Planning then becomes an
attractive research field [71).

These lecture notes give an account of the recent developments of the
research in this area by focusing on its application to mobile robots.

Nonholonomic systems are characterized by constraint equations involv-
ing the time derivatives of the system configuration variables. These equa-
tions arc non integrable; they typically arise when the system has less con-
trols than configuration variables. For instance a car-like robot has two
controls (linear and angular velocities) while it moves in a 3-dimensional
configuration space. As a consegii~nce, any path in the configuration space
does not necessarily correspond to a feasible path for the system. This is
basically why the purcly geometric techniques developed in motion planning
for holonomic systems do not apply directly to nonholonomic ones.

While the constraints due to the obstacles are expressed directly in the
manifold of configurations, nonholonomic constraints deal with the tangent
space. In the presence of a link between the robot parameters and their
derivatives, the first question to be addressed is: does such a link reduce the
accessible configuration space ? This question may be answered by studying
the structure of the distribution spanned by the Lie algebra of the system
controls.

Now, even in the absence of obstacle, planning nonholonomic motions
is not an easy task. Today there is no general algarithm to plan motions
for any nonholonomic system so that the system is guaranteed to cxactly
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reach a given goal. The only existing results are for approximate methods
(which guarantce only that the system reaches a neighborhood of the goal)
or exact methods for special classes of systems; fortunately, these classes
cover almost all the existing mobile robots.

Obstacle avoidance adds a second level of difficulty. At this level we
should take into account both the constraints duc to the obstacles {i.e.,
dealing with the configuration parameters of the system) and the nonholo-
nomic consiraints linking the parameter devivatives. It appears necessary
to combine geometric techniques addressing the obstacle avoidance together
with control theory techniques addressing the special structure of the non-
holonomic motions. Such a combination is possible through topological ar-
guments.

Section 2 introduces the concept of controllability and shows critical
issues in mobile robot systems modeling. Section 3 develops the relation-
ship between obstacle avoidance and nonholonomy. Then we review various
technigques developed in Control Theory allowing to steer a nonhelonomic
system from a configuration to another in the absence of obstacles {Sec-
tiond). The core of the presentation is Section 5: we show how to integrate
steering methoeds in general nonholonomic path planning schemes. Various
techniques are presented and compared. Finally Section 6 overviews special
approaches.

Sections 2 to 7 are self-contained. Technical developments are reported
within the annexes. The first one deals with combinatorial issues of the
Lie algebra machinery. Two prenfs of controllability for a car-like robot
enlights in a practical way the concept of Lie bracket in Annex B. Annex
C presents efficient algorithms for car-like robot distance computation. An-
nex D develops a technical point about a steering method using sinusoidal
inputs. All these materials deal with nonholonomic path planning which
may be consider as the problem of planning open loop controls; the problem
of the motion control is sketched in Annex E via the presentation of real
experiments conduced on the mobile robet Hilare pulling a trailer.

2 Controllabilities of mobile robots

The goal of this section is to state precisely what kind of controllability and
what level of mobile robot modeling arc concerned by motion planning.

2.1 Controllahbilities

Let us consider a n-dimensional manifold, I a class of functions of time
t taking their values in some compact sub-domain X of R™. The control
systems Y. considered in this chapter are differential systems such that

X = f(X)u+g(X).



u is the control of the system. - The i—th column of the matrix F(X) isa
vector field denoted by f;. g(X) is called the drift. An admissible trajectory
is a solution of the differential system with given initial and final conditions
and u belonging to .

The following definitions use Sussmann’s terminology [114].

Definition 1 X is locally controllable from X if the set of points reachable
from X by an admissible trajectory contains a neighborhood of X. It is
small-time controllable from X if the set of points reachable Jrom X before
a given time T contains o neighborhood of X for any T.

A control system will be said to be small-time controllable if it is small-
time controllable from everywhere.

Small-time controllability clearly implies local controllability. The con-
verse i3 false.

Checking the controllability properties of a system requires the analysis
of the control Lie algebra associated with the system. Considering two
vector fields f and g, the Lie bracket [f, g] is defined as being the vector field
df.g— 8¢.f '. The following theorem (sec [113]) gives a powerful result for
symmetric systems (ie., X is symmetric with respect to the origin) without

drift (i.e, g(X) = 0).

Theorem 1 A symmetric system without drift is small-time controllable

Jrom X 4ff the rank of the vector space spanned by the family of vector fields
fi together with all their brackets is n ot X.

Checking the Lie algebra rank condition (LARC) on a control system
consists in trying to build a basis of the tangent space from a basis (e.g., a
P. Hall family) of the free Lic algebra spanned by the control vector fields.
Annex A develops the combinatorial aspects of such a machinery.

2.2 Mobile robots: from dynamics to kinematics

Modeling mobile robots with wheels as control systems may be addressed
with a differential geornetric point of view by considering only the classical
hypothesis of “rolling without slipping”. Such a modeling provides directly
kinematic models of the robots. Nevertheless, the complete chain from mo-
tion planning to motion execution requires to consider the ultimate controls
that should be applied to the truc system. With this point of view, the
kinematic model should be derived from the dynamic one. Both view points

'The k-th coordinate of [f, g] is

U 91 = > ol o 18] = 15 glH).
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converge to the same modeling (e.g., [66]) but the later enlightens on prac-
tical issues more clearly than the former.

Let ns consider two systems: a two-driving wheel mobile robot and a car
(in [23] other mechanical structures of mobile robots are considered).

2.2.1 Two-driving wheel mobile robots

Figure 1: Two-driving whecl mobile robot

A classical locomotion system for mobile robot is constituted by two parallel
driving wheels, the acceleration of each being controlled by an independent
motor {Figure 1). The stability of the platform is insured by castors. The
reference point of the robot is the midpoint of the two wheels; its coordinatoes,
with respect to a fixed frame are denoted by (x,y); the main direction of
the vehicle is the direction @ of the driving wheels. With £ designating the
distance between the driving wheeis the dynamic model is:

F L + 19) cos 8 0 0
g 5{v1 + 12} sind 0 0
6 | = Hop —va) 0w+ |0 [u (1)
Uy 0 1 1]
Uo 0 0 1

with |u1] < u) ez, |u2] < g mer and vy and vy as the respective wheel
speeds.  Of conrse vy and vy are also bounded; these bounds appear at
this level as “obstacles” to avoid in the 5-dimensional manifold. This 5-
dimensional system is not small-time controllable from any point (this is
due to the presence of the drift and to the bounds on u; and ).

By setting v = 3 (v +wg) and w = +{v1 —v2) we get the kinematic model
which is expressed as the following 3-dimensional system:

T ( cos# 0
y | =1 <nd [v4 | 0| w (2}
6] {0 !



The bounds on v and v induce bounds Vg AN Wiygee on the new controls »
and w. Notice that v and w should be C!. The system is symmetric without
drift; applying the LARC condition shows that it is small-time controliable
from everywhere. A direct geom:ciric proof appears in Annex B together
with a second proof illustrating the geometric meaning of the Lie bracket.

2.2.2 Car-like robots

Figure 2: Car-like robot

From the driver’s point of view, a car has two controls: the accelerator
and the stecring wheel. The reference point with coordinates {z,y) is the
midpoint of the rear wheels (Figure 2). We assume that the distance between
both rear and front axles is 1. We denote w as the speed of the front wheels of
the car and ¢ as the angle between the front wheels and the main direction
¢ of the car*. Moreover a mechanical constraint imposes || < (nee and
consequently a minimum turning radius. Simple computation shows that
the dynamic model of the car is:

z ucos ¢ cosd 0 0
4 weos ( sind 0 0
g = wsin ¢ + 10 | ug+ | 0 up (3}
w 0 1 0
¢ 0 0 1

with |u1| < ) ey and |up| < %2 max. This B-dimensional system is not
small-time controllable from everywhere.

*More precisely, the front wheels are not exactly parallel; we use the average of their
angles as the turning angle.



A first simplification consists in considering w as a control; it gives a
4-dimensional system:

e cos( cos f 0
o cos( sin 0
8 - 8in¢ w o | “ (4)
¢ 0 1

‘This new system is symmetric without drift; applying the LARC condition
shows that it is small-time controllable from everywhere. Notice that w
should be C1. Up to some coordinate changes, we may show that this
system Is equivalent to the kinematic model of a two-driving wheel mobile
robot pulling a “trailer” which is the rear axle of the car (see below). The
mechanical constraint |{| < (pay = % appears as an “obstacle” in R?x (S1)2,

Let 15 assume that we do not care about the direction of the front wheels.
We may still simplify the model. By setting v = weos¢ and w = wsin¢ we
get a 3-dimensionated control system:

T cosf 0
‘_fé! = sin 8 v+ 0| w (5)
] 0 1

By construction v and w are C! and their values are bounded. This system
looks like the kincmatic model of the two-driving wheel mobile robot. The
main difference lies on the admissible control domains. Here the constraints
on # and w are no longer independent. Indeed, by setting wype, = V2 and
Cmaz = T we get: 0 < |w| < |v] < 1. This means that the admissible control
domain is no longer convex. It remains symmetric; we can still apply the
LARC condition to prove that this system is small-time controllable from
everywhere. The main difference with the two-driving wheel mobile robot
is that the feasible paths of the car should have a curvature lesser than 1.

A last simplification consists in putting || = 1 and even v = 1; hy
reference to the work in {87] and [33] on the shortest paths in the planc
with bounded curvature such systems will be called Reeds&Shepp’s car and
Dubins’ car respectively (sce Annex C for an overview of recent results
on shortest paths for car-like robots). The admissible control domain of
Reedsé&Shepp’s car is symmetric; LARC condition shows that it is small-
time controllable from everywhere. Dubiug’ car is a system with drift; it
is locally controllable but not small-time controllable from cverywhere; for
instance, to go from (0,0,0) to (1 — cose,sine, 0) with Dubins car takes at
least 2w — € unity of time.

The difference between the small-time local controllability of Reeds&Shepp’s
car and the local controllability of Dubins’ car may be illustrated geometri-
cally. Figure 3 shows the accessibility surfaces in R? x S! of both systems
for a fixed length of the shortest paths. Such surfaces have been computed
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from the synthesis of the shortest paths for these systems (see [106, 70, 20]).
In the case of Reeds&Shepp’s car, the surface encloses a neighborhood of
the origin; in the case of Dubins’ car the surface is not connected and it does
not enclose any neighborhood of the origin.

Two points of view of the same Dubins’ “ball”

Figure 3: Accessibility domains by shortest paths of fixed length

2.3 Kinematic model of mobile robots with trailers

Let us now introduce the mobile robot with trailers which has been the
canonical example of the work in nonholonomic motion planning; it will be
the leading thread of the rest of the presentation.

Figure 4 (left) shows a two-driving wheel mobile robot pulling two trail-
ers; each trailer is hooked up at the middle point of the rear wheels of the
previous one. The distance between the reference points of the trailers is
assumed to be 1. The kinematic model is defined by the following control
system (see [66]) : :

X = fi(Xw + fo(X)w (6)

with
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X = (iL', Y. 9; %1, 902}71
H(X) = (cos8, sinf, 0, —sing, sing; — cos @ sin @2)T and
f2(X) = (0,0, 1,1, )T
Note that the first body can be viewed as the front wheels of a car; the
syster then appears as modeling a car-like robot. pulling a trailer.

Figure 4: Two types of mobile robots with trailers.

After noticing that [fy, [f1, f2]] = f1, one may check that the family
{1 f2, [f1s fo), U U, £2Ds UL [ L, oll]} spans the tangent space at ev-
ery point in R? x (§1)? verifying ¢, # % (regular points). The family {f1, fa,
[f1s fal, [Fu U £, LG [, [ [f1, f2]]]]} spans the tangent space clsewhere
(i.e., at singular points). Thanks to the LARC, we conclude that the system
is small-time controllable at any point. Its degree of nonholonomy? is 4 at
regular points and 5 at singular points. A more general proof of small-time
controllability for this system with n trailers appears in [66].

Another hooking system is illustrated in Figure 4 (right). Let us assume
that the distance between the middle point of the wheels of a trailer and the
hookup of the preceding one is 1. The control system is the same as (6), with
filX) = (cos8, sinf, 0, —sine;, —sin g cos ¢, +cos ©2 8in 1 +sing)? and
(X)) = (0,0, 1, =1 — cospq, sinp sin gy + cos p; cos wg + cos w1)7

The family {f1, f2, [f1, f2], if1,[f1, £2)], [f2. [f1, f2]]} spans the tangent
space at every point in R? x (§1)3 verifying ¢ # 7, 2 # 7 and @) # o,
(regular points). The degree of nonholonomy is then 3 at regular points. The
family {f1, fo, [f1, o), [ 1, [f1s £21), U1, 11, 11, Foll]} spans the tangent space
at points verifying ¢; = y3. The degree of nonholonomy at these points is
then 4. When ¢ = 7 or ¢y = 7 the system is no more contrallable; this is
a special case of mechanical singularitics.

3The minimal length of the Lic bracket required to span the tangent space at a point
1s said to be the degree of nonholonomy of the system at this point. The degree of
nonholonomy of the system is the upper bound d of all the degrees of nonholonomy
defined locally (see Annex A for details).
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2.4 Admissible paths and trajectories
2.4.1 Constrained paths and trajectories

Let CS be the configuration space of some mobile robot (i.e., the minimal
number of parameters locating the whole system in its environment). In
the sequel a trajectory is a continuous function from some real interval [0, 7]
in C§. An admissible trajectory is a solution of the differential system
corresponding to the kinematic model of the mobile robot (including the
control constraints), with some initial and final given conditions. A path
is the image of a trajectory in CS. An admissible path is the image of an
admissible trajectory.

The difference between the various kinematic models of the mobile robots
considered in this presentation only concerns their control domains (Fig-
ure 5). It clearly appears that admissible paths for Dubins’ car are ad-
missible for Reeds&Shepp’s car (the converse is false); admissible paths for
Reeds&Shepp’s car are admissible for the car-like robot (the converse is
true); admissible paths for the car-like robot are admissible for the two-
driving wheel mobile robot (the converse is false).

[0] w w w

Two-driving wheels Car-like Reeds & Shepp Dubins

Figure 5: Kinematic mobile robot models: four types of control domains.

Remark 1: Due to the constraint |w| < |o}, the admissible paths for
the car-like, Reeds&Shepp’s and Dubins’ robots have their curvature up-
per bounded by 1 everywhere. As a converse any curve with curvature
upper bounded by 1 is an admissible path (i.e., it is possible to compute an
admissible trajectory from it).

Remark 2: This geometric constraint can be taken into account by consid-
ering the four-dimensionated control system (4) with |(| < §; the inequality
constraint on the controls for the 3-dimensionated system is then trans-
formed into a geometric constraint on the state variable (. Therefore the
original control constraint |w| < lv| arising in system (5) can be addressed

by applying “obstacle” avoidance techniques to the system (4).
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2.4.2 From paths to trajectories

The goal of nonholonomic motin: planning is to provide collision-free admis-
stble paths in the configuration space of the mobile robot system. Obstacle
avoldance imposes a geometric point of view that dominates the various
approaches addressing the problem. The motion planners compute paths
which have to be transformed into trajectories.

In almost all applications, a black-box module allows to coutrol directly
the linear and angular velocities of the mobile robot. Velocities and accel-
crations are of course submitted bounds.

The more the kinematic model of the robot is simnplified, the more the
transformation of the path into a trajectory should be elaborated. Let us
consider for instance an clementary path consisting of an arc of a circle
followed by a tangent straight line scgment. Due to the discontinuity of
the curvature of the path at the tangent point, a two driving-wheel mobile
robot should stop at this point; the resulting motion is clearly not satisfac-
tory. This critical point may be overcome by “smoothing” the path before
computing the trajectory. For instance clothoids and involutes of a circle are
curves that account for the dynamic model of a two driving-wheel mobile
robot: they correspond to bang-bung controls for the system {1) [47); they
may be used to smooth elementary paths [36].

Transforming an admissible path into an admissible trajectory is a clas-
sical problem which has been investigated in robotics community mainly
through the study of manipulators (e.g., [90] for a survey of various ap-
proaches). Formal solutions exist (e.g., [104] for an approach using optimal
control); they apply to our problem. Nevertheless, their practical program-
ming tread on delicate numerical computations (see Annex E).

On the other hand, some approaches address simultaneously the geomet-
ric constraints of obstacle avoidance, the kinematic and the dynamic ones;
this is the so-called “kinodynamic planning problem” (e.g., {30, 32, 88]).
These methods consist in exploring the phase space (i.c., the tangent bun-
dle associated to the configuration space of the system) by means of graph
search and discretization techniques. In general, such algorithms provide ap-
proximated solutions (with the exception of one and two dimensional cases
[83, 25]) and are time-consuming. Ounly few of them report results dealing
with obstacle avoidance for nonlslonomic mobile robots (e.g., [39])

The following developments deal with nonholonomic path planning.

3 Path planning and small-time controllability

Path planning raises two problems: the first one addresses the ezistence of a
collision-free admissible path (this is the decision problem) while the second
one addresses the computation of such a path (this is the complete problem).

14



The results overviewed in this section show that the decision problem
is solved for any small-time controllable system; cven if approximated al-
gorithms exist to solve the complete problem, the exact solutious deal only
with some special classes of small-time controllable systems.

We may illustrate these statements with the mobile robot examples in-
troduced in the previous section:

e Dubins’ robot: this is the simplest example of a system which is lo-
cally controllable and not small-time controllable. For this system, the
decision problem is solved when the robot is reduced to a point {38].
An approximated solution of the complete problem exists [46]; exact
solutions cxist for a special class of environments consisting of mod-
erated obstacles (moderated obstacles are generalized polygons whose
boundaries are admissible paths for Dubins’ robot) [2, 16]. Notice that
the decision problem is still open when the robot is a polygon.

¢ Reedsé&Shepp’s, car-like and two-driving wheel robots: these systems
are small-time controllable. We will sec below that exact solutions
exist for both problems.

» Mobile robots with trailers: the two systems considered in the previous
section are generic of the class of small-time controllable systems. For
both of them the decision problem is solved. For the system appearing
in Figure 4 (left) we will sce that the complete problem is solved: it
remains open for the system in Figure 4 {right).

Small-time contrellability (Definition 1) has been introduced with a con-
trol theory perspective. To make this definition operational for path plan-
ning, we should translate it in purely geometric terms.

Let us consider a small-fime coctrollable system, with ¢4 a class of control
functions taking their values in some compact domain K of R™. We assume
that the system is symmetric®. As a consequence, for any admissible path
between two configurations X; and X», there are two types of admissible
trajectories: the first ones go from Xy to Xy, the second ones go from X
to X 1

Let X be somc given configuration. For a fixed time T, let Reachx (T)
be the set of configurations reachable from X by an admissible trajectory
before the time T. K heing compact, Reachyx (T} tends to {X} when T
tends to 0.

Because the system is small-time controllable, Reachy (T} contains a
neighborhood of X. We assume that the configuration space is equipped
with a (Riemannian) metric: any neighborhood of a point contains a ball
centered at this point with a strictly positive radius. Then there exists a

“Notice that, with the exception of Dubins’ robot, all the mobile rabots introduced in
the previous section are symmetric.
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positive real number 1 such that the ball B(X,7) centered at X with radius
1 1s included in Reachx(T).

Now, let us consider a (not necessarily admissible} collision-free path
v with finite length linking two configurations X,;.¢ and Xgoai- 7y being
compact, it is possible to define the clearance € of the path as the minimum
distance of  to the obstacles®. ¢ is strictly positive. Then for any X on ~,
there exists Tx > 0 such that Reachx (Tx) docs not intersect any obstacle.
Let nry be the radius of the ball centered at X whose points are all reachable
from X by admissiblc trajectories that do not escape Reachx (Tx). The set
of all the balls B(X,nr,), X € %, constitutes a covering of . ~ being
compact, it is possible to get a finite sequence of configurations (X i<ick
(with X7 = Xgare, Xi = Xgoat}, such that the balls B(X:,nr,.) cover «.

