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Wheeled Mobile Robots (WMRs)

a growing population

Yamabico MagellanPro Sojourner

ATRV-2 Hilare 2-Bis Koy
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The Central Issue

due to the presence of wheels, a WMR cannot move sideways

this is the rolling without slipping constraint, a special case of nonholonomic behavior

G. Oriolo Complementi di Controlli Automatici (Università di Roma Tre) – Controllo dei robot mobili 3



problems:

• our everyday experience indicates that WMRs are controllable, but can it be proven?

↪→ we need a mathematical characterization of nonholonomy

• in any case, if the robot must move between two configurations, a feasible path is
required (i.e., a motion that complies with the constraint)

↪→ we need appropriate path planning techniques

• the feedback control problem is much more complicated, because:

� a WMR is underactuated: less control inputs than generalized coordinates

� a WMR is not smoothly stabilizable at a point

↪→ we need appropriate feedback control techniques
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INTRODUCTION

• the configuration of a mechanical system can be uniquely described by an n-dimensional
vector of generalized coordinates

q = (q1 q2 . . . qn)
T

• the configuration space Q is an n-dimensional smooth manifold, locally represented by
IRn

• the generalized velocity at a generic point of a trajectory q(t) ⊂ Q is the tangent
vector

q̇ = (q̇1 q̇2 . . . q̇n)
T

• geometric constraints may exist or be imposed on the mechanical system

hi(q) = 0 i = 1, . . . , k

restricting the possible motions to an (n− k)-dimensional submanifold
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• a mechanical system may also be subject to a set of kinematic constraints, involving
generalized coordinates and their derivatives; e.g., first-order kinematic constraints

aT
i (q, q̇) = 0 i = 1, . . . , k

• in most cases, the constraints are Pfaffian

aT
i (q)q̇ = 0 i = 1, . . . , k or AT(q)q̇ = 0

i.e., they are linear in the velocities

• kinematic constraints may be integrable, that is, there may exist k functions hi such
that

∂hi(q(t))

∂q
= aT

i (q) i = 1, . . . , k

in this case, the kinematic constraints are indeed geometric constraints

a set of Pfaffian constraints is called holonomic if it is integrable (a geometric limitation);
otherwise, it is called nonholonomic (a kinematic limitation)
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holonomic/nonholonomic constraints affect mobility in a completely different way:

for illustration, consider a single Pfaffian constraint

aT(q)q̇ = 0

• if the constraint is holonomic, then it can be integrated as

h(q) = c

with
∂h

∂q
= aT(q) and c an integration constant

⇓
the motion of the system is confined to lie on a particular level surface (leaf) of h,
depending on the initial condition through c = h(q0)

• if the constraint is nonholonomic, then it cannot be integrated

⇓

although at each configuration the instantaneous motion (velocity) of the system
is restricted to an (n − 1)-dimensional space (the null space of the constraint
matrix aT(q)), it is still possible to reach any configuration in Q
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a canonical example of nonholonomy: the rolling disk

x

y θ

• generalized coordinates q = (x, y, θ)

• pure rolling nonholonomic constraint ẋ sin θ − ẏ cos θ = 0

(
ẏ

ẋ
= tan θ

)
• feasible velocities are contained in the null space of the constraint matrix

aT(q) = (sin θ − cos θ 0) =⇒ N (aT(q)) = span


 cos θ

sin θ
0

 ,

 0
0
1


• any configuration qf = (xf , yf , θf) can be reached:

1. rotate the disk until it aims at (xf , yf)

2. roll the disk until until it reaches (xf , yf)

3. rotate the disk until until its orientation is θf

G. Oriolo Complementi di Controlli Automatici (Università di Roma Tre) – Controllo dei robot mobili 8



nonholonomy in the configuration space of the rolling disk

x

y

øθ

driving

steeringq
1

q
2

• at each q, only two instantaneous directions of motion are possible

• to move from q1 to q2 (parallel parking) an appropriate maneuver (sequence of moves)
is needed; one possibility is to follow the dashed line
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a less canonical example of nonholonomy: the fifteen puzzle