Let us consider a point ¥; ;4 lying on v and in B(X;, T, )ﬂé(XHl, My, )
Between X; and Yj ;1) (respectively X, and Yii+1) there is an admissible
trajectory (and then an admissible path) that does not cscape Reachy, (Tx,)
{respectively Reachy,,,{Tx,,,)). Then there is an admissible path between
X; and X;1; that does not escape Reachy, (Tx,} U Reachy,,, (Tx,,,); this
path is then collision-free. The sequence (X;) 1<i<k 15 finite and we can con-
clude that there exists a collision-free admissible path between X+ and
X_qoa!-

Theorem 2 For symmetric sriuii time controllable systems the existence of
an admassible collision-free path between two given configurations is equiba-
lent to the existence of any collision-free path between these configurations.

Remark 3: We have tried to reduce the hypothesis required by the proof
to a minimum. They are realistic for practical applications. For instance the
compactness of X holds for all the mobile robots considered in this presenta-
tion. Moreover we assume that we are looking for admissible paths without
contact with the obstacles: this hypothesis is realistic in mobile robotics (it
does not hold any more for manipulation problems). On the other hand
we suggest that two configurations belonging to the same connccted com-
poucnt of the collision-free path can be linked by a finite length path; this
hypothesis does not hold for any space (c.g., think to space with a fractal
structure); nevertheless it holds for realistic workspaces where the obstacles
are compact, where their shape is simple (c.g., semi-algebraic) and where
their number is finite,

Consequence 1: Theorem 2 shows that the decision problem of motion
planning for a symmetric small-time controllable nonholonomic systemn is the
same as the decision problem for the holonomic associated one (i.e., when

*We consider that a configuration where the robot touches an abstacle is not collision-
free.
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the kinematics constraints are ignored): it is decidable. Notice that deciding
whether some general symmetric system is small-time controllable (from
everywhere) can be done by a only semi-decidable procedure {sec Annex A).
The combinatorial complexity of the problem is addressed in [108]. Explicit
bounds of complexity have been recently provided for polynomial systemns
in the plane (see {91] and references therein).

Consequence 2: Theorem 2 suggests an approach to solve the complete
problem. First, one may plan a collision-free path (by means of any standard
methods applying to the classical piano mover problem); then, one approxi-
mates this first path by a finite sequence of admissible and collision-free ones.
This idea is at the origin of a nonholonomic path planner which is presented
below (Section 5.3). It requires cffective procedures to steer a nonholonomic
system from a configuration to another. The problem has been first attacked
by ignoring the presence of obstacles (Section 4); numerous methods have
been mainly developed within the control theory community; most of them
account only for local controllability. Nevertheless, the planning scheme
suggested by Theorem 2 requires steering methods that accounts for small-
time controllability (i.e., not only for local controllability). In Section 5.1
we introduce a topological property which is required by steering methods
in order to apply the planning scheme. We show that some among those
presented in Section 4 verify this property, another one does not, and finally
a third one may be extended to guaranty the property.

4 Steering methods

What we call a steering method is an algorithm that solves the path planning
problem without taking into account the geometric constraints on the state.
Even in the absence of obstacles, computing an admissible path between
two configurations of a nonholonomic system is not an easy task. Today
there is no algorithm that guarsaotecs any nonholonomic system to reach
an accessible goal exactly. In this section we present the main approaches
which have been applied to mobile robotics.

4.1 From vector fields to effective paths

The concepts from differential geometry that we want to introduce here are
thoroughly studied in [110, 123, 111, 112]. They give a combinatorial and
geometric point of view of the path planning problem.

Choose a point X on a manifold and a vector ficld f defined around this
point. There is exactly one path (7) starting at this point and following
f. That is, it satisfies v(0) = X and 4(7) = f(y(r)). One defines the
exponential of f at point X to be the point (1) denoted by ef.X. Therefore
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ef appears as an operation on the manifold, meaning “slide from the given
point along the vector field f for unit time”. This is a diffeomorphism. With
« being a real number, applying ¢ amounts to follow f for a time a. In
the same way, applyiug e/ is equivalent to follow f + g for unit time.

It remains that, whenever [f, g] # 0, following directly cef + 8¢ or fol-
lowing first af, then Bg, are no longer equivalent. Intuitively, the bracket
[f; g] measures the variation of g along the paths of f; in some scuse, the
vector field g we follow in af + B¢ is not the same as the vector field g we
follow after having followed e f first (indeed g is not evaluated at the same
points in both cages).

Assume that f1,..., f, are vector ficlds defined in a neighborhood A of
a point X such that at each point of N, {f1,..., f,} constitutes a basis of
the tangent space. Then there is a smaller neighborhood of X on which the
maps (i, ..., ap) — et Fenli  Xoand (a, ..., an) - e¥fn el X
are two coordinate systems, called the first and the second normal coordinate
system associated to {f1,...,fu}

The Campbell-Baker-Hausdorff-Dynkin formula states precisely the dif-
ference between the two systems: for a sufficiently small 7, one has:

el e = T IHTe il hg ()

where €(7) — 0 when 7 — 0.
Actually, the whole formula as proved in [123] gives an explicit form for

the e function. More precisely, € yields a formal series whose coefficicnts
of 7* arc combinations of brackets of degree k,° ie.

r . m
(1) = Z ey
k=3

Roughly speaking, the Campbell-Baker-Hausdorff-Dynkin formula tells
us how a small-time nonholonomic system can reach any point in a neigh-
borhood of a starting point. This formula is the hard core of the local
controilability concept (Annex B shows how to use this formula to prove the
controllability of a car-like robot). The formmla yiclds methods for explicitly
cotnputing admissible paths in a neighborhood of a point.

4.2 Nilpotent systems and nilpotentization

One method among the very first ones has been defined by Lafforiere and
Sussmann [54] in the context of nilpotent system. A control system ig nilpo-
tent as soon as the Lic brackets of the control vector fields vanish from some
given length (see Annex A for details).

For small-time controllable wilpotent systems it is possible to compute a
basis B of the Control Lie Algebra LA(A) from a Philipp Hall family (sce

®As an example the degree of [[f, 9], [f, [¢, [£, ¢]]]] is 6.
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Annex A). The method assumes that a holonomic path «y is given. If we
express locally this path on B;-ie:, if we write the tangent vector ¥(#) as
a linear combination of vectors in B (7(£)), the resulting cocfficients define
a control that steers the holonomic system along . Because the system
1s nilpotent, cach exponential of Lie bracket can be developed ezactly as
a finite combination of the control vector fields: such an operation can be
cdone by using the Campbell-Baker-Hausdorff-Dynkin formula above. It is
then possible to compute an admissible and piecewise constant control u for
the nonholonomic system that steers the system ezactly to the goal.

For a general system, Lafferiere and Sussmann reason as if the system
were nilpotent of order k. In this case, the synthesized path deviates from
the goal. Nevertheless, thanks to a topological property, the basic method
may be used in an iterated algorithm that produces a path ending as close
to the goal as wanted.

Ins [45], Jacob gives an account of Lafferiere and Sussmann’s strategy by
using another coordinate system. This system is built from a Lyndon basis
of the free Lie algebra [127] instead of a P. Hall basis. This choice reduces
the number of pieces of the soluiicn.

In [11], Bellaiche ef al apply the nilpotentization technigues developed
in [10] (see also [43]). They show how to trausform any controllable system
into a canonical form corresponding to a nilpotent system approximating the
original one. Its special triangular form allows to apply sinusoidal inputs
(see bclow) to steer the system locally. Moreover, it is possible to derive
from the proposed canonical form an estimation of the metrics induced by
the shortest feasible paths. This estimation holds at regular points (as in
[126]) as well as at singular points. These results are critical to evaluate
the combinatorial complexity of the approximation of holonomic paths by a
sequence of admissible ones {see Section 5.7).

The mobile robots considered in this presentation are not nilpotent’. A
nilpotentization of this system appear in [54]. Nilpotentization techniques
do not usually deal with the singularities of the systemn. Accounting singu-
larities has been recently addressed in [125] for the case of a mobile robot
pulling two trailers.

We conclude this section by the nilpotentization of a mobile robot pulling
a trailer [11]. .

"Consider the system (2); lot us denate fi and f2 the two vector Relds corresponding
to a straight line motion and a rotation respectively. By setting ad;(g) = {f, g, we check
that ad3(f1) = (=1)™ f1 # 0.
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Example: Let us consider the control system 6:

& cos B 0

4 sinf t]

P —sing 1
= flul + f2‘u.2

where (z,y) defines the position of the mobile robot, 8 its direction and ¢
the angle of the trailer with respect to the mobilc robot.

The coordinates of vector fields f3 = [f1, fa] and fu = [f1,[f1, f2]] are
respectively:

sinf@ 0
—cosf 0
Cos 1

We check easily that {f1, f2, f3, fa} is a basis of the tangent space at ev-
ery point of the manifold R?* x (S1)2. Let Xy = (zo,%0,60, o) and X =
(,9,8,9) be two points of the manifold. By writing Az = 2z — 2, Ay =
Y — Yo, AP =0 — 6 and Ap = © — ¢y, the coordinates (y1,y2, ya, 14} of X
in the chart attached to Xp with the basis {f1, fa, f3, fa}(Xo) are:

¥ = costhAz + sinfhAy
y2 = AOF
ys = sinfhAz — cosfhAy

Yo = sin(py — B)AT + cos{ipg — Bp) Ay — A8+ Ap

The goal of the following cow.putations is to provide a new coordinate
system (zy, 29, 23, 24) at Xy such that:

o ((fi)zr)(Xo) = &,

e there exists ¢ and 7 such that ({#i.f;)23)(X0) # 0,

e for any 4 and j, ((fi-fj)24)(Xo) =0, and

e there exists ¢, j and k such that ({f.f;.f;}24)(Xo) # 0

with h,4,7 € {1,2} and k € {1,2,3,4}; & = 1iff i = k; (f) designates
the differential operator associated to the vector field f; (f.g) is the prod-
uct of the corresponding differential operators. Such coordinates are called
privileged coordinates.

One may check that ((f;)yx)(Xo) = & for i € {1,2} and k € {1,2,3,4}.
Morcover ((f1)%y3)(Xo) = ((f2)*y3)(Xo) = 0 and ((f2.f1)y3)(Xo) = 1. Now,

it appears that ((f1)%y4)(Xo) = singgcoswy; then (41,92, 43, v4) is not a
privileged coordinate system if 57 < g cos g # 0.

20



One gets privileged coordinates by keeping

21 =¥, 22Ty, 23 =13

and taking '
1

“u=ys— g sin g cos Py
In such coordinates, we have
€08 29 0
0 1
fl_ —SiI]Zg f2_ 0 (7)
F(Zl,Zg,Zg}Zzl) 0

where

F(z1, 20,23, 24) = —71{cos zosin 2¢0) /2 + sin{igp + 23)
—sin{py — 21 sin g + 27(sin 2¢4) /4 + 22 + 23 cos gy + z4).

The nilpotent approximation is obtained by taking in the Taylor expan-
sions of (7) the terms of homogeneous degree w; — 1 for the i-th coordinate
where w; is the degree of the vector field f; (Le., w) = wy = 1, wq = 2, wq =
3). We get

1 0
- ] = 1
F(zlsz‘21z3) 0
where
ﬁ(zl?zg, 73) = —22(sin g cos 200)/2 — 129 810’ oy — 25 cos? @g.

It is easy to check that this new system is nilpotent of order 3.

4.3 Steering chained form systems

At the same time as Lafferiere and Sussmann work, Murray and Sastry
explored in [79, 80] the use of sinusoidal inputs to stecr certain nonholonomic
systems: the class of systems which can be converted into a chained form.
A chained system has the following form:

fb] = v

&y = folxi)v

£y = fa(z,m)v

:'i:;p = fp("ﬁla"'smp)v
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with z; € R™ and ), m; = n.

Because of this special form, there exists simple sinusoidal control that
may be used for generating motions affecting the i set of coordinates while
leaving the previous sets of coordinates unchanged. The algorithm then is:

L. Steer z, to the desired value using any input and ignoring the evoln-
tions of the z;’s {1 < i),

2. Using sinusoids at integrally related frequencies, iteratively find the
inputs steering the z;’s without changing the xi's, § < 4

Extensions [119] by Tilbury and Sastry allow to use sinusoidal control
to steer all the coordinates at once for systems with two inputs. They show
also how polynomial controls may be used to this end. Moreover Monaco
and Normand-Cyrot show that :.ltirate controls (i.c., piece-wise constant
controls) provide an exact stecring method for chained form systems [76).

Even if a system is not triangular, it may be possible to transform it into
a triangular onc by feedback transformations (sce [80, 81}). Moreover, notice
that the nilpotentization techniques introduced in the previous section leads
to approximated systems which are in chained form.

Example: Let us consider our canonical example of a mobile robot with
two trailers (Figurc 4, left). The clever idea which enables the transforma-
tion of the system into a chained form was to consider a frame attached to
the last trailer rather than attached to the robot [119]. Denoting by 64 and
> the angle of the trailers, and by xo and 4 the coordinates of the middle
point of the last trailer, the system (6) may be re-written as:

T = cosbycos(th — B3)cos(8y ~ O )
y = sinfheos(01 — G;)cos(fy — 61)u,
6.]0 = U )

6.’] = ‘3-11'1(9[] - -';:)1)‘11.1

8, = sin(fy — 83 )cos(By — 04 )uq

Let us consider the following change of coordinates:

(21 =z
_ _1 tan(fy—f0) 2
%2 = cosfs  cos(f] —0s x (1 + tan (61 - 92))

+ ?314-3; x tan{fy — 62)(3tan(f) — Oa)tanty — (1 — tan?(fy — 6,)))

<
__ ten(f —#3)
BT T s a9z
z4 = tanfy
L B =Y

This transformation is a Jocal diffeomorphism around configurations for
which the angle between bodies are not cqual to . In this new coordinates,
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the kinematic model of the system has the following chained form:

Z1 = vy

Zo =y

2.‘,‘3 = Za.th (8)
2y = z3.m

Zn = 24,1

Notice that Sordalen generalizes this result by providing a conversion of
the car with an arbitrary number of trailers into a chained form [109].

Sinusoidal inputs: Let us consider the following inputs [119):

v1{t) = ag+aysinwt )
vo(t) bo + by cos wi + ba cos 2wt + bs cos 3wt

Let Z5%™ be a starting configuration. Equations (8) are integrable.
Then each z;(T) can be computed from the five coordinates of Z5t" and
the six parameters (aq,a1,b,b1,b2,83). For a given a; # 0 and a given
configuration Z*"*, Tilbury et ol show that the function computing Z(T)
from (ag, bo, b1, by, b3) is a C* diffeomorphism at the origin; then the system
1s invertible and the parameters (ap, by, b1, by, b3} can be computed from the
coordinates of two configurations Z5%* and Z9°¥, The system inversion
can be donc with the help of .ny symbolic computation software. The
corresponding sinusoidal inputs steer the system from Z3%7 to Zgost,

The shape of the path only depends on the parameter a;. Figure 6
from [99] illustrates this dependence. Moreover the shape of the paths is
not invariant by rotation (i.e., it depends on the variables g5t and goest
and not only on the difference (g5t — gooaty).

Polynomial inputs: Another steering method is also proposed in [119].
The polynomial inputs:

() =1
va(t) = ey + 1t + eot? + 3t + cqtd

steer the system from any configuration Z*" to any Z%°¢ verifying 29°% +#
z§*. In this case T should be equal to |27°% — 23| Ag for the case of
the sinusoidal inputs, the system can be inverted by symbolic computation.
To reach configurations such that 2f°% = 25t it is sufficient to choose

an intermediate configuration respecting the inequality and to apply the
steering method twice.
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Figure 6: Threc paths solving i%2 same problem with three values of ap:
-30, 70, 110

Extensions: The previous steering methods deal with two-input chained
form systems. In [22] Bushnell, Tilbury and Sastry extend these results to
three-input nonhclonomic systems with the fire-truck system as a canonical
example®. They give sufficient conditions to convert such a system to two-
chain, single generator chained forms. Then they show that multirate digital
controls, sinusoidal inputs and polynomial inputs may be used as steering
methods.

4.4 Steering flat systems

The concept of flatness has been introduced by Fliess, Lévine, Martin and
Rouchon [37, 85].

A flat system is a system such that there exists a finite set of variables
;i differentially independent which appear as differential functions of the
system variables (state variables dnd inputs) and of a finite number of their
derivatives, each system variable being itself a function of the y;’s and of a
finite number of their derivatives. The variables y;’s are called the lincarizing
outputs of the system.

Example: In [85] Rouchon et af show that mobile robots with trailers are
flat as soon as the trailers are hitched to the middle point of the wheels of the
previous ones. The proof is based on the same idea allowing to transform the

%The fire-truck system is a car-like obot (two inputs) with one trailer whose direction
of the wheels is controllable (third input).

24



system into a chained form: it consists in modeling the system by starting
from the last trailer.

Let us consider the system (6) (Figure 4, left). Let us denote the coordi-
nates of the robot and the two trailers by (x,y,6), (#1,31,61) and (za, y2, )
respectively. Remind that the distance between the reference points of the
bodies is 1. The holonomic equations allow to compute z, y, =1 and Y1
from x4, yo, th and 8,:

Ty =Tz +cos b T =13+ costr + cosd
Y1 = ¥y + sinfy Yy = y2 + 8ind; + sin

The rolling without slipping conditions lead to three nonholonormic equations
#sinf; —y; cos 6; = 0 allowing to compute 6; {resp. 6; and 8) from (=5, 4j5)
(resp. (€%, 92) and (&£2,12)). Finally the controls v and w are given by
v = 7 (or v—gl-f’l—g}anduf:& .

Therefore any variable of the system can be computed from z; and y; and

their derivatives. The system is flat with =, and ¥, as linearizing outputs.

A steering method: Let us consider a path -, followed by the reference
point I; of the second trailer (Figure 7). 9 is paramctrized by arc length s5.
Let us assume that v, is sufficiently smooth, i.e., Tos 4 P, is defined everywhere
and the curvature x; can be differentiated at leaqt once. The point P}
belongs to the tangent to 2 at Py aud Py = Py + 75, with 7 the unitary
tangent vector to ;. Differentiating this relation w.r.t. ss leads to Pl

T2 + #2v3 with 1% the unitary vector orthogonal to 75. The angle of the first
trailer is then £y = 0> + atan(x;). We then deduce the path +, followed by
the first trailer. Parametrizing v, with s; defined hy ds; = (1 + Hg)%dSQ
leads to

d
= (1 )75 (2 + (L + ig) %) ——rig
52

Applying the same geometric construction from Py we can compute the

path -« followed by the robot when the second trailer follows 5. The only
required condition is the existence of ﬁng, moreover the relative angles ¢,

and g should belong to | — %, 5[ {see [37] for details).

Two configurations X*** and X9 heing given, onc computes geomet-
rically the values of gt  gtart ystart ggoal | 800l apq o809l oach of them
being a function of x5 and its derivative, it is straightforward to compute -y,
satisfying such initial and final conditions (e.g., by using polynomial curves).

Remark: Because the curvature of v, shonld be defined everywhere, the
method can not provide any cusp point; nevertheless such points are required
in some situations like the parking ‘ask; in that case, Rouchon et al enter the
cusp point by hand [85]. We will see below how to overcome this difficulty.



Figure 7: Geometric construction of P (resp. P) path from P, (resp. P}
path.

Flatness conditions: In cite [86], Rouchon gives conditions to check
whether a system is flat. Among them there is a necessary and suffi-
cient condition for two-input driftless systems: it regards the rank of the
various vector space AF iteratively defined by Ag = span{ f1, f2}, Ay =
.spu,n{_ﬁ y fg, [f], fg]} and Ai—l—l = AD—F[Ai, Af] with [AI', A,] = span{[f, g] y f =
A, g € Az} A system with two iuputs is flat iff rank(A;) = 2+,

Let us apply this condition to the mobile robot system with two trailers.
According to the computations presented in Section 2.3:

e for the case shown in Figure 4 (left), we get:
rank(Ag) = 2, rank(Aq) =3, rank(A;) =4 and rank(Az) =5
the system is flat.
e for the case shown in Figure 4 (right), we get:
rank(Ag) = 2, rank(A;) =3 and rank(Ag) =5
the system is not flat.

» for the same case shown in Figure 4 {right) but with only onc trailer,
one can check that:

rank{Ag) = 2, r'dnk(Al) =3 and rank(Ap) =4
the system is flat.

We have seen that the linearizing outpuats in the first casc are the coordinates
of the reference point of the second trailer. In the last case, the linearizing
outputs are more difficult to translate into geometric terms (see [85]). Notice

that there is no general method to compute the linearizing outputs when
the system is flat.
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4.5 Steering with optimal control

Optimal length paths have been at the origin of the very first nonholonomic
motion planners for car-like mobile robots {see for instance [67, 60] and
below). Nevertheless, today the only existing results allowing to compute
optimal paths for nonholonomic systems have been obtained for the car-like
systems (sec Annex C). For general systems, the only possibility is to call
on numerical methods.

We sketch here the method developed by Fernandes, Li and Gurvitz in
[35].

Let us consider a dynamical system: X = B(X)u together with a cost
function J = f[;*n < u(r),u{r) > dr. Both starting and goal configurations
being given, the optimization picblem is to find the control law (if any}
that steers the system from the starting configuration to the goal in time T
by minimizing the cost function J. The path corresponding to an optimal
control law is said to be an optimal path.

Let us consider a continnous and piccewise €' control law u defined over
[0,T]. We denote by @ the periodic cxtension of u over R. We may writc @
in terms of a Fourier basis:

2kme

)

20

c 2kt ;

G=) (are’ T + fpe
k=0

We then approximate 4 by truncating its expansion up to some rank N.
The new control law @ is then defined by N real numbers® @ = Zf:;] ey,
e € {ei%l, p € Z}. The choice of the reals a4 being given, the point X{T)
reached affer a time T with the control law 4 appears as a function fla)
from RY to R™.

Now, we get a new cost funetion

N
j(a) = Z |O'x’c|2 + 'YHX(T) - Xgoal”2-
k=1

The new optimization problem becomes: for a fixed time 7', an initial point
Xinit and a final point X g , find o € RY such as

N
J(a) = Z |"3"3L'|2 + ’Y”f(o') - Xgoa£||2
k=1

is minimum.

One proves (¢.g., see [35]) that the solutions of the new finite-dimensional
problem converge to the solutions of the original problem as N and v go to
infinity.

9This approximation restricts the family of the admnissible control taws.
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Because we do not know f and 4 f/de explicitly we use numerical meth-
ods (numerical integration of the differential equations and numerical op-
timization like Newton’s algorithm) to compute a solution of the problem.
Such a solution is said to be a near-optimal solution of the original problem.

Figure 8 from [99] shows three examples of near-optimal paths computed
from this method for a mobile robot with two trailers [68].

Mhmea 9 7

D 19N
e, 7 %

Figure 8: Three cxamples of near-optimal paths.

5 Nonholonomic path planning for small-time con-
trollable systems

Consider the following steering method for a two-driving wheel mobile robot.
To go from the origin (0,0,0) to some configuration (2,3, #) the robot first
executes a pure rotation to the configuration (O,U,atan%), then it moves
along a straight line seginent to (z,y, atan?), and a fina] rotation stecrs it
to the goal. This simple method accounts for local controllability: any point
in any necighborhood of the origin can be reached by this scquence of three
elementary paths (when z = 0, replace atan¥ by +%). Nevertheless such
a method does not account for small-time controllability. If the space is
very constraint it does not hold. Think to the parking task (Figure 19): the
allowed mobile robot orientations 6 vary in some interval |—#, 5. To go from
(0,0,0) to (0,€,0) the stcering method violates necessarily this constraint.

Therefore, obstacle avoidance requires steering methods accounting for
small-time controllability. Such a requirement can be translated into geo-
metric terms.
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5.1 Toward steering methods accounting for small-time con-
trollability

Let degs be the following distance over the configuration space CS:
dcg(Xl,XZ) = Z |:E31 — :I:?|
i=1

The set of configurations X2 such that des(X', X?) < € is denoted by
B(X1,¢); this is the ball centered at X! with radius e.

Let P be the set of feasible paths defined over an interval of the type
[0,T]. A steering function is a mapping from €S x €& into P:

(X', X?) - Steer(X', X?)

where Steer(X ', X?) is defined over the interval [0, 7], such that Steer(X!, X2)(0) =
X1, Steer( X1, X2)(T) = X2

Definition 2 Steer verifies the weak topological property iff:
Ve > 0,¥X' € C8, 35 > 0,¥X? € CS, (10)
des(X1, X*)<n = Ve ([0,T], des(Steer(X', X2)(1), X!) < e

By using a steering method that verifies the weak topological property,
it 18 possible to approximate any collision-free path +yre.. Neverthcless, this
property is not sufficient from a computational point of view. Indeed, it is
local: the rcal mumber » depends on X'. Situations as shown in Figure 9
may appear: let us consider a sequence of configurations X* converging to
the critical point X* and such that limyi_, v 5{X*) = 0; to be collision-
free any admissible path should necessary goes through the configuration
X¢ The computation of X may sct numerical problems. To overcome this
difficulty, we introduce a stronge# property for the steering methods.

Definition 3 Steer verifics the topological property iff:
Ve > 0,35 > 0,¥(X!, X?) € (CS)?, (11)
des(X' X% < = VEE[0,T), des(Steer(X', X3)(8), X!) < ¢
In this definition % does not depend on any configuration (Figure 10).

'This is a global property that not only accounts for small-time controllability
but also holds uniformly everywhere.
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Figure 10: Topological property
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Remark 1: Proving that a given steering method verifies the topological
property is not an easy task. The following sufficient condition appears
in [99, 102]. Let us equip P with a metric dp between paths: 'y and Ty
being two paths on [0, 1], we define dp ('), T) = maxeer,1) des{C1(t), T2(2)).

Let us consider a steering method Steer continuous w.r.t. to the topology

induced by dp. Steer is uniformly continuous on any compact set X included
in 5% ie.,

Ve>0,3n>0, Y{{X,X),(YLy)lek

des((X',Y!) <5 and des((X%, V) <np = dp(Steer(X', X?), Steer(Y?, ¥?)) < ¢
Choosing X? =Y = ¥? we deduce:

Ve >0, 3n >0, V(X' X% ecs?

dos{X', X%} < n == dp(Steer(X', X}, Steer(X1, X2)} < ¢
Now, let us assume that Steer(X, X) = {X} at any point X. Then:

Ve >0, 3n>0 V(X! X?) € cS2

dos(X', X% < = Vte(0,1], dos(X',Steer(X1, X2)(1)) < e

Therefore a sufficient condition for a steering method Steer to verify the
topological property is that (1) Steer is continuous w.r.t. the topology as-
sociated with dp and (2) the path Steer(X, X) is reduced to the point X.
Notice that the sccond condition is obviously a necessary condition.

Remark 2: The first general result taking into account the necessary uni-
form convergence of steering methods is due to Snussmann and Liu [115]: the
authors propose an algorithm providing a sequence of feasible paths that
urigformly converge to any given path. This guarantecs that one can choose
a feasible path arbitrarily close to a given collision-free path. The method
uses high frequency sinusoidal inputs. Though this approach is general, it is
quite hard to implement in practice. In [120], Tilbury et af exploit the idea
for a mobile robot with two trailers. Nevertheless, experimental results show
that the approach cannot be applied in practice, mainly because the paths
are highly oscillatory. Therefore this method has never been connected to
a geometric planner in order to get a global planner which would take into
account both environmental and kinematic constraints.

5.2 Steering methods and topological property

In this section we review the ste-ring methods of Section 4 with respect to
the topological property.
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5.2.1 Optimal paths

Let ns denote by Steer,p; the steering method using optimal control. Steerop
naturally verifies the weak topological property, Indeed the cost of the opti-
mal paths induce a special metric in the configuration space; such a metric is
said to be a nonholonomic [126], or singular [18], or Carnot-Caratheory [75],
or sub-Riemannian [111] metric. By definition any optimal path with cost
r does not escape the nonholonomic bali centered at the starting point with
radius r. A general result states that the nonholonomic metrics induce the
same topology as the “natural” metrics des. This means that for ARy non-
holonomic ball B, (X, r) with radius , there are two real numbers ¢ and n
strictly positive such that B(X,5) C By, (X,r) C B(X, ).

The nonholonomic distance being contimuous, to get the topological
property, it suffices to restrict the application of Steergp to a compact do-
main of the configuration space!®.

There is no general result that gives the exact shape of the nonholonomic
balls; nevertheless the approximated shape of these balls is well understood
(e.g., see [12]).

The metric induced by the length of the shortest paths for Reeds&Shepp’s
car is close to a nonholonomic metric; car-like robots are the only known
cases where it is possible to compute the exact shape of the balls (see Fig-
ure 3).

5.2.2 Sinusoidal inputs and chained form systems

Let us consider the two-input chained form system (8) together with the
smusoidal inputs (9) presented in Section 4.3. We have seen that the shape
of the paths depends on a; (Figure 6). The only constraint on the choice of
@) is that it should be different from zero.

The steering method using such inputs is denoted by Steeri! . TFor a
fixed value of a;, Steery) does not verify the topological property. Indeed,
for any configuration Z, the path Steer?: (Z, Z) is not reduced to a point!l.

Therefore, the only way to build a steering method based on sinusoidal
inputs and verifying the topological property is not to keep a1 constant.
One has to prove the existence of a continuous expression of a,(Z, Z%) such
that:

lim a(Z, 2% =0
zZ2z71
. 1 2 1 2
Zglzlag(z L4 ai(Z7,Z2°)) =0
Z;Lnlzl bi(Z', 2%, a1 (2%, 2%) =0

“Notice that the steering method Steer,,; is not necessarily contiouous w.r.t. the
topulogy induced by dp.
" The first coordinate of points lying ou the path is z1(t) = z1 + &{1 — coswt).
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‘The proof appears in [101]. Tt first states that, for a fixed value of a1,
Steer ), is continuous w.r.t. to the topology induced by dp. This implies
that when the final configuration Z? tends to the initia} configuration Z!, the
path Steer(} (Z', Z) tends to the path Steer® (7, Z1). Moreover, for any
Z, Steer(}, (Z, Z) tends to {Z} when a; tends to zero. Combining these two
statements and restricting the application of Steer®l to a compact domain
K of CS2, one may conclude that;

Ve> 0, 34; > 0 VYay < Ay, In(ar), ¥(Z!,2°%) €K,
des(Z', 2% < nla), => Vi€ [0,1], des(Z",Steer®™ (27, Z2)(1)) < e

Then, by tuning ay, it is @ priori possible to design a steering method
Steer,;,, based on sinusoidal inputs and verifying the topological property.
It remains to define a constructive way to tune the parameter a;. The
problem is not casy. Indced the general expression of parameters o and b
are unknown. Then we do not dispose of a unique expression of Steer,;,,.
Nevertheless, it is possible to “simmulate” a steering method verifying the
topological property, by switching between different Steerll according to
the distance between the start and goal configurations. The principle of the
construction presented in Annex D consists in introducing the possihility to
iteratively compute subgoals and then a scquence of subpaths that reaches
the final goal without escaping a bounded domain.

5.2.3 A flatness based steering method for mobile robots with
trailers

We have seen in Scction 4.4 that a mobile robot with two trailers (with cen-
tered hooking up system) is flat with the coordinates (z2,32) of the second
trailer refercnce point P as Lnearizing outputs. Planning an admissible
path for the system then consists in finding a sufficiently smooth planar
curve yo(s) for P, All the coordinates (2,8, ¢1,92) of a configuration
can be geometrically deduced from (o, 4,9, K2, ﬁng). Nevertheless this
steering method cannot verify the topological properties. Indeed, duc to
the conditions on y; (absence of cusp points), going from a configuration
(z2,92,82, ., . ) to some configuration (r9,ys + €,6, . , . ) should neces-
sarily contain a configuration { ., .0, + 5 )

[102] takes advantage of the flatness property of a mobile robot with
one trailer to design a steering method verifying the topological property.
[56] generalizes the method to a system with 7 trailers. Let us sketch the
method for a mobile rabot with two trailers.

Let us consider a configuration X = (z,y,8, ¢, p2) of the system. If T
i3 an admissible path in the configuration space, we will denote by ¥ the
curve in R? followed by Py. Among all the admissible paths containing a
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configuration X, there exists exactly one path I such that af—znz remains
constant everywhere: the corresponding curve s is a clothoid!?.

Let X7 and X9°® be the initial and goal configurations respectively.
Let v stars and 75 g0q1 be the associated clothoids defined on [0,1] and such
that Ty, (0) = X597 and Coouifl) = Xa0al Then any combination () =
a(t)y2,start{t) + (1 — a(t))y2,90:(t) is & C3 path; it then corresponds o an
admissible path for the whole system. To make this path starting at X et
and ending at X%« should verify: {0) = &(0) = d(0) =& (0) = &(1) =
(1) = @ (1) = 0 and (1) = 1 (iudeed, the threc first derivatives of vy
should be the same as those of vy 44 at 0 and the same as those of Y2,g0al
at 1),

At this level we get a steering method (denoted by Steetly) that allows
the mobile robot with its two trailers to reach any configuration from any
other one. Nevertheless, this method does not verify the required topological
property: indeed it cannot generate cusps and the steering method we want
to provide should be able to do it when it is necessary.

Let X*™ be an initial configuration and Y2,starts the corresponding
clothoid in R% In [56] we prove that, for any € > 0, if we choose a configu-
ration X within a "cone” Cyyqre . contered around I'ypn,e with vertex X stort
{(see Figure 11), then the path Steerf; . (X*%" g} does not escape the ball
B(Xsturt’ 6).

Moreover, if X5 moves within a small open set, the clothoid Y2, start 19
submitted to a continuous deformation: for instance a change on the coordi-
nates (2, 12) (respectively 82) of X597 corresponds to a translation (respec-
tively rotation) of the clothoid Y2,start- Then for a small deformation, the
corresponding path in the configuration space nccessarily intersects Cstart,e-

Let us now comsider a configuration X9°% sufficiently close to XStert.
The local planner Steer s then works as follows:

» If X9 belongs to Catart,e; Steer g { X707, X990y = Gteery,, (X start, X goal)

» otherwise, we choose a point X “*? on ¥2,g0at Within Cytopg o and Steerﬂat(xm.rt} Xgoa..{)
is constituted by Steer}m(X““”chuSP) followed by the arc of the
clothoid ¥, go between X4 and X904,

With this construction Steer g, (X **7¢ X 900!} is guarantecd to remain
within the ball B{(X*" ¢} (Figure 11).

Figure 12 shows an example of the path generated by Steer flat-

Figurcs 13 shows a compariscn between paths computed by Steery,, and
Steerfyyy for a mobile robot with one trailer (the curve is the path followed
by the robot).

121f we consider only one trailer, we impose x1 to remain constant; in this case the
trailer follows a circle with radins £.cotany,
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Figure 11: Topological property of Steer Tlat:

robot

first trailer

Figure 12: An admissible path for a mobile robot with 2 trailers
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\Q%@ Ry,

Figure 13: Comparison between two steering methods on System A: si-
nusoidal inputs for the equivalent chained system (left) and flatness based
steering method (right). Initial and final configurations arc the same in
cach of the six cases, Note that Steer f;,; generatcs more “natural® paths
requiring fewer cusp and space {'.»n the sinusoidal inputs.
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5.3 Approximating holornmic paths: a two step approach

5.3.1 Principle

Everything being in place, we may now define a first nonholonomic path
planning scheme for small-time controllable systems. It consists in approx-
imating a collision-free (holonomic) path by a sequence of collision-free ad-
missible ones. Applying this scheme requires three main components:

¢ A geometric path planner that computes collision-free paths without
taking into account the kinematic constraints.

e A steering method verifying the topological property.

¢ A geometric routine checking whether a given path is collision-free or
not.

The algorithm itself is then very simple:

1. Step 1: Plan a collision-free path with the geometric path planner. Tf
no such path cxists, the algorithm stops: there is no solution.

2. Step 2: Perform subdivisions on the path until all endpoints can be
linked to their neighbors by an admissible collision-free path.

Convergence and completeness: By Theorem 2, the convergence of
Step 2 is guaranteed as soon as the steering method verifies the topological
property. Then the completeness of the algorithm only depends on the
completencss of the geometric planner that computes a first collision-free
path®®.

Geometric planner: There are no general and practical algorithm solv-
ing the classical “piano mover” problem with completeness property4. Nu-
merous techniques are available to address dedicated problems [59]. More-
over new general principles appeared in the past few vears. Among them
one should notice the “distributed representation approach” [5] that leads
to resolution-complete algorithwis (such algorithms are guarantced to find
a solution when a solution cxists at a given resolution when modeling the
search space by a grid). Another notion is related to the behavior of prob-
abilistic algorithms: an algorithm is said to be probabilistically complete if
it includes randem choices and if it is guaranteed to find a solution in fnite

8An algorithm is complete if it is guaranteed to report a negative answer when a
solution does not exist and to compute a solution otherwise,

" General algorithms have been provided within the framework of real algebraic geom-
etry [97, 24]; nevertheless the performance of the existing algebraic computing software
and the intrinsic computational complexity of the general problem do not allow effective
implementations of these algorithms.
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{possibly unbounded) time when a solntion exists: such algorithms eannot
ferminate with a negative answer on the existence of a solution. Nevertheless
resolution and probabilistically complete algorithms arc well understood [g]
and they lead today to fast and practical motion geometric plauners even
for highly dimensionated systems.

Smoothing step: Step 2 provides a sequence of elementary admissible
paths computed by the chosen steering method. The length of the sequence
mainly depends on the clearance of the first collision-free path: the closer to
the obstacles the path is, the more it should be subdivided. The sequence
may be shorten in a third step by applying the steering method to link ran-
domly chosen pairs of points lying on the first solution path. Unfortunately
there is today no result insuring the convergence of this third step to any
“optimal” sequence.

Several nonholonomic path planners have been designed in this way.
Here is a review of the main ones.

5.3.2 Application to mobile robots (without trailer)

The seminal ideas of the algorithm above have been infroduced in [67].
This reference deals with car-like robots. When the robot is a polygon, the
geometric planner is derived from the algorithm based on an analytical rep-
resentation of the configuration space of a polygon moving amidst polygonal
obstacles [4]. When the robot is a disk, the geometric planner works from
the Voronoi diagram of the euvironment. In both cases, the steering method
i5 Steergy: it consists in computing the shortest length admissible paths for
a car-like robot as characterized in [87]. Due to the completeness of the ge-
ometric planners the proposed algorithins are complete. Nevertheless they
are delicate to implement and fragile in practice (indeed the basic geometric
routines are sensitive to mumerical computations; a robust implementation
could be done by using software computing with rational numbers).