1 2 3 4
5 6 7 8

9 10 11 12
13 14 15

• generalized coordinates q = (q1, . . . , q15)

• each qi may assume 16 different values corresponding to the cells in the grid; legal
configurations are obtained when qi 6= qj for i 6= j

• depending on the current configuration, a limited number (2 to 4) moves are possible

• any configuration with an even number of inversions can be reached by an appropriate
sequence of moves
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A Control Viewpoint

• holonomy/nonholonomy of constraints may be conveniently studied through a dual
approach: look at the

directions in which motion is allowed

rather than

directions in which motion is prohibited

• there is a strict relationship between

capability of accessing every configuration

and

nonholonomy of the velocity constraints

• the interesting question is:

given two arbitrary points qi and qf ,
when does a connecting trajectory q(t) exist
which satisfies the kinematic constraints?

⇓

. . . this is indeed a controllability problem!
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• associate to the set of kinematic constraints a basis for their null space, i.e. a set of
vectors gj such that

aT
i (q)gj(q) = 0 i = 1, . . . , k j = 1, . . . , n− k

or in matrix form

AT(q)G(q) = 0

• feasible trajectories of the mechanical system are the solutions q(t) of

q̇ =
m∑

j=1

gj(q)uj = G(q)u (∗)

for some input u(t) ∈ IRm, m = n− k (u: also called pseudovelocities)

• (∗) is a driftless (i.e., u=0⇒ q̇=0) nonlinear system known as the kinematic model
of the constrained mechanical system

• controllability of its whole configuration space is equivalent to nonholonomy of the
original kinematic constraints
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More General Nonholonomic Constraints

• one may also find Pfaffian constraints of the form

aT
i (q)q̇ = ci, i = 1, . . . , k or AT(q)q̇ = c

with constant ci

• these constraints are differential but not of a kinematic nature; for example, this form
arises from conservation of an initial non-zero angular momentum in space robots

• the constrained mechanism is transformed into an equivalent control system by de-
scribing feasible trajectories q(t) as solutions of

q̇ = f(q) +
m∑

i=1

gi(q)ui

i.e., a nonlinear control system with drift, where g1(q), . . . , gm(q) are a basis of the null
space of AT(q) and the drift vector f is computed through pseudoinversion

f(q) = A#(q)c = A(q)
(
AT(q)A(q)

)−1
c
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MODELING EXAMPLES

source of nonholonomic constraints on motion:

• bodies in rolling contact without slipping

– wheeled mobile robots (WMRs) or automobiles (wheels rolling on the ground with
no skid or slippage)

– dextrous manipulation with multifingered robot hands (fingertips on grasped ob-
jects)

• angular momentum conservation in multibody systems

– robotic manipulators floating in space (with no external actuation)

– dynamically balancing hopping robots, divers or astronauts (in flying or mid-air
phases)

– satellites with reaction (or momentum) wheels for attitude stabilization

• special control operation

q̇ = G(q)u q ∈ IRn u ∈ IRm (m < n)

– non-cyclic inversion schemes for redundant robots (m task commands for n joints)

– floating underwater robotic systems
(m = 4 velocity inputs for n = 6 generalized coords)
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Wheeled Mobile Robots

unicycle

x

y θ

• generalized coordinates q = (x, y, θ)

• nonholonomic constraint ẋ sin θ − ẏ cos θ = 0

• a matrix whose columns span the null space of the constraint matrix is

G(q) =

(
cos θ 0
sin θ 0
0 1

)
= ( g1 g2 )

• hence the kinematic model

q̇ = G(q)u = g1(q)u1 + g2(q)u2

with u1 = driving, u2 = steering velocity inputs
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car-like robot

x

y

�

φ

θ

• ‘bicycle’ model: front and rear wheels collapse into two wheels at the axle midpoints