Another version of this algorithm appears in [60] where the geomctric
planner has been replaced by a distributed representation approach; the
search consists in exploring the discretized configuration space with an A*
algorithm heuristically gnided by a potential function. It is then resolution-
complete, less fragile than the original version, and sufficiently efficient to
be integrated on real robots. Figure 14 shows an example of a solution from
a software developed for the mobile robots Hilare at LAAS.

A clever idca appears in [74]. Tt tends to minimizc the length of the
shortest path sequence approximating the geometric path. It consists in
computing a skeleton gathering the set of points with maximum clearance
with respect to the obstacles. The key point is that the clearance is mea-
sured with the metric induced by the length of the shortest admissible paths
(the so-called Reeds&Shepp metar). Then the geometric planner works by
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Figure 14: A planned path for a car-like robot: the workspace is modeled
by a grid of 250 x 150 pixels; the total running of the algorithm is 2 seconds
on an Indy Silicon Graphics.

-
™~

retracting the initial and goal configurations on the skeleton and by explor-
ing it. Even if one cannot conclude to any optimality of the solution, the
sequence of shortest paths provided the approximation step is shorter than
a sequence approximating a path that would lie closer to the obstacles. A
critical point of the approach is tize computation of the metric. The distance
between two configurations being invariant by translation and rotation, the
authors use a lookup table storing all the distance value over a discretized
compact region around the origin. This table is computed off-line once and
may be used to compute the skeleton of various environments.

Recent results derived from the synthesis of the shortest paths for a car-
like robot (see Annex C) provide an analytical way to compute the shortest
path distance to a polygonal obstacle for a point car-like robot (124]. This
means that all the distance computations in the Reeds&Shepp metric can be
done on-line. This property has been exploited to include dynamic obstacle
avoidance when the robot executes its trajectory. Figure 15 from [53] shows
an example of on-line updating of an admissible path when an unexpected
obstacle (the black box) occurs during the execution of the motion. The
various balls covering the path in the figure are the projection onto R2
of the maximal collision-free Reeds&Shepp balls covering the path in the
configuration space. Up to now, the distance function are known for a point
robot; its extension to a polygoral robot has to be done.

5.3.3 The case of mobile robots with trailers

The case of mobile robots with n trailers has been solved by using RPP
as geometric planner and the three steering methods Steer,p;, Steery;, (for
n =1 and n = 2) and Steerf;q; (for n = 1) [99].

To compute a collision-free path we use the algorithm RPP, the random

39



Figure 15: A planned path is updated in real-time when an unexpected
moving obstacle occurs.

path planner presented in [5]. We consider n + 1 control points: two are
located on the robot and one is located on each trailer. The start configura-
tion and the goal being given, a potential field is computed for each control
point in the workspace'®; the n + 1 potential fields are then combined to
create a potential field in the configuration space; the search consists in fol-
lowing the gradient of the potential; when it stops at some local minimum,
the algorithm generates a random path and follows again the gradient until
the goal is reached. The algorithm is probabilistically complete.

From the various experiments reported in [99], it appears that the the al-
gorithm based on Steerg;,, is much faster than the algorithm based on Steer,,
(in terms of computation time) for a mobile robot with one or two trailers.
For a mobile robot with one trailer the computation time are roughly the
same when using Steer;,; and Steerg;,; nevertheless the smoothness of the
final path is better with Steery;,, than with Steerg;p,.

In the examples on Figures 16 and 17 the workspace is modeled by a
grid of 600 x 470 pixels.

5.4 Probabilistic approaches

Recent results have been provided by applying a new general paradigm in
motion planning. This is a probabilistic approach consisting in two phases
(see [118] for an overview):

e In a first learning phase an incremental roadmap is built by randomly
choosing collision-free configurations and by linking them with admis-
sible paths. Admissible paths are computed with a (not necessarily
complete) local path planner.

e In the query phase, paths are to be found between some given start
and goal configurations. The local path planner is used to connect the

'5The potential field are computed from a bitmap representation of the workspace.
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Figure 16: Solutions using Steergy,: the total computation time is 30 seconds
(left) and 114 seconds (right) on a Sun-Sparc-20.

Figure 17: Solutions using Steet flat” the total computation time is 21 seconds
(left) and 6 seconds (right) on a Sun-Sparc-20.
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configurations to some nodes of the roadmap. If this succeeds, a graph
scarch is performed.

As for the approach using a holonormic path approximation, the algo-
rithm includes a last step consisting in smoothing the computed solution.

Such a scheme applies for nonholonomic systems as soon as the local
path planner is a stecring method verifying the topological property. The
algorithm is probabilistically complete. It has been applied to mobile robots
with trailers on the basis of Steery;, [98]. An analysis of the approach to-
gether with practical resulis are overviewed in Svestka—Overmars’ chapter.

5.5 An approach using optimization techniques

At the same time, a slightly differcnt approach has been proposed by Bessiére
et al [14]. Its principle consists in exploring the free space from the initial
configuration along admissible paths by spreading landmarks, each being as
far as possible from one another. In parallel, a local path planner checks
if the target may be rcached from each new landmark. Both phascs are
solved by using optimisation techuniques (e.g., gemetic algorithms). This
general paradigm has been applied to nonholonomic mobile robots in [3]
by using the Steer,;;, as local path planner. Because Steer,;, verifies the
topological property the algorithm may be proved to be complete as soon
as the convergence the optimization routines is guaranteed.

5.6 A multi-level approach

It remains that the computational cost of the nonholonomic path planners
increases with the dimension of the systems. Facing the intrinsic complexity
of the problem for practical applications requires a good understanding of
the kinematic structures of the systems as well as a good experience in
evaluating the performance of a given planning scheme. [98] presents a
multi-level nonholonomic path planner.

Let us illustrate the idea from a car-like robot pulling two trailers: from
the collision avoidance point of view the system is of dimension five (three
parameters for the car and onc parameter for each trailer); from the control
point of view the direction of the front wheels of the car is taken into account:
the system is then six-dimensionated.

The underlying idea consists in introducing the nonholonomic constraints
of the bodies iteratively. In a first step one plans a “semi-holonomic” path
feasible by the car, but not nceessarily by the trailers (i.e. at this step the
trailers are assumed to be holonomic). Then the nonholonomic constraint
due to the first trailer is introduced: this step consists in searching a path
feasible by both the car and the first trailer. Finally, all the kinematic
constraints are taken into account.
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Each step should benefit from the path computed by the previous one,
via a specific nonholonomic motion planner. In (98], the first semi-holonomic
path is computed with a probabilistic approach that considers only the kine-
matic constraints of the car. Then a probabilistic search using Steerg;,
is applied within a tube swrrounding the path; it provides a sccond semi-
holonomic path that takes into account the first three kinematic constraints.
Finally the second path is approximated via Steer, accounting for all the
constraints. The global algorithm is then based on a combination of the
holonomic path approximation stheme and the probabilistic one.

Three examples of solutions provided by the algorithm appear in Fig-
ure 18: the left column shows the first “semi-holonomic” paths {the two
trailers “slide”); the right column shows the corresponding final paths. The
total time to compute the solutions ranges from less than one minute for
the first example to around three minutes for the third one, on a 136 MIPS
workstation.

43



Figure 18: Examples of solutions computed by the multi-level approach (the
left, column shows the first “semi-holonomic” paths)
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3.7 On the computational complexity of nonholonomic path
planning

Evaluating the computational complexity of the approaches introduced above
15 a difficult task. More gencrally, the complexity of the nonholonomic path
planning problem is an open problem.

For small-time controllable systems, we have seen that the existence of
a solution is characterized by the existence of any collision-free path for
the associated holonomic system. The complexity of deciding whether a
solution exists is then cquivalent to the complexity of the classical piano
mover problem (sce [59] for an overview). The complexity for other systems
(e.g., with drift) is an open problem.

I this section we give an account of results providing lower bounds on
the complexity of nonholonomic paths for small-time controllable mobile
robots. By reference to the approximation scheme, we may define the com-
plexity of a collision-free nonholonomic path by the length of the sequence
of admissible paths approximating a holonomic one. This definition depends
a priori on the steering method used to approximate a holonomic path. A
more intrinsic definition consists in considering the approximation scheme
that uses Steer,;,;. Indeed the cost of the optimal paths induces a (non-
holonomic) metric in the configuration space. A possible definition of the
complexity of a path is the minimnm number of balls computed with the
nonholonomic metric and covering the path. For instance the complexity of
the paths appearing in Figure 15 is 7 in both cases. This definition allows
to link the complexity of nonholonomic path planning with the clearance of
the free-space.

Let us consider the classical parking task problem illustrated in Figure 19
for a car-like robot. The solutions have been computed by the algorithm
presented in Section 5.3.2. The sieering method to approximate the holo-
nomic path is Steergy which computes Reeds&Shepp’s shortest paths. The
length of the shortest paths induces a metric dgg in configuration space.
The shape of the balls computed with this metric appears in Figure 3 (top).
Let us consider a configuration X = (z,y, ) near the origin O. In Annex B
we prove that:

1 1 1
el +1ul7 +10) < drs(0,X) < 12(ls] + |y}? +10])

As a consequence, the number of balls required to cover the “corridor” where
the car has to be parked varies as €72 with ¢ being the width of the corridor.
Morcover each elementary shortest path providing a motion in the direction
of the wheel axis requires exactly two cusps. Then the number of maneuvers
to park a car is in Q(e~2).

Such a reasoning may be generalized to small-time controllable systems.
Let us consider a control system defined by a set of vector ficlds; let us
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Figure 19: The number of mancuvers varies as the inverse of the square of
the free space.

i

assume that the tangent space at every point can be spanned by a finite
family of these vector fields together with their Lie brackets (i.e., the system
verifics the LARC at every point). The minimal length of the Lie bracket
required to span the tangent space at a point is said to be the degree of
nonholonomy of the system at this point.

The cost of the optimal paths induces a metric in the configuration space
of the system. A ball of radius » corresponding to this metric is the set of all
the points in the configuration space reachable by a path of cost lesser than
7. The balls grow faster in the directions given by the vector fields dircctly
controlled than in the directions defined by the Lie brackets of these vector
fields. A powcrful result from sub-Riemannian geomctry shows that the
growing law depends on the degree of bracketing (see [9, 40, 126, 75]): when
7 is small enough, the ball grows as r in the directions directly controlled:
it grows as r? in the directions spanned by Lie brackets of length 4.

Figure 20 illustrates this complexity modeling en a mobile rebot with
two trailers. We have seen in Section 2.3 that the degree of nonholonomy
of this system is 4 when ¢y # Z (regular points) and 5 cverywhere clse.
This means that the complexity of the parking task is in Q(e™?) while the
complexity of the exotic cxample on the right side (the mobile robot can
not escape the room...) is in ©{e™%). These worst casc examples may be
generalized to an arbitrary number of trailers: the degree of nonholonomy
for a mohile robot with n trailers has been proved to he n + 2 at regular
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points and F'ib(n+3) when all the relative angles of the trailers are 5 (73, 50]
(Fib(n + 3) is the (n 4+ 3)th number of the famous sequence of Fibonacci
defined by Fib(i +2) = Fib(i + 1) + Fib(i), i.e., 1, 1, 2, 3, 5, 8, L3t 0.
This means that the complexity of the problems appearing in Figure 20 and
generalized to n trailers are respectively Q(e~"~2) (simply exponential in 7)
and Q(e~F®+3)) (doubly exponential in n).

€
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Figure 20: The complexity of admissible paths for a mobile robot with n
trailers are respectively Q(e™"~?) (case on the left side) and Q(e=Fib(n+3))
(case on the right side).

6 Other approaches, other systems

This section overviews other works related to nonholonomic path planning
for mobile robots. They deal either with direct approaches based on dynamic
programming techniques, or with specific systems.

Combining discrete configuration space and piece-wise constant
inputs: Barraquand and Latombe propose in [6, 7] a direct approach to
nonholonomic path planning. It applies to car-like robots with trailers.
The model of the car corresponds to the control system (4) introduced in
Section 2.2.2. Four input types are chosen in {~1,1} x {Cnin,Cmaz}; they
correspond to backward or forward motions with an extremal steering angle.
The admissible paths are generated by a sequence of these constant inputs,
each of them being applied over a fixed interval of time §¢. Starting from the
initial configuration the search generates a tree: the successors of a given
configuration X are obtained by setting the input to one of the four values
and integrating the differential system over §¢. The configuration space is
discretized into an array of cells of equal size (i.e. hyperparallelepipeds). A
successor X' of a configuration X is inserted in the search tree if and only if
the computed path from X to X' is collision-free and X’ does not belong to
a cell containing an already generated configuration. The algorithm stops
when it generates a configuration belonging to the same cell as the goal (i.e.,
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1t does not necessarily reach the goal exactly).

The algorithm is proved to be asymptotically complete w.r.t. to both
6t and the size of the cells. As a brute force method, it remains quite
time-consuming in practice. Its main interest is that the search is based on
Dijkstra’s algorithm which allows to take into account optimality criteria
such that the path length or the mumber of reversals. Asymptotical opti-
mality to generate the minimum of reversals is proved for the car-like robot
alone.

Progressive constraints: In [34] Ferbach combines the two step ap-
proach presented in Section 5.3 and a so-cailed variational approach. It
applies for small-time controllable system. First, a collision-free path is gen-
eratcd. Then the nonholonomic constraints are introduced progressively. At
cach iteration, a path is generated from the previous one to satisfy more se-
vere nonholonomic constraints. The search explores the neighborhood of the
current path according to a dynamic programming procedure. The progres-
stveness of the search is obtained by taking random tangent vectors chosen
mn neighborhoods of the admissible ones and by making thesce neighborhoods
decreasing to the set of admissible tangent vectors.

The method is neither complete nor asymptotically complete. Complete-
ness would reguire back-tracking that would be expensive. Nevertheless
simulations have been performed with success for a mobile robot with three
trailers and for two tractor-trailer robots sharing the same environment.

Car-like robots moving forward: After the pioneering work of Dubins
who characterized the shortest paths for a particle moving with bounded
curvature [33], attempts have been done to attack the path planning for
car-like robots moving only forward. Except some algorithms that do not
verify any peneral completeness properties (e.g., [62, 122, 128]), they are
only few results addressing the general problem. All of them assume that
the robot is reduced to a point. In {38], Fortune and Wilfong propose an al-
gorithm running in exponential time and space to decide if a path exists; the
algorithm does not gencrate the solution. Jacobs and Canny’s algorithm [46]
1s a provably good approximation algorithm that generates a scquence of el-
ementary feasible paths linking configurations in contact with the obstacles.
According to the resolution of a contact space discretization, the algorithm
i3 proved to compute a path which is as close as possible to the minimal
length path. More recent results solve the problem exactly when the ob-
stacles are bounded by curves corresponding to admissible paths (i.c., the
so-called moderate obstacles) {2. 16].

Nonholonomic path planning $or Dubins’ car then remains a difficult and
open problem. Barraquand and Latombe’s algorithm [6] may be applied to
provide an approximated solution of the problem. Finally optimal path
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planning for Dubins’ car has bec recently proved to be NP-hard [89].

Multiple mobile robots: Nonholonomic path planning for the coordi-
nation of multipie mobiles robots sharing the saine environment has been
addressed along two main axis: centralized and decentralized approaches!S,

In the centralized approaches the search is performed within the Carte-
sian product of the configuration spaces of all the robots. While the problem
is PSPACE-complete [44], recent results by Svestka and Overmars show that
1t 1s possible to design planners which are efficient in practice (until five mo-
bile robots) while being probabilistically complete [117]: the underlying idea
of the algorithm is to compute a probabilistic roadmap constituted by ele-
mentary (nonholonomic) paths admissible for all the robots considered sep-
arately; then the coordination of the robots is performed by exploring the
Cartesian product of the roadmaps. The more dense is the initia] roadmap,
the higher is the probability to find a solution in very cluttered environ-
ments.

In [1], Alami reports expcriments involving ten mobile robots on the
basis of a fully decentralized approach: each robot builds and executes its
own plan by merging it inte a set of already coordinated plans involving
other robots. In such a context, planning is performed in parallel with plan
exccution. At any time, robots exchange information about their current
state and their current paths. Geometric computations provide the required
synchronization along the paths. If the approach is not complete {as a
decentralized schemes), it is sufficiently well grounded to detect deadlocks.
Such deadlocks usually involve only few robots among the fleet; then they
may he overcome by applying a centralized approach locally.

7 Conclusion

The algorithmic tools presented in this chapter show that the research in
motion planning for mobile robots reaches today a level of maturity that
allows their transfer on recal platforms facing difficult motion tasks.
Numerous challenging questions remain open at a formal level. First
of all, there is no nonholonomic path planner working for any small-time
controllable system. The case of the mobile robot with trailers shown in
Figure 4 (right) is the simplest canonical example which can conduce new
developments. A second issue is path planning for controllable and not
small-time controllable systems; Dubins’ car appears as another canonical
cxample illustrating the difficulty of the research on nonhonomic systems.
Sougrcs-Boissonnat’s chapter emphasizes on recent results dealing with the
computation of optimal controls for car-like robots; it appears that extending

'®We refer the reader to [118] for a more detailed overview on this topic.
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these toels to simple systems like two-driving wheel mobile robots is today
out of reach.

Perhaps the most exciting issues come from practical applications. The
motion of the robot should be performed in the physical world. The gap
between the world modeling and the real world is critical. Usually, path
planning assumes a two-sieps approach consisting in planning a path and
then executing it via feedback control. This assumption holds under the
condition that the geometric model of the environment is accurate and that
the robot’s Cartesian coordinates are directly and exactly measured. De-
signing a confrol law that executes a planed path defined in a robot centered
frame may be sufficient in manufacturing applications; it is not when dealing
with applications such as mobile robot outdoor navigation for instance. In
practice, the geometric model of the world and the localisation of the robot
should be often performed through the use of embarked extereoceptive sen-
sors (ultrasonic proximeters, infrared or laser range finder, laser or video
CATNETAS. . . ).

Uncertainties and sensor-based motions are certainly the two main key-
words to be considered to reach the ultimate objectives of the motion plan-
ning. Addressing these issues requires to revisit the motion planning prob-
lem statement: the problem is to plan not a robot-centered path but a se-
quence of sensor-based motions that guaranty the convergence to the goal.
The solution is no more given by a simple search in the collision-free configu-
ration space. This way is explored in manufacturing applications for several
years; it is difficult in mobile robotics where nonholonomy adds another
difficulty degrec.
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A Nonholonomic systems: combinatorial issues

The material of this annex uses the concepts of a distribution, also known
as a Pfaffian system (see for instuue [126]), and of the Free Lic Algebra (see
17]).

Let us recall that every Lic operator has to verify skew-symmetry [f,¢] =
—lg, f} and the Jacobi identity [f, (g, h]) + [g.[R, F]] + [ [f, g]] = 0.

Consider the (n—r)-distribution A associated with a robotic system. The
goal of this annex is to present an algorithm for testing the controllability
of that system at a point. Precisely, we are intcrested in the rank of LA(A)
(i.e., the distribution spanned by all the combinations of Lie brackets of
vector fields in A). We can consider a basis F of A together with all the
combinations of Lie brackets built upon that basis.

A.1 Filtrations and degree of nonholonomy

To do this, one may consider a brute force strategy consisting in build-
ing iteratively the following increasing sequence of distributions: A; =
Ay + [Aj_1, A1) where [A;_1,A;_] is the linear space spanned by ail
the brackets [f, g] for f and g in A; 1. By putting A = A4, the Control Lie
Algebra LA(A) is precisely detined as [J; A;. But in fact, a more efficient
strategy can be used. First of all, let us define a parameter estimating the
complexity of a combination of Lie brackets, The degree of a combination
is the number of clements in F defining the combination. For example the
degree of [, [, [, ], [.,{..]]] is 7. Now, our strategy will consist in building
all the brackets of a given dcgree, step by step. This strategy is founded
on the following iterative construction. We denote A by A;. Then A, is
defined by:
Ai=Ai 4+ ) [A; A
Jtk=i
It verifies:

A CAyCA3C-- CLA(A)  and  LA(A)=|]A;.