• generalized coordinates q = (x, y, θ, φ) φ: steering angle

• nonholonomic constraints

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0 (front wheel)
ẋ sin θ − ẏ cos θ = 0 (rear wheel)

• being the front wheel position

xf = x + ` cos θ yf = y + ` sin θ

the first constraint becomes

ẋ sin(θ + φ)− ẏ cos(θ + φ)− θ̇ ` cosφ = 0
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the constraint matrix is

AT(q)=

(
sin(θ + φ) − cos(θ + φ) −` cosφ 0

sin θ − cos θ 0 0

)
there are two physical alternatives for the controls:

(RD) choosing

G(q) =

 cos θ 0
sin θ 0

1
`
tanφ 0
0 1

 =⇒ q̇ = g1(q)u1 + g2(q)u2

where u1 = rear driving, u2 = steering inputs

� a ‘control singularity’ at φ = ±π/2, where vector field g1 diverges

(FD) choosing

G(q) =

 cos θ cosφ 0
sin θ cosφ 0

1
`
sinφ 0
0 1

 =⇒ q̇ = g1(q)u1 + g2(q)u2

where u1 = front driving, u2 = steering inputs

� no singularities in this case!
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N-trailer system

φ

åθ0

åθ1
= 0

åθN-1

åθN

• an FD car-like robot with N trailers, each hinged to the axle midpoint of the previous

• generalized coordinates q = (x, y, φ, θ0, θ1, . . . , θN) ∈ IRN+4

x, y = position of the car rear axle midpoint
φ = steering angle of the car (w.r.t. car body)

θ0 = orientation angle of the car (w.r.t. x-axis)
θi = orientation angle of i-th trailer (w.r.t. x)

• the car is considered as the 0-th trailer

d0 = ` = car length
di = i-th trailer length (hinge to hinge)
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nonholonomic constraints:

steering wheel

ẋf sin(θ0 + φ)− ẏf cos(θ0 + φ) = 0

with

xf = x + ` cos θ0 yf = y + ` sin θ0

all other wheels

ẋi sin θi − ẏi cos θi = 0 i = 0,1, . . . , N

being

xi = x−
i∑

j=1

dj cos θj yi = y −
i∑

j=1

dj sin θj

the constraints become

ẋ sin(θ0 + φ)− ẏ cos(θ0 + φ)− θ̇0 ` cosφ = 0

ẋ sin θi − ẏ cos θi +
i∑

j=1

θ̇j dj cos(θi − θj) = 0 i = 0,1, . . . , N
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• the null space of the N + 2 constraints is spanned by the two columns g1, g2 of

G(q) =



cos θ0 0
sin θ0 0

0 1
1
`
tanφ 0

− 1
d1

sin(θ1 − θ0) 0

− 1
d2

cos(θ1 − θ0) sin(θ2 − θ1) 0
... ...

− 1
di

(∏i−1
j=1 cos(θj − θj−1)

)
sin(θi − θi−1) 0

... ...
− 1

dN

(∏N−1
j=1 cos(θj − θj−1)

)
sin(θN − θN−1) 0



• the kinematic model is q̇ = g1(q)u1 + g2(q)u2

with u1 = (rear) driving, u2 = steering inputs for the front car

• an alternative way to derive kinematic equations

θ̇i = −
1

di
sin(θi − θi−1)νi−1

i = 1, . . . , N

νi = νi−1 cos(θi − θi−1)

with νi = linear (forward) velocity of the i-th trailer (ν0 = u1)
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other wheeled mobile robots

• firetruck
φ0

φ1

6 configuration variables, 3 differential constraints, 3 control inputs (car driving and
steering, trailer steering)

• N-trailer system with nonzero hooking

a

a

when a 6= 0 and N ≥ 2, this system cannot be converted in chained form (later)
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TOOLS FROM DIFFERENTIAL GEOMETRY