The set of all the A;s is called a filtration associated with A.

Remark: Such a construction can be viewed as a “breadth-first” construc-
tion. Some authors [126, 123) use another construction. A is denoted by

Ay. Then A; is defined by:

A=A +[ALAL)
Again: ) ) )
Al CACAzC - CLA(A).
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Such a construction can be viewed as a “depth-first” construction. Using
skew-symmetry and the Jacobi identity, we may verify that both construe-
tions are the same!?. We will prefer the first presentation that corresponds
exactly to the concept of Phillip Halk families introduced below.

On the other hand, at a point X of our manifold (the configuration
space), {n —r) < rank A;(X) < n '8. Moreover, if A;(X) # A;_1(X), then
rank &;{X} > rank A;_ ) (X). Hence, if we consider the construction locally
(i.e., by applying the distributions at a point), we can conclude that there
exists an index p. such that Ay (X)) # Ay (X) = Ay 11(X) =---. The
construction always stabilizes. The index px is the degree of nonholonomy
of the system at X. Thercfore a system is controllable at X if and only if
rank A, =7 (if py = 1 we are locally in the holonomie situation). Notice
that, from a global point of view, this stabilization property is not true,
since the degree of nonholonomy 1aay change from point to peint. A close
analysis of possible singularities shows that this degree may be arbitrarily
high at singular points—even when we start with a regular distribution, the
filtration we build may acquire some weird singnlaritics. So, the degree of
nonhoelonomy inay be unbounded when X varies.

Remark: It is possible to define a global degree of nonholonomy of a non-
hiolonomie system, as the maximum of pointwise degrees of nonholonomy.
There are no obvious applications of this notion. Also, keep in mind that this
global degree can be infinite, though it will stay bounded in the particular
cases we consider.

A.2 A controllability algorithm

In this section we define an algorithm for testing the controllability of a
given system at a point based upon the previous construction. We have to
usc a basis F of A. According tc that construction, we build:

o= F
Foo= Fia | Fn 7
k=i

where, now, [F;,F;] is no longer viewed as a linear space, but as a finite
family of brackets. Each F; contains of course a basis of A;. Again, we can
definc the union £LA(F) of all theses families and we have:

FCFRCFC - CLAF)
'"For example, take [{f, g], [f, [f, 2]]], an element of Ag:
(£ gl U, U BRI = A0, o, [F BIHE Lo U OF ROIDCF, O, [, 1, 9l = [8s L, £, UF, -

Hence, it belongs to As too.

BWe denote by A;(X) the lincar subspace of the tangent space in X, obtained by
applving the distribution &; at X.




This is clearly an infinite family, but, during the real process, we can check
out the added elements if they happen to be linearly dependent on the
Previous ones.

Even if we know only about the relations pertinent to the concept of
a Lie Alpebra, we can take advantage of thesc to compute only relevant
clements of what is called the Free Lie Algebra.

A.2.1 Phillip Hall families

In this section'” the elements of £A(F) are considered as formal expressions
produced by the construction above, i.e., they are not actually evaluated as
vector ficlds belonging to a distribution. From this point of view, LA(F)
18 considered as a Free Lie Algebra. Our current problem is to enumecrate a
basis of this algebra, i.e., to get rid of redundant elements using only skew-
syminctry and the Jacobi identity. Such a basis can be found via a Phillip
Hall family.

The degree of an element f in LA(F) is denoted by degree(f): this is
the degree of the monomial defining f 2. According to our notations, a
Phillip Hall family (PH-family for short) of LA{F), is any totally ordered
subset (PH, <) such that:

o If f € PH, g € PH and degree(f) < degree(g) then f < g;
o F O ;D’}-L
« PHNF ={lf9], f =gk

* Anclement f € LA(F) with degree(f) > 3 belongs to PH if and only
if f = [u, [v,w]] with «, v, w in PH, [v,w] in PH, v < u < [v,w] and
U = L

The main property of a PH-family is that, taking skew-symmetry and
the Jacobl identity into account, it yiclds a basis of the free Lie algebra
LA{F) [17].

The proof of existence of such a family is easy; it is an itcrative one. In
the context of our control problem, it can be extended into the following
algorithm.

**The material used in this section comes from [17]. We want just to give a Tough idea
of the concept and of its pertinence with respect to our problem. Intcrested readers will
find a more rigorous presentation in this reference.

**We use the word “degree” with two different meanings, according to whether we speak
of a bracket or of a nonholonomic systen.. This may introduce some confusion, but both
terms are already used in the literature {sec for instance [123]).
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A.2.2 The algorithm

The idea is to build a PH-family, based upon a graded family of sets H;,
where H; is a part of ;. We will also build a total order < on the union
H;. Assume first that F is totally ordered by < and set H; = F. The order
~ on H; is the same as the order < on F. The next set Hy, is defined as
the set of all [f, g], with f, g elements of %, and f < ¢. Endow H» with any
total order, and define < on H; |J ¥y by setting f < g, for f in H; and g in
Hs.

The rest of the algorithm consists in building the sets #; itcratively.
Supposc the family Hq, Hy, ... ,Hi_) is given. Denote it as H. Define
H; according to the definition of a PH-family. That is, H; is the set of
all f = [u,{v,w]] verifying: v € Hj, [v,w] € Hij, v < u < [v,w] and
v < w. Choosc a total order on H; and extend it to HUH;: f <gif feH
and g € H;. It is almost obvions that the family H; is a PH-family and,
furthermore, that the degree of an element of #H; is preciscly 4.

We can use this construction v design an algorithm for testing the con-
trollability of a system at a point X of the manifold. Our algorithm adds
new brackets to the PH-family step by step, but now, we check further the
value of cach new bracket as a potential member of a basis at X. If we
ultimately obtain a basis, the system is controllable at X

In the procedure appearing in Figure 21, B denotes the free family that
will eventually become a basis, ent is the current number of element of that
basis. The initial distribution is (n — r)-dimensional at the point X. For an
order on ‘H, we assume that we have an initial order on F; then we simply
take the order of chronological computation. Finally || is the integer part
(Hoor function) of the real z.

One can verify that the procedure builds sets H; defining a PH-family.
Therefore, it appears clearly that the system is controllable at X if and only
if Condrollability(X) terminates. This also means that the procedure never
stops otherwise.

Example Part 1: For a classica] example {17, 54], take F = {f;, fo}. The
first 14 clements of the PH-family gencrated by the procedure (if it does not
stop before) are:

Hy o fi fa
He o fa=[f. 1]
Hy ¢ fa=[f1,lf, F2]] s =[f2,[f1, Fol]

Ha o fo = [fi, 1A, LA ] fr=f2[fi, 1, Fo]l]
fs = [f2, [F2, [f1, f2]]

Hﬁ : f9 = [-fla[fla[fh[f'lsz]]]] fll'! = [f2:[fl:[f1:[fl:f2]]]]
f“ = [f'z!{fﬁs[flr[fl;fQ]l]] f12 = [f2:[f21 [f2: [fl:fz]]]]
fra={lfu. £LUL UL Bl A =1 f) [ [ Fol)]
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Procedure Controllability(X)
(initialize Hq)
H| « F
B «F
ent—n—r
(butld Hs )
For f,gin Hy, f < g do
add [f,g] in Hy;
If {{f,g](X)} U B(X) is a free family (1}
then
add [f,g] in B
ent+—cent+1
i 42
While ent < n do
t4e-1+1
(build H;)
For 1 < j < [i/2] do
For feH;, 9=1{x v] € H;_; do
Ifu=f©
then
add [f, g} in H;
If {[f,g](X)} UB(X) is a free family ()
then
add {f,g] in B
ent — ent + 1

Figure 21: An algorithn to check controllability
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Example Part 2: Consider now a 3-body mobile robot (i.e. the classical
two degree of freedom mobile robot with two trailers shown in Figure 4,
left). The configuration space in a 5-dimensional manifold. Let X be a
point of coordinates (i,y,8,11,2). The rolling constraints of the three
bodics provide 3 nonholonomic links. We can prove (see [7] [65] for details)
that the 2-dimensional associated distribution has the following vector fields

as basis 21:
cos b 0
siné 0
fi1= 0 fo=]1
— sin 1
sin 1 — cos ] sih g 0

The first elements of a PH-family are displayed in Example Part 1. We can
verify that the algorithm stops with {f1, f2, f3, f1, fo} as a basis for overy
point X verifying ¢; # 5 mod 7. The algorithm stops with { f1, f2, f3, f1, fo}
for the remaining hyperplane?2.

Remark: Finally, the rank condition holds cverywhere and we can con-
clude that the corresponding system is controllable.

In this example, notice that the algorithin checks 6 — 2 = 4 “candidates”
in the first case, and 9 — 2 = 7 in the sccond one. What happens in the
general case 7

The core of the algorithm is the construction of a PH-family. The di-
mension 7 of the manifold being a constant integer of our problem, the only
tests needing a subroutine depending on n are (1) and (3). Their complex-
ity is asymptotically negligible. Therefore the worst-case complexity of the
algorithm is dominated by the complexity of building a PH-family. The rel-
cvant parameter is the value of © when the algorithm stops. Because of the
test (2), our procedure for building a PH-family is not optimal. But, here,
we just want to find the minimal complexity of any algorithm that builds a
PH-family. Now, the complexity of computing all the elements of a set H;
is bounded below by the number of all the elements in H;, j < i, and it has
been proven that this number is

> o with  a() =< a(dn -

l<y<i d\j

*'This distribution is computed withont reference to any control system. It is built just
fromn the non-sliding hypothesis applied to ench hody.

2 More precisely: fs = fi, det{f1, f2, f3, 1, fs} = —cos{p\), fr = 0, fa = —f2 and
finally det{ f1, f2, fs, f4, fo} = —1 — cos®(ip1) cos(ip2).



where g designates the Mabius function;

po: N* - {-1,0,1)
0 if m is the square of a prime integer
m o plm) =< {~1)* otherwise, where k is the rumber
of primes dividing m.

For example, setting (n — :r') m ; we have a(1) = m, a(2) = %(m —1m),
a(3) = ;(Wﬁ —m), o(4) = (m* —mz), a(5) = $(m® —m), a(6) = L(m® -
m> —m? + m). One may verlfy the first 5 values on the current example.

If the algorithm runs for a point X and stops with a family #;, the system
15 sald to be completely nonholonomic at X (i.e., all missing dimensions
can be recovered; its degree of norholonomy is maximal; it is coutrollable}.
Besides, its degree of nonholonomy at X is .

We have to prove this latter result. Indeed, the algorithm above clearly
depends upon the basis F we chose for the distribution A. However, the
concept of degree of nonholonomy does not. Now, it is a general result from
the Lie Algebra Theory that Uj;<:i H; constitutes a basis of the nilpotent
frece Lie algebra L£LA;(F) deﬁncd by taking all the brackets of degrecs less
than i and by killing all the brackets of greater degrees. See [17] for details.
Therefore, 1 does not depend on our choice of a basis F of A. It truly is the
degree of nonholonomy that has been previously defined.

Example Part 3: The degree of nonholonomy of the 3-body mobile robot
1s 4 at points whose coordinates (z,y, 8, @1, @q) verify ¢ # 5 mod 7. It is
5 elsewhere.

Summing up the results of this section: the method we use for testing
the controllability of a nonholonomic system at a point is at least czponential
in the degree of nonholonomy at $nis point.

Next two sections present classes of systems for which one can stop the
procedurc Controllability after a finite and known number of steps.

A.3 Growth vector, regular and singular points

Lel us define the growth vector of a controllable nonholonomic system at a
point. This concept appears in [126].
Suppose that the distribution associated to our system is (n—r)-dimensional.
Consider a point X and its degree of nonholonomy ¢x. The growth vector
at X is defined as the sequence (n), ... ,ng, ), where ny = (n —7) < ny <
- < ngy = n and n; is the dimension at X of the lincar space generated
by combinations of brackets of degree less than 4.

Example Part 4: Lef us rccall that {f|, fo, f3, f1, 6} constitutes a basis
for points whose coordinates (x,y,8, p1,2) verify ¢, # % mod 7, while



{f1, f2; f3, fa, fo} works elscwhere. One can verify (by computing the di-
mension of the linear spaces for each level) that the growth vector at points
verifying ¢ # § mod 7 is (2,3,4,5), while it is (2,3,4,4,5) elsewhere.

All the above tools work only locally. For instance, we have just seen
that the growth vector is not the same everywhere in the manifold. The
global viewpoint is not easy to reach. A first step is to study what happens
in a neighborhood of a point.

A filtration {A;} is regular at a point X if the growth vector is constant
in a neighborhood of X [126] [123]. This means that all the ranks of A;(.)
are constant in the neighborhood. Otherwise, the filtration is singular and
the corresponding point is a séingularity. Most of the problems we cncounter
when we try to define growth vectors and degrees of nonholonomy derive
from the presence of singularities. By extension, we will say that a system
18 regular if the corresponding filtration is regular everywhere.

Example Part 5: The 3-body system is not regular; more precisely the
corresponding filtration is regular at poiuts verifying ¢ # 7 mod 7. It is
singular at the remaining points. Remark that the growth vector is strictly
increasing for regular points.

For regular systems, the degree of nonholonomy is a constant. It can
also be shown (see [111]} that the growth vector is strictly increasing, so the
procedure we designed always stops in that particular case.

A.4 Nilpotent and nilpotentizable systems

Now, let us consider the following case.

Suppose that all the Lie brackets of degree greater than & vanish. In this
case, 1he sequence F; stabilizes:

f}C}-zC“'CFk:ﬁA(F).

Such systems are called nilpotent of order k (see [17] for a general defi-
nition of the concept in the Lie Algebra framework).

For nilpotent systems of order k, we can stop the procedure Controlla-
bility as soon as all the Lie brackets of degree k or less arc generated. If the
procedure does not yield a basis, then the system is not controllable.

Example Part 6: In our example, we may verify that [fa, [f2, fil]l = —f1.
Set ads(g) = [f,g]. Then®: adf,™(f1) = (~1)™ f,. The system is not
nilpotent.

In some cases, a non-nilpotent system can be transformed into a nilpotent
one via a lincar change of controls called a feedback transformation. Quite

#3This example appears in [54] for the unicycle and the car-like robot, ie., systems
equivalent. to our current system without trailers.
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logically, such systems are called feedback nilpotentizable. [54] gives some
examples of feedback nilpotentizations (c.g., the unicycle, a car-like system
and a car-like system with a trailer). See also [43] for sufficient conditions
for a system to be nilpotentizable,

A.5 Well-controllability

At this stage of the presentation, let us return to the planning problem.
This section introduces the concept of well-controllability. As the regularity
concept, it deals with the existence of singularities, but this is a more global
one.

As we have seen, a general idea for devising a nonholonomic motion
planner for controllable systems is to define a procedure that searchs for an
admissible collision-free path, taking any collision-free path as a seed for the
search??. :

Lafferiere and Sussmann proved that this principle is a general one. A
collision-free path is first computed without taking the nonholonomic con-
straints into account. Lafferiere and Sussmann’s method [54] roughly con-
sists of cxpressing the first holonomic path into some “local coordinate sys-
tem” (see Section 4); from these coordinates, because the system is control-
lable, the authors show that it is possible to explicitely define an admissible
control {and then an admissible path) that locally steors the system from a
given point (on the first path) to any other on the first path inside a given
neighborhood. Because the planner has to work o priori everywhere, one
has to define a procedure that guarantees to find a local coordinate system
everywhere. The existence of such a coordinate system is a technical point
esscntial for the method. It is solved by considering an eztended system as-
sociated with the original one; this new system is obtained by adding virtual
controls working on vector fields defined from a PH-family of the original sys-
tem. Since the nonholonomic distribution A is (n — k)-dimensional, it seems
a priori that k additional controls would suffice to make the system holo-
nomic. In fact, in order to avoid singularitics (understood as points where
the transformation matrix would be non invertible), one has generally to add
more controls. Lafferriere and Sussmann note also that additional controls
make casier the choice of a transformation matrix with a good condition
number.

Let us illustrate this point using our example.

Example Part 7: Recalling Example Part 2, a local coordinate system
defined from {fy, f2, fa, f1, fo} will encounter singularities. Following Laf-
feriere and Sussmann’s method, a possible extended control system is defined

4[61] pinpointed this method for the car-like robot, while [63) presents a first planner
using this principle for this case.



by {f1,f2, f3, fa, f, fo}; in the process, four controls are added to the origi-
nal ones. The previous results show that it is everywhere possible to choose
in this family a basis that spans R®.

Now, consider the following family:

ug = f1 vg = fa
g1 ={f1.fa] wi=cospfi+singrgr v =singf) —cospig
g2 = fu1,m] g = COSour +SiNwagy Uz = SNy — COS Pagy
g3 = [uz, 1]

It is easy to check that the determinant of {wo,v1,v,u2, 93} is equal to
1. Therefore {vp,v1,v2,us,g3} spans R® everywhere®®. According to the
previous comments, we can define a mindnal extended system that never
meets with any singularity. Moreover, the transformation matrix has a good
condition number. We introduce the concept of a well-controllable system.

Definition 4 An n-dimensional nonholonomic system defined by o distri-
bution A 1s well-controllable, if there exists a basis of n wectors fields in
the Control Lie Algebra LA(A) such that the determinant of the basis is
constant.

Obviously well-controllability implies controllability. The converse does
not hold. Indeed, as we mentionned above, a system can be controllable
while the local degrees of nonholonomy are unbounded. This means that
the filtration {A;} stabilizes locally, but not globally. In this case, it is
impossible to define a basis verifyiag the conditions of our definition.

The well-controllability concept is a global one and it is related to the
planning problem. Indecd, for well-controllable systems, the same “local”
coordinate system can work everywhere. This simplifies Lafferierc and
Sussmann’s planning method. But, though we have a general procedure
for testing controllability, we have no general procedure for testing well-
controllability. For instance, there is no obvious argument leading to redue-
ing the search of a good basis to a small family, like a PH-Hall family.

Let B be a basis of the control Lie Algebra verifying the conditions of
Definition 4. The degree of well-controllability of the system is the maximum
degree of all the clements of B.

Remark: If the system is well-controllable, it is obvious that the global
degree of nonholonomy is finite.

Example Part 8: The 3-body mobile robot is a well-controllable non-
holonomic system. Its degree ¢f :.onbolonomy is 5, while its degree of well-
controllability is at most 8. [66] gives a proof in the general case of a n-body

*5Be careful: the degree of gs equals 8, when it is viewed as a polynomnial function with
indeterminates f; and f2 in LA({f1, f21).
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mobile robot and shows that the Jegree of well-controllability is at most 2%
in this case.

A.6 An example with unbounded degree of nonholonomy

Finally, our last example doesn’t model any robotics systems whatsoever?6,
Rather, it tries to capture the flavor of problems encountered in practice
without any tedious computations: for instance, the example of the n-body
system is quite similar to this one. Let us work in Euclidean space (x,y, z)
Choose an integer n and consider the following vector fields:

0 142"
f= 0 3 o = 1+Z‘2n
1 0

and the distribution they engender. Computing the associated filtration
obviously sums up to computing

(zfi,)(k)
g =| (&
1]

Now, this system is regular almost everywhere but not everywhere: the
point {0,0,0) is a major inconvenience. At that poiut, for any & less than n,
the vector field g4 vanishes altogether, so that the growth vector at (0,0,0)
is (2,2, ... ,3), giving thus a gencric case where the nonholonomy degree
1s arbitrarily high. Furthermore, using standard techniques (Partitions of
Unity), it is easy to piece together a denumerable infinity of such singular
patches, so that the resulting distribution has an unbounded degree.

This is the typical case where our algorithm will not terminate.

*8This example was suggested by Mare Espie.
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B Self-contained proof of controllability for a car-

like robot. Nonholonomic metric approxima-
tion

This annex presents two proofs of the controllability of the car-like system.
The first one can be read without reference to differential geometric control
theory. Then we present a second version of the proof, which illustrates
the general proof of controllability theorem given by the Lie algebra rank
condition. Finally we provide an estimation of the nonholonomic metrie
induced by the length of the shi *est paths.

B.1 Direct proof
Proposition 1 The car like system is controllable.

Proof 1 It suffices to prove that the system is locally controllable from the
origin. Let X = (x,y,0) be a point near the origin. The idea of the proof
is to build a path consisting of three pieces v1, 2 and v3 attaining from
X, in succession, the points X1 = (z1,11,0), Xo = (22,0,0) and the ori-
gin. Clearly, this path can be followed by the car-like systemn in the reverse
divection fo go from the origin to X.

Let 1 be the arc of the circle® tangent at X, with length |8| following
in the direction of —sign(8). We assume that 0 > 0. v, attains the point
X) = (z—sinf,y—{1~cos8),0). We assume that y— (1 —cos8) > 0. Other
cases would be processed in the same way (see Figure 22).

Now, let v2(7) be the path consisting of four picces of same length 7 :
forward motion on a straight line segment, a forward motion on an arc of
a circle, a backward motion on a straight line and then o backward motion
on an arc of a circle. The coordinates of the point attained by this sequence
are (1 + 7 —rcosT,y1 — 7sinT,0). Choose 7, such that

ly — (1 — cos 8)] = 7.8in7, (12)

Such 7, always ezists (and is unigue) for any X sufficiently near the origin.
The coordinates of point Xy attained by v(r,) are : (z — sin@ + 7.(1 —
cos.),0,0).

Finally, let 3 be the straight line motion from X, to the origin.

The path formed by the sequence v, v2 and va, followed in the reverse

direction, goes from the origin to X. Thus the car-like system is locally
controllable.

The length of the path built in the proof above is
=10} + 47 + |2 —sinf + 7.(1 — cos 7. )| (13)

37 All the arcs of circles used in this-:»oof have the minimum radius of curvature which
is assumed to be 1.
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X;

X,

Figure 22: A way to reach the origin

The proof of Proposition 2 below will give an upper bound for this length.
This means thaf, for any time 7' there exists a neighborhood of the origin
such that all the points in this neighborhood can be reached from the origin
i time bounded by T'. This is the hard core of the small-time controllability
concept.

B.2 Proof using Campbell-Haussdorf-Baker-Dynkin formula

This section presents another proof of the previous proposition in order
to illustrate the application of Campbell-Haussdorf-Baker-Dynkin formula
introduced in Section 4.1.

Proof 2 Let us consider the following vector fields fi and fy:

cos 0
fi=] siné . fa=| 0
0 1

The coordinates of fi + fu and [f1, f1 + f2] are respectively :

cos 8 — 8in
fi+fa=| sinf (fi, i+ fa] = cosd

1 0

We check easily that {f1, [f1,f1 + fa], f1 + fo,} spans the tangent space
at every point. Let us prove that the system is locally controllable from the
origin. The sume proof would hold for every point. Notice that the three
vector fields the subpaths y3 and y1 used in the previous proof correspond to
the integration of the flows along fi and fi + fo respectively. The path v,
i3 in fact an approzimation of the path corresponding to the integration of
flow along the vector field [f1, f1 + f2].
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Consider u point X in ¢ neighborhood of the origin. Let (t1,%9,85) be
its coordinates in the coordinate system induced by the basis {f1, [f1, f1 +

f2ls fi + fo,} which spans the tangent space af the origin. X is reachable
Jrom the origin by the following flow :

(), 10, t3) = ettt gh2lfifitho] gta(fitfe) (14)

The first and third flows clearly obey the constraints on the controls, but what
about the second? To answer this, we consider the following approzimation
(for £ > 0} given by the Campbell-Baker-Hausdorff-Dynkin formula.

s+ +00T)) _ 03 iF(fi ) 13 fu ot (R fo) (15)

This shows that any configuratio:: we can attain by following the flow given

in Equation 14, can be approzimated by the following flow, which obeys the
constraints :

| 1 1 1
Glt1, 2, 83) = et ctEh ot (fLtf2) o~ p—t2 (fitf2) eta(f1+ 1) (16)

Now, because the mapping @ is a local homeomorphism, the inverse image
of a neighborhood of the origin in the configuration space is a neighborhood
of (0,0,0,) in R? i.e. a choice exists for £, t> and t3 which esactly attoing
any gwen configuration in e neighborhood of the origin. Hence the system
1 small-time controllable at the origin.

In fact, for the car-like robot, the differential equations are sufficiently
simple that they can be integrated in closed form. This is far from being
true in genecral. More precisely the flow ¢ attains a point of coordinates

r = 14 +sig11(t2)xu/|:t‘2[(l - cos(\/@)) + sin{is)
y = —sign(ta)y/|ta]sin(y/]t2]) + 1 — cos(ts) (17)

& = &

By expressing this point in the basis {fi, [f1,fi + f2], f1 + f2,} we obtain
3 ,
the asymptotic estimates (£, + O(t2), ¢, to + O(2)).

Now, by considering £;, t, and #3 as time parameters, the proof above
shows that the car-like system is small-time controllable.

B.3 Nonholonomic metric approximation

Let us denote by dpg the metric induced by the length of the shortest paths
between two configurations.
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Proposition 2 For any point X = (z,y,0) sufficiently near the origin o =
(0,0,0),

1 1 : 1
U1+ (512 + |6) < drs(X,0) < 12(|a] + Jy]? + 0]

Proof 3 1/ We first prove the ' ft part of the incqualities. Let us consider
any admissible path v parametrized by arc length in R? such that 4(0) = o.
Let us denote by X (&) the point with coordinates (x(¢),y(1), 8(1)) attained by
an admissible path of length t. Since the path is admissible, then, for each
T € [0,t], ¥(7) is a near combination of the vector fields f1 and fy + fa,

e y{7) = AT+ u(n)(FLlr) + fa (1)), with |A(7)] < 1 and |u(r)| < 1.
Then :

1</ |5 (T |d7—f[ 7) + (7)) sin 8(7 )|d’r<2/ |sin8(7)|d.

Now, we may write that |sin8(r}] < 10(r)|. Moreover, due to the bound on
the curvature, the variation of the orvientation (1) is less than the length of
the path from the origin to X{r). Hence :

! t
f [sinf(7)|dr < / rdr
0 0

Finally : .
t P
ly()] < 2[ rdr =12 (18)
40

Stnce this relation holds for any edmissible path, it holds for the shortest one.
This means that, for any point X = (z,y,0) sufficiently neur the origin :

1
ly|z < drs(X,o0) (19)
Now, the following inequalities hold :
|35‘| S dR_g(X,O) and |l9| S dRs(X? 0) (20)

Then by adding inequalitics (19) and (20), we obtain the following lower
bound :

1 1
3l + 1% +10]) < drs(X, 0)

2/ The second part of the proof deals with the right side of the inequal-
wies. We consider the path built in Proof 1 of Property 1 starting from o
point X = (z,,8) near the origin to the origin. The length [ of this path is
(see expression (18) above) :

= |8 + 47, + |z — sinf + 7.{1 ~ cos 7.)|



unith 7. satisfying eguation (12). A first upper bound of | is clearly done by -
< |0+ d7e + |z + |sin | + |7(1 — cos 7,)|
By using the inequalities |sin@| < |6| and 1 — cos 1, < 1 we obtain a second

upper hound :
<2

0} + b + ||
Now, let us consider the equation (12) : |y — (1 — cos@)| = 7,.sin7.. For X
sufficiently near the origin, 7, 15 sufficiently small for verifying sint, > %Tc.

Then we may write 7, < 2|y — (1 — cos 9)|% Morcover |1 — cos 8| < 62 for 8
sufficiently small. Finally,

{ |$i+10|y|5 + 101 — cos 6] +2|8]
|z} + 10]y|2 + 12/9]

12(|2] + |z + @)

A TA I

This upper bound holds for the initial path we considered. It then holds for
the shortest path. This concludes the proof.
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C Shortest paths and obstacle distance for car-like
robots

In the framework of the researches in nonholonomic motion planning for
mabile robots, the case of the car-like robot has been the most investigated
one (see ¢.g. [67] and the references therein). Numerous results arc based
on the knowledge of the shortest paths.

C.1 History of the shories: paths for a car-like robot.

A car-like robot, the position and direction of which are defined by the
coordinates (i, y) of the reference point and the angle 8 between the abscissa
axis and the main axis of the car (see Fig. 2), is completely specified as a
point (x,%,6) in the configuration space R? x S§'. Assuming the linear
velocity constant, we have scen in Section 2.2 that the motion is defined by
the following control system:

& cos @ 0
g { = | sinf |v+ | 0| w (21)
4 0 1

where |o(t)] = 1 and |w(t)] < 1 are, respectively, the lincar and angular

velocity of the car. The lower bound on the turning radius is supposed to be
1. This model corresponds to the motion in the plane of a particle subject
to curvature constraints.

The study of the shortest paths for a car-like robot has already an his-
tory. The pioneering resuit has been achicved by Dubins who characterized
the shape of the shortest paths for a particle subject to curvature con-
straints [33]. Starting from this result, Cockaync and Hall have computed
the accessibility set for this model of particle [27] (i.e., the domain of the
plane reachable by paths with bounded length). The particle model corre-
sponds to a car-like robot moving forward with a constant velocity. More
recently, Recds and Shepp have provided a sufficient family of 48 shortest
paths for a car-like system moving both forward and backward [87]: opti-
mal paths are constituted by a finite sequence of at most five straight line
segments or arcs of a circle of radius 1.

Then the problem has been revisited from a control theory point of
view: Sussmann and Tang [116] and Boissonnat, Cerczo and Leblond [15]
independently provided a new proof of Reeds and Shepp’s result. In addition
Sussmann and Tang reduced the sufficient family to 46 canonical paths.

At the same time, Soudres and Laumond, using these results, computed
a synthesis of the shortest paths, i.e. a partition of the manifold R2 x S? into
cells reachable by only one type ui shortest path (among the 46 ones) [1086].
They also computed the exact shape of the shortest path metrie, i.e., the
shape of the domain in R? x §' reachable by paths with bounded length [70].
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The projection of that domain on R? corresponds to the accessibility domain
in the plane; it has been computa3 by Sougres, Fourquet and Lanmond [107]
who then extended the result of Cockayne and Hall {27] to the car moving
also backward; the anthors provide also a synthesis of the shortest path from
an initial confignration to a point in the plane. On the other hand, with Bui
and Boissonnat, they apply the same techniques to compute a synthesis in
R? x S! for a car moving only forward {20]. Boissonnat and Bui then derive
a synthesis of the shortest path to a point in R? for this case [21].

Finally, Moutarlier, Mirtich and Canny explored general analytic tools
to compute shortest paths to some sub-manifolds of R? x §* [78].

In this annex we consider a point robot moving either forward or both
forward and backward amidst polygonal obstacles: according to the history
above, we will call Dubins car the car-like robot moving only forward (v = 1)
and Reeds&Shepp car the car-like robot moving both forward and backward
{lu| = 1). For both systems we propose three geometric algorithms to:

¢ compute the shortest path from an initial configuration (z;,:,6;) to
a goal position (z,,y,);

¢ compute the shortest path from a configuration to a segment;

¢ compute the domains of the plane visible from a start configuration in
presence of obstacles.

Notc that the results in [107] and [21] lead to efficient algorithms to compute
the shortest path to a position. We just propose an alternative geometric
way for this computation (Section C.2). Moreover the results presented
in [78] allow to design a procedure to compute the shortest path to a line
segment for Reeds&Shepp car. Again we propose here a gecometric and more
efficient algorithm to solve this problem and we extend the results to Dubins
car {Section C.3).

Notations The paths are described using Sussmann and Tang nota-
tion [116]: capital lctters denote either a straight line segment (S) or an
arc of a circle of radius 1 (C). The sywbol | between two letters indicates
the presence of a cusp. To specify the direction of rotation the letter €' will
be replaced by [ for left turn and by r for right turn and the superscript
+ (—) will denote forward (backward) motion®®. Subscripts represent pos-
itive real numbers giving the length of each piece. The sufficient family of

11 Dubins car case the superscript will be omnitted being it always +
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shortest paths can be summarized by the following nine words:

Cu|C|Ce l<a<n,0<bsm0<e<m,

CaSuCe 0<a<3,0<d0<e<,

CalCpCe ou Cy Gyl Ce t<a<bh0<b<i,0<e<h,
CelCyCy|Ce 0<a<bh0<b<5,0<e<t, (22)
CoCy|CyCe 0<a<bh0<b<f,0<e<,

CalCz 54Cx|Ce 0<a<f,0<d0<e<],

Ca|O%SdCe [$))1 Oan|Cl2".Cc_ 0 <a< %,D < d,U < e <

LEE

C.2 Shortest paths to a position.

This scetion recalls the results presented in [107] aud [21]: they provide a
synthesis of the shortest path to a position for Reeds&Shepp car and Dubins
car respectively.

We deduce from these results a gecometric construction of the shortest
paths which will be used in the next sections.

C.2.1 Background

Reeds&Shepp car 1In [107] Souéres, Fourquet and Laumond proved that
only three families of Reeds&Shepp paths may be optimal to reach a position
(x,y) from the origin of the configuration space (0,0,0). These families
induce a partition of the set of positions R? in domains reachable by a given
family of paths (sce Fig. 23).

Moreover from an optimal path P it is possible to build three other
optimal paths isometric to P and leading to points symmetric to the point
reached by P with respect to the z-axis, the y-axis and the origin of the
coordinate axes [107]. For any point not belonging to the y-axis, there is a
unique Recds&Shepp shortest path constituted by:

¢ two arcs of a circle of minimum radius connected by a cusp and followed
by a straight line segment (this family is denoted by C |C% S) for points
belonging to Region 1. A point in the first quadrant belonging to this
region is reached by a path I;IISI; its coordinates verify:
2
z(u,d) =cosu — (2 +d)sinu (23)
y(u,d) = simu+ (2+d) cosu — 1
with 0 < u < arctan %
e two arcs of a circle of minimum radins connceted by a cusp (family
C|C) for points belonging to Region 2. A point in the first quadrant

69



CIC,,8

Figure 23: Reeds&Shepp car: Synthesis of the shortest paths to a position

is reached by a path [ [}; its coordinates verify:

z(u,v) = —2sinu + sin{z + »)
ylu,v) = 2cosu ~ cos{u +v) — 1

with0 <u < Fand 0 <o < 5.

¢ an arc of circle of minimum radius followed by a straight line segment
(family CS) for points belonging to Region 3. A point in the first
quadrant is reached by a path [ s;‘; its coordinates verify:

{ z{v,d) = sinv + dcos v

y{v,d) = —cosv + dsiny + 1 (25)

with 0 <v < 7.

Due to the symmetry propertics, there exist exactly two shortest paths,
belonging to the same family, recaching a given position on the y-axis.

Nate that the values of the parameters vary continuously from one do-
main to another, that is the points on the boundaries between two (or three)
domains are always reached by a unigue path that can be considered as be-

longing simultaneously to the two (three) neighboring domains for appro-
priate values of the parameters.

Dubins car With the same approach, Boissonnat and Bui [21] provided
a similar synthesis for Dubins car. In this case only two families of Dubins
paths can be optimal and the z-axis is the axis of symmetry (see Fig. 24);
for any point not belonging to the negative half-axis Oz, there is a unigue
Dubins shortest path composed by:
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Figure 24: Dubins car: Synthesis of the shortest paths to a position

e an arc of a circle of minimum radius followed by a straight line segment
(CS family) for points belonging to Region 1. A point belonging to
the upper half-plane is reached by a path I,s4; its coordinates verify:

z(v,d) = sinv + dcosv (26)
y(v,d) =1 —cosv + dsinw

with 0 < v < 2m,

* two arcs of circle of minimum radius (CC family) for points belonging
to Region 2. A point belonging to the npper half-plane is reached by
a path r,l,; its coordinates verify:
z{u, v) = 2sinu — sin{u — v) (27)
y{u,v) = -1+ 2 cosu ~ cos(u — v)

with 0 <u < vand 7 < v < 2m.

For points with coordinates z < 0 and y = 0 there are two equivalent
{and symmetric) shortest paths in the family C'S.

C.2.2 Geometric construction

From the results described so far we can derive the following geometric con-
structions to compute the shortest path to a point P. According to the sym-
metry properties, P is assumed to be in the first quadrant for Reeds&Shepp
car and in the upper half-plane for Dubins car.
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Figure 25: Reeds&Shepp car: The shortest path to a point in Region 1

Reeds&Shepp car

» Point in Region 1. Type of path ZJI:KZS;—'
First the tangent line 7 to the circle ; (Fig. 25) of radius 1 and
center (0, —1), passing through the point P(x,y) is traced, then the
center of the circle G, of radius 1, tangent to €1 and to 7, is computed.
The value of the parameter v is given by the length of the arc OﬁU .
Parameter d is determined by the length of the scgment P/P.

» Point in Region 2. Type of path I},
Paths leading to points in Region 2 are computed by finding the center
of the unit circle C tangent to the circle C; and passing through the
point P. As before the value of the parameter v is given by the length
of the arc QU, while parameter v is equal to the length of the arc

U P(see Fig. 26).

» Point in Region 3. Type of path I}s].
Figure 27 shows that paths in Region 3 are obtained by drawing the
line 7 tangent to the circle C; and passing through P. Parameters v

and d arc given, respectively, by the length of the arc OV and of the
segment VP

Note that, in the worst case, chiv three comparisons between reals are re-
quested to decide to which region the point P belongs.

Dubins car
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Figure 26: Reeds&Shepp car: The shortest path to a point in Region 2

Type I}

0 :;: h
,"’-1"

Figure 27: Reeds&Shepp car: The shortest path to a point in Region 3
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Figure 28: Dubins car: The shortest path to a peint in Region 2

* Point in Region 1. Type of path I,s,.
The construction is the same as for points belonging to Region 3 of
Reeds&Shepp car case.

e Point in Region 2. Type of path r./,.
Paths leading to points in Region 2 are computed by finding the center
of the unit circle C tangent to the circle ¢; and passing through the
point P (scc Figure 28).

Remark: Any sub-path of a shortest path from a configuration to a con-
figuration is a shortest path. We should keep in mind that this property
does not hold for the shortest paths from a configuration to a position.

C.3 Shortest paths to a segment.

Figure 29 shows the sets of positions reachable by paths of length £ for
different valucs of £. The corresponding isometric curves (also called “wave
fronts”} and their geometric structure are basic for the computation of the
shortest paths starting from the origin of the configuration space to a given
segment. Indeed, the length of the shortest path to a segment is the “radius”
¢ of the first wave front tangent to the scgment.

The wave fronts are obtained by cxpressing the length £ of the path
in each region as a function of the two parameters characterizing the path
and operating an appropriate change of variables. CS§ and C [CgS paths
generate arcs of an involute of 2 «xcle; C|C paths generate arcs of a circle of
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Figure 29: Sets of reachable positions in the plane: Reeds&Shepp car (left)
and Dubins car {right)

radius 2; CC paths generate arcs of cardioids. The wave fronts then appear
as a sequence of such arcs,

Remark: Notice that the wave fronts for Reeds&Shepp car arc always
closed curves while they may be simple open and not necessarily connected
arcs for Dubins car.

The geometric construction of shortest paths to a segment requires to
compute the endpoints of the various wave front arcs and the critical valnes
changing their geometric structure.

C.3.1 Reeds&Shepp car

Due to the symmetry properties, the preblem can be first attacked by as-
suming that the segment lies in the first quadrant. This is particularly
convenient from a computational point of view: the slope of the tangent to
the wave front in the first quadrant is monotonic (Sec. C.3.1), this allows
to decide the region in which the tangency will occur from the slope of the
line supporting the segment. The general case will be solved by considering
symmetry properties (Section C.3.1).

Shape of the wave-fronts in the first quadrant The sct of positions
reachable by a path of length ¢ is described by three different curves in the
three regions of the first quadrant. Noting that in Region 1, £ = u + 3 +d
The change of variable d = £ —u — 7 in the system (23) leads to:

y(u,f) =sinu+ (2+£—u—Z)cosu—1 (28)

{ z(u,f) =cosu — {2+ ¢ —u— Z)sinu
7
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Figurc 30: Wave fronts in the first quadrant (Reeds&Shepp car)

For ¢ constant this gives the cquation of an involute of a circle.

‘The length of a path in Region 2 is £ = u 4+ v. Replacing the expression
u+ v by £ in (24) we obtain:
w(w, &) = —2si in £
& (1, ) 2sinu + sin# (29)
y(11,8) =2cosu —cos € — 1

Assuming £ constant, the parametric equation of a circle of radius 2 is ob-
tained.

From the expression of the path length £ = v + d in the third region, the
change of variable d = £ — v in (25) gives:

{ 2(v,8) = siz. + (£ —v)cosv (30)

ylv, &) = —cosv+ {¢ —v)sinv + 1

The system {30) leads, for £ constant, to the equation of an involute of a
cirele.

Therefore the equation of the wave front in the first quadrant can be

easily computed from the systems above. Its shape is shown in Fig. 30.

According to the value of ¢, the following description of the wave frout
structure can be given:

e /< %: concatenation of an involute of a circle and an arc of a circle;

e Z < { < arctan(})+ Z: concatenation of two involutes of a circle and
an arc of a ¢ircle;

o (> arctan(%) + 5 concatenation of two involutes of a circle.
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The following table gives the angle of the half-tangent at the houndary
points A;, By, C; (i =1,2,3) in Fig. 30:

Case £<7

Points | 4, | By | B | &
Angle | -2 |v-35] 0 u
Case i <e< arctan% + 3
Points AQ Bg 02
Angle | —% 0 U
Case > arctan 7 + %
Points | Ay Ba Cs
Angle | =% 0 U

In all cases the slope of the tangent line is monotonic in the first quadrant.
Moreover, at point D in Fig. 30 (connection of an involute of a circle and
an arc of a circle), the first derivative is still continuous. Therefore looking
at the slope of the line supporting the segment it is casy to decide in which
region the tangency will occur.

Geometric construction We then solve the problem for each region:

# Regions 1 and 3
The isodistance curves in regions 1 and 3 are, respectively, the invo-
lutes of the circles Cy and ; (see Fig. 31) and have the nice property
that the line 7 tangent to the circles and passing through the point
T is perpendicular to the line tangent to the involute at the same
point [48]. The segments of length d constituting the last part of the
paths leading to regions 1 and 3 belongs to the line T, as shown in
the geometric construction of the shortest paths to points in these re-
gions. The algorithm to find the shortest paths to the tangency points
becomes then very easy: in Region 1 the parameter u is such that the
robot final oricntation is perpendicular to the tangent line supporting
the segment; therefore u is such that tan(u) = mn, where m is the slope
of the tangent?®. Parameter d is equal to the length of the scgment
T'T (Fig. 31, top). Analogously to the previous case, the parameter v
in Region 3, is defined by tan(v) = —%, where m has the same mean-
ing as above®. Looking at Fig. 31 {bottom) it is easy to conclude that

ihe length of the segment VT determines the value of the parameter
d.

¢ Region 2
In Region 2 the wave front is an arc of the circle Cr of radius 2 the

**This means that the car starts with a backward motion until it becomes parallel to
the segment.

#97n this case the robot final orientation is perpendicular te the segment.
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Figure 31: Reeds&Shepp car: Tangency in Region 1 {top) or in Region 3
(bottom)

78



\é\/ x
B
Figure 33: Shartest path computation by symmetry

center of which is on the unit circle C; and on the line L parallel to
the tangent line supporting the segment and located at a distance 2
from it, as shown in Fig. 32. Omnce found the center of this circle
the tangency point is computed. Anyway, looking at the geometric
coustruction shown in the figure it is possible to prove that the robot
orientation at point U is parallel to the tangent line supporting the
segment. The center of the circle Cy can be then determined using this
fact and the computation of the tangent point becomes trivial,

Symmetry property We have solved the problem of finding the shortest
path to a segment lying in the first quadrant.

The problem of finding the shortest path to a segment in the planc
is solved by computing the symmetric image in the first quadrant of the
scgment. Then the shortest path to this polygonal image is computed. The

79



found path is then transformed by the appropriate symirnetry.

Figure 33 shows the casc of » segment traversing the second, third and
forth quadrant. The dashed polygonal line denotes its image in the first
quadrant and the path P is the shortest path reaching the line. Since the
path P reaches the line at a point belonging to the image of that part of the
segment lying in the third quadrant, the shortest path to the segment is the
image of P obtained by symmetry with respect to the origin.

The general rule can be iuformally summarized: the shortest path to
an object {point, segment) in the plane, the image of which in the first
quadrant has been computed by a symmetry, is obtained by applying the
same symmetry to the shortest path to its image in the first quadrant. The
same procedure will be used to find the shadow of a segment in the plane.

C.3.2 Dubins car

By virtue of the symmetry property, we can first assume that the segment
lies in the upper half-plane. The geometric construction of the shortest path
to a segment is simpler than for Reeds&Shepp car. Indeed the casc of Region
1 of Dubins car is exactly the sac. as the case of Region 3 of Reeds&Shepp
car; the only difference is that the former covers the later. As we will show,
the remaining case gives rise fo an easy construction.

Shape of the wave fronts Some of the following computations appear in
[27, 21]. Other ones are original; they are developed in the proof of Lemma
below. All of them can be casily derived from the cquations (26) and (27)
with the help of any computer algebra system.

Region 1: For £ < ‘37“ + 1, the wave front is an arc of involute of a circle
starting on the point {£,0} on the z-axis and ending on Cy; at £ = 37” +1 the
involute is tangent to the g-axis. For 3T + 1 < ¢ < 2z, the wave front keeps
only the fwo arcs of the involute lying in the upper half-plane. For £ > 27
it remains just a piece of the involute (see Fig. 34).

Region 2: The paths reaching points in Region 2 belong to the family
Puly. Their length £is u + v witl: 0 € u < v and 7 < v < 27. Replacing
u — v by 2u — £ in equations {27) we obtain:
#{u, £) = 28inu — sin(2y — £) (31)
y(u, £) = —1 + 2 cosu — cos(2u — #)

These are the cquations of a cardioid. Due to the inequalities on « and v,
a wave front containing such an arc should have its radius ¢ strictly greater
than #. The maximum value £, is computed in the lemnma below.
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Figure 34: Wave-fronts in the upper half-plane (Dubins car)

The following table summarizes the critical values of ¢ that change the
geometric structure of the wave fronts (Figure 34) in the upper half-plane:

Case b<r |n<f<sm+1{Sn+1<i<2n | 2r<fi<¥b, |l <4
# Arcs of involute
in Region 1 1 1 2 1 1
# Arcs of cardioid
in Region 2 0 1 1 1 0

In this region, the geometric construction of the shortest path to a seg-
ment is much more easy than in the cases previously addressed. Neverthe-
less, its proof requires a technical lemma.

Geometric construction of the shortest path to a segment The geo-
metric construction of the shortest path to a segment lying in Region 1 (Fig-

ure 35) follows exactly the principle described for Region 3 of Reeds&Shepp
car.

The case of segments lying in Region 2 is addressed in the following
lemma.

Lemma 1 The shortest path to a segment S lying in Region 2 for Dubins
car s one of the two shortest paths reaching its endpoints.

Proof 4 Let us consider the upper half-plane. Region 2 for Dubins car in
this domnain is the disk of radius I centered at (0,1). Let Cy be the associated
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Figure 35: Dubins car: Tangency in Region 1

circle. A point of coordinates (2,y) of the disk is reached from the origin
(0,0,0) by Dubins car along the shortest path r,l, such that u and v verifies
the system (27):

(u,v) =2 sin — sin{u — )
y(u,v) = —1 +2cos u — cos{u — v)

with 0 <u < v and 7 < v < 27. Moresver u should be lesser than 5.

For a fived value of u the system corresponds to the equation of a cir-
cle; the endpoints on Cy of the corresponding arc of a circle is obtained for
v = 3 + 5 —arccos{2sin §) and vy = %‘T + 5 + arccos(2sin ¥). The maz-
imum length of the path (for u fized) is then u + vo. By derivating the
later expression with respect to u, we compute the velue of u mazimizing
the length of all the paths reaching a point in Region 2; we may then de-
rive the radius of the latest wave front covering Region 2; this radius is:
(.= %'ﬂ‘ + 3 arccos _3_\8/_3 + arccos -‘@.

Then Region £ is covered by the wave fronts whose radii range from w
to £.. From now, the principle of the proof is fo show that the cardioid arcs

span Region 2 along a “concave” foliation®' (sce Figure 36, Icft).

LA foliation of a n-dimensional manifold M is a family Lo, o € 7 of arcwise connected ¢-
dimensional sub-manifolds (g < n), called leaves, of A such that:

o LoNLy=0ifa#a
- UcrEJTEa:M

e cvery point in M has a local coordinate system such that 1 — y coordinates are
constant.
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Let £ = u + v be the length of the path; £ wvaries from %(’ﬂ' + u} —
arccos(2sin %) to (7 + u) + arceos(2sin 5)

Replacing u — v by 2u — £ in egquations (27) we obtain the system (31}
describing a cardivid. The endpoints of the arc of cardioid on the circle Co
are given for u = 0 and some critical value u (€)*?. Let us denote the are
of cardivid by L. According to the unicily of the shortest Dubins path r,1,
n Region 2, there is only one Ly passing through a given point in Region
2. All the Ly clearly span Region 2. Therefore each point in Region 2 can
be located by £ €]m, €[ and a real number u €]0,u.(€)[. In this coordinate
system all the points in Ly have a constant coordinate. The set of all the £,
constitutes a foliation of Region 2.

By eliminating u in the system (31) we get the equation of the wave front
of radius ¢:

flz,y) = —zsinf—{(y+1) cos £+ 3 - %mz — %y? —y—2(1— 23:2 - iyg - :}iyz)2
For a given £, cach arc of cardioid Ly splits Region 2 into two sub-domains:
the sub-domain R, of points renchable by shortest paths of length sirictly
lesser than £ and the sub-domain R} of points reachable by shortest paths
of length strictly greater than £. Let us compute the value of § at the point
of coordinates (0,2): f(0,2) = —3{cos € + 1) which is always negative. Then
Ry always contains the point of coordinates (0,2): Ry lies above the wave
front.

Therefore, let us consider o straight line segment secant to an arc Ly;
one of ws endpoinis lies necessarily in R, . This endpoint is the same for
any L¢ infersecting the segment. Then, if the segment is not tangent to some
leave Ly, this endpoint of the segment is the endpoint of the shortest path
reaching the segment.

It just remains to consider the tangency case (Figure 36, right). Due to
the geometric definition of o cardivid, the concavity of all the Ly at any point
of coordinates (£,u) (in the ccoriinate system of the foliation) is directed
towards the endpoint of the path v, located on Cy (Figure 28). This endpoint
is below L. This means that the line tangent to Ly at any point lies ubove L.
Funally eny straight line segment included in Region 2 and tangent to some
Ly is included in Ry . Then the abscissa of the endpoints of the segment (in
the coordinate system of the foliation) is lesser than €. The first wave front

*2For takers, the value of u.(f) is

2arctan (%11/3+ deosi(l) ~ 1 - sin({) )
3(2+cos(1))2 %1% 2+ cos(l)

i 183 — 192 cos( 1
%1 .= 3 sinf ) 1 4/ cos(1)

- (2+cos(f))3+§ (2+cos(l))?

{Thank you Maple. ..)
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Figure 36: Foliation of Region 2 for Dubins car (¢ < £, < &3 < ... < &,)

reaching the segment meets the latter necessarily at the endpoint with the
lowest abscissu £.

This lemma gives an easy way to compute the shortest path to a segment
lying in Region 2: it suffices to compute the shortest paths to its endpoints
and to choose the shortest one.

Finally, to compute the shortest path to a segment for Dubins car, it suf-
fices to compute its symmetric image in the upper half-plane; each scgment
of the image (almost two picces) is splitted into sub-segments lying either
in Region 1 or in Region 2. The shortest paths is then computed for each
of these sub-segments. It remains o choose the shortest one among them.

C.4 Examples

Figures 37 and 38 shows various examples of shortest paths to a straight linc
segment for both Reeds&Shepp carand Dubins car. Such obstacle distances
are the core of procedures allowing real-time obstacle avoidance and path
smoothing in motion planning for mobile robots [53, 49].
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Figure 38: Examples of shortest paths to segments for the Dubins car
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D On the topological property of Steer,;,

In Section 5.2.2 we have seen that Steer,;, is an exact method based on
sinusoidal controls allowing to steer a chained form system. However, we
do not dispose of a unique expression of Steerg, verifying the topological
property. In this annex we show +that it is possible to switch between different
Steerg! to integrate such a steering method within the general nonholonomic
path planning schemes introduced in Sections 5.3 and 5.4.

Let us consider the two input chained form system (8) introduced in
Section 4.3:

2 = W
2 = 1y
23 = 2.
Zn = Zp_ym
Steer{l is defined by:
u{t) = ap+ o) sinwt
u(t) = by + by coswt + by cos 2wt + ... by_z cos(n — 2)wt

We have proved that for a given a) small enough, the maximal gap be-
tween Z%"* and the path Steer§l (Z*ert Z9°a!) decreases when Z9°¢ tends
to Z5% But this gap do not tends to zero. In other words, for a fixed
valuc of aj, trying to reach closer configurations on the geometric path de-
crcases the risk of collision but does not eliminate it. Moreover to tend this
gap to zero we have also to decrease |ap|. But these two decreasings are
not independent. Indeed, by changing the value of a; we change the steer-
ing method Steer{} and so we change the family of the paths. For a given
couple of extremal configurations, a decreasing of a; increases in most of
the cases the extremal gap betwcen the start point and the path. In other
words, In order to reduce the risk of collision we have to choose close goal
configurations but we also have to reduce a;. Which in turn increase again
the clearance betwecn the path and the start point. So we have again to
bring the goal closer...If the decreasing of |e,| is too fast with respect to
the one of the distance between the start configuration and the current goal,
the approximation algorithm will not converge.

A strategy for tuning thes= w0 decreasings can be integrated in the
approximation algorithm (Section 5.3) while respecting its completeness.
The following approach has been implemented; it is described with details in
[100, 99]. It is based on a lemma giving an account of the distance between a
path generated by Steery} and its starting point Z°. Let us denote z(t) — 2
by 4;(t).
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Lemma 2 For any path compuied by Steer’} , for any t € 0,77 :

[}l < laoT|+|aT| = Ay

(928} < BT = Ay ‘

[e11()) < J21Ar 4+ 4 |28 A2 1 (129] + A) AR withk > 2
(32)

Proof 5 By definition 51 (t) = ap + ey sinwt. Then:

t . i
161(£)] < ]0 18y (r)]dr < /u (laol + [a1]) dr < |ayT]| + oy T|

By setting Ay = |agT| + |a1T| we have the intermediate result that for all t,
fol61(m)|dr < Ay. The same reasoning holds to prove that 102(8)| < 3|57
Now, for any k > 2;

dk41(t) = /ﬁt ze(T)21(7) dr = /Ut O (T)21(7) dr + zg /DE z1{7) dr

An upper bound Ay on |0, ()| being given, we get:

i t
k1 (8)] < Ag / |1 (7)] dr + 2] / 4 (7)) dr < (Ag + [2) A,

Then
Appr < (Ap + |22 A

And by recurrence:
01 (OF < 12881 + ...+ 281252 4 (28] 4 A AE™

Given a start configuration Z**" we first fix the value of ay and two
other parameters AT and AT to some arbitrary values (see [99] for de-
tails on initialization). Then we choose a goal configuration on the straight
line segment {Z5%7, Z9°3] (or o= any collision-free path linking Z5%"t and
Z9°2!]) closer and closer to Z*%"¢, This operation decrcases the parameters
ag, by, - - -, by s0 it decreases Ay and Ay (the detailed proof of this statement
appears in [99, 102]). We continue to bring the goal closer to the initial
configuration until a collision-free path is found or until A; < AP™ and
Az < AF*™. In the second case, we substitute a,, AT and AJ*" respec-
tively by k.a;, k.AT*" and E.ADR with k < 1 and we start the above
operations again. The new starting path may or may not go further away
from Z**®"* than the previous one but in any case, from equations {32) we
have the guarantee that following this strategy, the computed path will lie
closer and closer to Z**“"*. 'We have then the guarantee of finding a collision-
free path.
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E From paths to motions: practical issues on Hi-
lare pulling a trailer

In this annex we present complementary issues dealing with motion exe-
cution. Up to now we have presented techniques for nonholonomic path
planning. Once a path had been planned, it has to be transformed into a
trajectory. Then the trajectory has to be executed via a feedback control.
Here we present solutions which have been developed for the experimental
platform Hilare-2-bis of LAAS. Hilare-2-bis is a two driving-wheel mobile

robot belonging to the family of mobile robot Hilare growing at LAAS since
1976 [41].

13

(@r,yr,6r)

(@r,Yrs 6:)
System A

System B

Figure 39: Hilare with its trailer
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E.1 Hilare and its trailer N

In the following experimentation we use proprioceptive sensors: the odome-
ter (based on optical encoders on dedicated wheels) gives the position (z,, v}
and the direction &, of the robot w.r.t. a starting configuration; an angular
cricoder gives the relative direction @ of the trailer w.r.t. the direction of
the robot. Three cameras on the ceiling give the initial configuration of the
system w.r.t. an absoiute frame.

We dispose of two different hooking-up systems A and B (Figure 39).
The corresponding control systems are given by:

System A: System B;
tr = wv.cosd, T = wvpcosb,
#r = w.-sinb, U = v,5iné,
8. = w, & = w,
: _ U o3 . — Yr 7 i,
P = —Tsing-uw $ = —sing -5 cosp —w,

where the inputs v, and w, are the linear and angular velocities of the robot.
They are submitted to the following constraints: |v,| < v, lwr] < Winae,
[Ur] < Dz and |&r] € Wimaz. These constraints and the weight of the robot
cnsures the absence of lateral slipping of the wheels. I, and #; are constants
defining the geometry of the hookiug up system.

Let us notice that although system A is a particular casc of system B
with I, = 0, both systems have different properties from a control point of
view and they have to be studied separately.

The hardware architecture of our experiments (Figure 40) is composed of
a Unix workstation and on-board processors, communicating via radio Eth-
ernct. The software architecture is organised in three modules and an inter-
face to control the exceution during experiments. The module TRPLANNER on
the workstation computes a collision-free feasible path according to the ap-
proximation scheme described in Section 5.3 and using the steering method
Steerfiq; described in Section 5.2.3. Then the path is sent to the module
TRPILO. This latter module first computes a time parameterization on-board,
and then samples the correspondivg open-loop inputs (v, (1), wy(£)) on a seg-
ment of shared memory called poster. The module TRLOCO reads these data
on the poster and computes in real-time the closed loop control of each mo-
tor. The position of the initial and final configurations are measured by
an absolute localization system composed of three cameras mounted on the
ceiling of the experimentation.

E.2 From Path to Trajectory

Once a path between two configurations has been produced, it has to be
parameterized by time to take into account the bounds on the velocities and
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Figure 40: Computer architocture of Hilare-2-bis

accelerations of the robot. This task is performed on board by the module
TRPILO. The input of this module is a path {{z,(s),y-(3), 8 (5),(s)}, s €
[Sstarts Send]}y YMEE, Vmar, Winax, and omega,,,.. The output is an admis-

sible trajectory ((z,(s(2)),y,(s(£)},60-(s(2}),0(s(1))),t € [tstarts tend]), where
s{t} is the time parameterization to be computed.

E.2.1 Related work and motivation

Integrating constraints on velocities and accelerations can be done at the
planning level. This is the so-called kinodynamic motion planning problem|[24,
88]. The methods are based on a discretization of the configuration space
and require a perfect knowledge of the C-obstacles. We did not explore this
direction because of the computational cost of a search in the phase space
of our system which is 6-dimensional.

Transforming a path into a trajectory is a classical problem in robotics.
The minimal time parameterization of a given path has been mainly ad-
dressed for manipulators {sec [90] for an overview). Applications to mobile
robots appears in [103]: the computation of a time-optimal motion along
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a path is used to evaluate the cost of a path through the more ambitious
objective to compute optimal trajectories for a mobile robot moving on a
terrain. The problem is well understood; formal solutions exist. However
the parameterization functions are most of the time described as solutions
of differential equations. Their effective computation requires numerical in-
tegration. We did it. We got only fragile softwarc. Moreover we can check
that the litcrature does not contain any experimental applications address-
ing the practical issues of the implementation. At this level, the contribution
below is more practical than formal.

The structure of the algorithm we propose here is based on the method
described in [104]. However, large variations of the functions 8.(s) and
¢{s) that may be returned by the path planner raise computational issues.
Indeed, computing integral curves corresponding to maximal or minimal
acceleration requires a small time-step and thus a lot of memory to store the
discretized solutions. An inappropriate time discretization combined with
big variations of the functions expressing the differential equation may result
in significant violations of acceleration bounds. To avoid these troubles and
spare memory space, we choose 1o relax the time optimal condition and to
represent acceleration curves over successive intervals of varying size.

E.2.2 Counstraints in the phase plane (s, 3)

Without loss of generality we consider now the case of a forward motion. By

setting d,(s) = \/%(5)2 + %3’—5‘5(3)2 and d,(s) = ‘%—(s), the velocities and
acceleration have the following expressions:

v = dy{s)é (33)
w = dy(s)s (34)
o= dy(8)5 + 8, ()5 (35)
w = dy(s)i+ 6&)(5)‘%2 (36)
where p p
Sy(s) = &Edv(s) and é, = Edw(s).

Velocity Constraints. The veiocity constraints 0 < v < ,,,, and |w| <
Wraz are represented by a forbidden area in the phase plane (s, §).

3 SIIlf{ Umar Wmax }

dy(5)" |du(s)]

We call velocity saturation curve the curve obtained when the previous in-
equality is an equality.
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Acceleration constraints. From (35) and (36), (s, $) being given in the
phase plane, the acceleration constraints [0 < @, and |@] < thpez impose §
to belong to the intersection [a(s, §), (s, §)] of two intervals. An equivalent
condition for this interval not to be cmpty is {(after computations):

‘,‘2 < wmu:ﬂldv(sn + @muzidu(s)l
o A

(37)

with
A =dy(8)8,(8) — du(8)8,(s)

The curve corresponding to equality in (37) is called the mazimal ve-
locity curve. It is denoted by g(s). The signification of this curve can be
inferpreted as follows. At any point of the path, if the velocity is too high,
both acceleration constraints cannot be satisfied. An cxample of this fact is
the case of a car following a road composed of a straight line and a turn of
increasing curvature. This situation corresponds to a coefficient 4, starting
from 0 and increasing along the turn. If the speed of the car is too high,
even by braking as much as possible, the angular acceleration cannot be
made smaller than its maximal allowed value. This example illustrates the
fact that finding a correct parameterization of a path is a global problem
that requires knowledge of the path in the future.

E.2.3 Algorithm

Before explaining our algorithm, we need to define the notion of character-
istic point, which is a key point of the method. We define then what we call
acceleration and deceleration curves.

Characteristic points. From the previous definition, the interval [a(s, 3), (s, §)]
is empty iff $ > g(s). Moreover, ~(s,¢(5)} = B(s,9(s)) if dy(s) # 0. In our
case, d, never vanishes, it is a property of our local planner.

We define & d
k(s) = o d—f
the difference between the slope of the phase plane trajectory at the maximal
velocity curve {ie. % = “(‘;’i >} and the slope of the maxima) velocity

Clurve.

We say that (s, $) is an out-point if k(s) > 0 and an in-point if x(s) < 0.
With these notations, characteristic poinis are defined as points (s, $) where
k{s7) > 0 and x(st) < 0. At these points and only at these points, a phase
plane trajectory can meet the maximum velocity curve without violating
the acceleration constraints.
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Figure 41: Acceleration curve: §; must remain in the upper interval between
s and 8$;41.

Acceleration and deceleration curves: From now on we call $ and §
pseudo-velocity and pseudo-acceleration. Let g < 1/4 a positive real number
be given. The key idca of an acceleration {resp. deceleration) curve is to
define contiguous intervals of the s-axis where the psendo-acceleration can
be kept constant and in the upper (resp. lower) 2p-portion of the interval
la(s,3), 8(s,$)]. The size of the intervals is thus automatically adapted to
the variation of the coefficients and our representation is far less memory
consuming than discretizing intcgral curves.

The sp-constant pseudo-acceleration curve passing by (sg, s¢) is Tepre-
sented in the phase plane by a parabola:

i = Dgqusnio)(5) = /507 + 2éo(s = s0)

The acceleration curve starting from a point in the phasc plane (sg, 55}
is defined by the following algorithm. Let §; = (1 — p)8(s4, ;) + pa(s;, ).
We define

siv1 = Inf{s > ;8 € [(1 - 2u)8(5, Ty, 4,,6(9))
+2,uoz('; F (8:,81,8:) ( ))3ﬁ(s I‘(n,c“ ‘)(q))]}
“.’Ii'i'l = F(.ﬁ,,s,,\ ) (q‘-'--i-l)

The acceleration curve startitg from (sg, $9) is then defined by § =
U(y:.5:,5:(8) over each interval [s;, si4.1} (Figure 41). Let notice that when g
tends to zerc these curves tends to maximal velocity curves.

Deceleration curves are identically defined, replacing o by .
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Algorithm: Starting from (ss¢,0), we build an acceleration curve un-
til an out-point is rcached. Then we build a deceleration curve backward
from the next characteristic point. If the deceleration curve intersects the
acceleration curve, we start again from the characteristic point. If the deccl-
eration curve reaches the arca above the last acceleration curve, it is stopped
and the acccleration curve is extended. Finally the last deceleration is built
backward from (s.,4,0) until it intersects the already built curve. For more
details we refer to [57].

The notion of in-points and out-points that we introduced, enables us to
build only necessary curves and to stay as far as possible from the maximal
velocity curve where the interval of admissible pseudo-accelerations is small.
Slotine et al build curves from every characteristic point and take the lower
cnvelop of all these curves,

Figure 42 shows an example of phase curve taking into account only the
acceleration constraints.

2 T T ™= T T T

T
acceleration phase curve ——
maximal valecily cifive -

18 | veloclty saluration curve --- o
16+ 4
14} B
12 - 4

1F 4

8

Figurc 42: Phase curve taking ‘to account the acceleration constraints

The velocity constraints: From now on, we call the formerly built phase
plane curve the acceleration phase curve. From this curve we are going to
build another one which takes into account the velocity constraints of the
robat.

The method consists in following the acceleration phase curve until a ve-
locity constraint is violated. Then the velocity saturation curve is followed
as long as its slope corresponds to a suitable acceleration, and the accelera-
tion phase curve remains above the velocity saturation curve. Three events
can then occur:
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1. The slope of the velocity saturation curve becomes too big: an accel-
cration curve is built untii it reaches the velocity saturation again or
until it reaches the acceleration phase curve.

2. The slope of the velocity saturation curve becomes too small: from

the next point on this curve such that the slope is again suitable, a
deceleration curve is built.

3. The acceleration phase curve intersects the velocity saturation curve:
it is followed until it intevsecls again the velocity saturation curve.

Figure 43 shows the final phase curve taking into account all the constraints.

2 - . . : .
solution cueve —
maximal valeclly cuve
18T . velusily saluration curve ----- 4
16 ]
14 | ]
12 | i
r -
Bl . _ . o - |

Figure 43: Final phase curve

E.3 Motion control
E.3.1 Motivation and related work

Motion control for nonholonomic systems have given rise to a lot of work.
Brockett’s condition [19] made stabilization about a given configuration a
challenging task for such systems, proving that it could not be performed
by a simple continuous state feedback. Alternative solutions as time-varying
fecdback {77, 28, 84, 93, 94, 95, 105] or discontinuous feedback [26] have been
then proposed. On the other hand, tracking a trajectory for a nonholonomic
system does not meet Brockett’s condition and thus it is an casier task. A
lot of work have also addressed this problem [31, 42, 52, 92, 96] for the
particular case of mobile robots. See {29] for a recent survey in mobile robot
motion control.
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All these control laws work under the same assumption: the evolution of
the system is exactly known and no perturbation makes the system deviate
from its trajectory. Few papers dealing with mobile robots control take into
account perturbations in the kinematics equations. [13] however proposcd
a method to stabilizc a car about a configuration, robust to control vector
fields perturbations, and based on iterative trajectory tracking.

The presence of obstacle makes the task of reaching a confignration even
more difficult. The approach we have implemented combines iteratively
open loop controls together with closed loop coutrols. Snuch a strategy is
analyzed by assuming that the exccution of a given trajectory is submitted
to perturbations. The model we chose for these perturbations is simple and
general. It presents some common points with [13].

E.3.2 Trajectory tracking

The low velocity (50 cin/s) of Hilare’s motions, the good quality of its lo-
comotion system and the good quality of the planned trajectories make the
trajectory tracking task non critical. We devised a simple control law en-
abling us to reuse the controller «.f our robot without trailer. This controller
was directly derived from [96]. Let (z,vy,8) be the coordinates of the refer-
ence robot in the frame of the real robot. Let (v?,w?) be the inputs of the
reference trajectory. The control law has the following expression:

v, = olcosf+ kiz _ (38)
wr = ol k4 k¥ ly

robot

trailer

virtual robot

|
\ o éiﬁt; )l )(p’

wheel axle

Figure 44: Virtual robot

Systemx A: The idea of our controller is the following. When the robot
goes forward, the trailer is not taken into account and we stabilize the rabot
according to the simple control law above, When the robot goes backward,
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we define a virtual robot which is symmetrical to the real robot with respect
to the wheel axle of the trailer (Figure 44). The configuration of the virtual
robot with respect to the real one is given by:

T = Tp — 28 c08 8,
Ur = Yr — 2€sin b,

=6, ¢+
It (0,w) are the linear and angular velocities of the virtual robot, we get
D= —v,0= 2;’ sin{¢) —-w. Thus the virtual rebot goes forward and virtually

pullb the trailer. We apply therefore the coutrol law (38) to the virtual robot
J’ “Fa J'f ? )

System B: When the trailer is hitched behind the robot, the former con-
struction is even more simple: we can replace the virtual robot by the trailer.
In this case indeed, the velocitics of the robof (v,,w,) and of the trailer
(v¢,w) are connected by a onc-to-one mapping. The configuration of the
virtual robot is then given by the following system:

Fr = xp —lLcosl, — I cos(6; + @)
Gr = yr—Ilsinf. —l;sin(f, + )
& = B +p+w

Stability of the trailer: Do the previous approaches make the motion of
the trailer truly stable ? To answer the question we consider here a forward
motion for the system A. The analysis of backward motions is equivalent
by considering the virtual robot transformation. Moreover the following
analysis may be applied as well to system B by considering the motion of
the hitching point.

Lef us denote by (2%,42,82 % 02, w0} a reference trajectory and by
(@r, Yr, Or, 0, Ur,wy ) the real motion of the system. We assume that the robot
follows exactly its reference trajectory: (zr,¥r, 0, vy, wr} = (29, 4, 62,22, w?)
and we focus our attention on the trailer deviation ¢ = ¢ —°. The evolution
of this deviation is easily deduced from System A (I, = 0):

p = -?;—r(singp——singou)
t
1] -
= __% 'os((p—;(p )qin(g)
|@] is thus decreasing iff
T 0, P _T .
5 <Y T <3y [27] (39)

QOur systein is morcover constrained by the inegualitics

-7)2 < @, " < 7/2 (40)
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1 stability domain

referenci
trailer

Figure 45: Stability domain for ¢

so that —w < ¢ < m and (39) is equivalent to

U<Lpo<% and -7 <@ <7 — 20
or (41)
—2<¢’<0 and —w-20" <p <

Figure 45 shows the domain on which || is decrcasing for a given value
of ¢°. We can see that this domain contains all positions of the trailer
defined by the bounds {40). Moreover, the previous computations permit
easily to show that 0 is an asymptotically stable value for the variable .

Thus if the real or virtual roiut follows its reference forward trajectory,
the trailer is stable and will converge toward its own reference trajectory.

E.3.3 Iterative scheme and robustness

Once the robot stops after tracking a planned trajectory, the gap to the real
goal is computed. If this gap is greater than some threshold, then a new
trajectory is planned and tracked. As we will see below this simple iterative
scheme gives good results. Usnally, no more than one maneuver is needed to
improve the final position of the system. Before preseuting the experimental
results, let us analyze the robustness of this control scheme from a formal
point of view.

For this, we need to have a model of the perturbations arising when the
robot moves. In our experiment we observed random perturbations due for
instance to some play in the hitching system. These perturbations are very
difficult to model. For this reason, we make only two simple hypotheses
about them:

de(q(s),9°(s))
de(g(s),¢°(s))
where s is the curvilinear abscissa along the planned path, ¢ and ¢° are

respectively the real and reference configurations, de is a distance over the
configuration space of the system and 4, A are positive constants. The

as
A

A TA
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first inequality means that the distance between the real and the reference
configurations is proportional to the distance covered on the planned path.
The second inequality is ensured by the trajectory tracking control law that
prevents the system to go too far away from its reference trajectory. Let us
point out that these hypotheses are very realistic and fit a lot of perturbation
models.

We need now to know the length of the paths generated at cach iteration.
We have seen that the steering method we use to compute these paths is
admissible. This means that if the goal is sufficiently close to the starting
configuration, the computed trajectory remains in a neighborhood of the
starting configuration. In [55] we compute an estimate in terms of distance:
if ¢1 and g3 are two sufficiently close configurations, the length £(qy, ¢2) of
Steerpiq: (g1, ¢2) verifies

1
Lq1,q2) < ndelgy, g2)4

where 5 is a positive constant.

Thus, if {g;}i=12,. is the sequence of configurations reached after ¢ mo-
tions, we have the following inequalities:

delg1,qgoat) < A
dC(Qt’+lngoa£} < 5£($is$gm.l)

< 37’1636(% ‘i'goat)

e

These inequalities ensure that de(4i, ¢geat) is upper bounded by a se-
quence (d;}i—1 2, of positive numbers defined by

dy = A
1
dﬂ_ 1 = ] n d,f

and converging toward {6;})%

Thus, we do not obtain asymptotical stability of the goal configuration,
but this resnlt ensures the existence of a stable domain around this con-
figuration. This result essentially comes from the very general model of
perturbations we have chosen. Let us repeat that including such a pertur-
bation model in a time varying control law would undoubtedly make it lose
its asymptotical stability.

The experimental results of the following section show however, that the
converging domain of our control scheme is very small.

E.4 Experiments

We present three experiments for each system. The geometric map of the
environment covers 170 m?2. The bitmap representation of the environment
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15 a grid of 150000 pixels. The geometric parameters of System A are . =
0 cm and I; = 120 cm. Those of System B are I, = 65 o and §; = 90 em.
For both systems, the bounds on the velocities and accelerations are Uyna

x =
.5 ms ], Waz = -5 rads™!, Dpar = .5 ms 2 and @ e = 1.8 rads™2.
¥ bid

= e R

H

Finit Gbut Ag Agy

I z = 9.42 =204 Az=0 18 sec
y=-290 |[y=-25 | Ay=-0.02 0 cusp
#=191.39 ¢ =90 Af =0.18
p=—-1019 | =10 Ap=10

I1 |#=2.10 x =4.20 Ax =10 Az =0.01 1 min 53 sec
y=—243 {y=-0.50| Ay =0.14 Ay = ~0.02 | 3 cusps
f =897 6 =180 Aff =4.13 Af =196
w=20 p=0 Ap=-493 | Ap=-0.71

11 | = =4.27 y=10.30 | Axr=0.13 Az = —0.02 || 23 sec
y=-051 |y=-732"!Ay=0.01 Ay =-0.01 || 1 cusp
8=17963 |8=9 A =445 Af =0.96
@=035 |p=0 Ap=-493 | Ap=—-0.35

Figure 46: Three experiments I, IT and III from letf to right, for system A.
‘The initial configuration is in black, the final configuration is in grey.

For each experiment, we proceed as follows. We localize the initial po-
sition of the robot using the cameras on the ceiling. Then we specify a goal
configuration via the interface. After computations, the motion is executed.
The position of the robot is updated by the dead-reckoning system combin-
ing the odometer of Hilarc-2-bis and the angular encoder of the trailer. If the
reached configuration is too far from the goal, we reexecute the same process.
Figures 46 and 47 display the paths computed and give the precision reached
after the first and second motions, which respect to the dead-reckoning lo-
calization. The times of computation correspond to the first path planning
task on a Sun Sparc Ultra. The time parameterization is very fast (< 1 sec).
Let ns point out that the secord planning task is almost instantaneous be-
cause both configurations are very close to one another and only one call to
the local planncr is generally enough. The cxact position of the robot can-
not be measured exactly after cach motion becanse the robot is not always
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s 2

L

Qinit Gbut Ago

I z =220 x =10.10 Az =10 1 min 10 sec
y=-224|y=-690| Ay =002 Ay=—-0.01 ] 1 cusp
=190 8 =90 Af=-110 | AG=-190
=0 =10 Ap =141 Ap =105

I1 | z=9.99 =534 |Azr=10 Ar=10 1 min 12 sec
y=—-200 | y=-266| Ay=—006 | Ay=—0.01 || 1 cusp
#=19020 |6 =90 X8 =10.54 A = —0.75
w=141 |p=1843 | Ap =128 | Ap =058

I | z=5.31 z=1008 | Az =0.02 40 sec
y=-2611y=-770| Ay =0.03 1 cusp
#=28944 | 8=-90 A = 0.81
@=19.01 | p=27.60 | Ap=-0.19

Figure 47: Three experiments I, II and III from letf to right, for system B.
The initial configuration is in black, the final configuration is in grey. The

zoom shows final mancuver of the experiment 1L

under one of the cameras. However, for paths such as those we executed in
these experiments, the drift of the dead-reckoning system is less than 5 cm.
We give the accuracy of the reached configuration only at the end of the
motion because we experienced that the error during the motion increases
at the beginning of the motion and then remains stable. Thus, values at the

end are a good estimate of the precision during the whole motion.

Figure 46 and 47 gather the results for System A and Systemn B respec-
tively. Times correspond to the total time of the planning phase and the

transformation of the paths into the trajectories to be executed.
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