• a smooth vector field f : IRn 7→ TqIR
n is a smooth mapping from each point of IRn to

the tangent space TqIR
n

• if f defines the rhs of a differential equation

q̇ = f(q)

the flow φf
t (q) of the vector field f is the mapping which associates to each q the

solution evolving from q, i.e., it satisfies

d

dt
φf

t (q) = f(φf
t (q))

with the group property φf
t ◦ φf

s = φf
t+s

in linear systems, f(q) = Aq, the flow is φf
t = eAt

• considering two vector fields g1 and g2 as in

q̇ = g1(q)u1 + g2(q)u2

the composition of their flows (obtained by taking u1 = {0,1} and u2 = {1,0} or vice
versa) is non-commutative

φg1

t ◦ φg2

s 6= φg2

s ◦ φg1

t
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• starting at q0, an infinitesimal flow of time ε along g1, then g2, then −g1, and finally
−g2, yields (R. Brockett: ‘a computation everybody should do once in his life’)

q(4ε) = φ−g2

ε ◦ φ−g1

ε ◦ φg2

ε ◦ φg1

ε (q0) = q0 + ε2
(

∂g2

∂q
g1(q0)−

∂g1

∂q
g2(q0)

)
+ O(ε3)

q1

q 2

q3

g
2

g
1

g
1

ε−

g
2

ε−

g
2

ε

g
1

ε

g
2

ε [ ],g
1

2

• Lie bracket of two vector fields f , g

[g1, g2](q) =
∂g2

∂q
g1(q)−

∂g1

∂q
g2(q)

• g1 and g2 commute if [g1, g2] = 0; moreover,

[g1, g2] = 0 ⇒ q(4ε) = q0 (zero net flow)
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• properties of Lie brackets

[f, g] = −[g, f ] skew-symmetry

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0 Jacobi identity

in linear single input systems, f(q) = Aq, g(q) = b,

[f, g] = −Ab [f, [f, g]] = A2b

[f, [f, [f, g]]] = −A3b . . .

• a smooth distribution ∆ associated with a set of smooth vector fields {g1, . . . , gm}
assigns to each point q a subspace of its tangent space defined as

∆ = span {g1, . . . , gm}
m

∆q = span {g1(q), . . . , gm(q)} ⊂ TqIR
n

• a distribution is regular if dim ∆q = const, ∀q

• a distribution is involutive if it is closed under the Lie bracket operation

∆ involutive ⇐⇒ ∀gi, gj ∈ ∆ [gi, gj] ∈ ∆

• the involutive closure ∆̄ of a distribution ∆ is its closure under the Lie bracket
operation
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CONTROL PROPERTIES

Controllability of Nonholonomic Systems

consider a nonlinear control system

ẋ = f(x) +
m∑

j=1

gj(x)uj (NCS)

with state x ∈ M ' IRn, and input in the class U of piecewise-continuous time functions

• denote its unique solution at time t ≥ 0 by x(t,0, x0, u), with input u(·), and x(0) = x0

• (NCS) is controllable if ∀x1, x2 ∈M, ∃T < ∞, ∃u: [0, T ] → U : x(T,0, x1, u) = x2

• the set of states reachable from x0 within time T > 0, with trajectories contained in
a neighborhood V of x0, is denoted by

RV
T (x0) =

⋃
τ≤T

RV (xo, τ)

V

x0

R
V

T (x )0

where RV (x0, τ) = {x ∈ M | x(τ,0, x0, u) = x, ∀t ∈ [0, τ ], x(t,0, x0, u) ∈ V }
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• (NCS) is locally accessible (LA) from x0 if ∀V , a neighborhood of x0, and ∀T > 0

RV
T (xo) ⊃ Ω, with Ω some non-empty open set

x0

R
V

T (x )0

• (NCS) is small-time locally controllable (STLC) from x0 if ∀V , a neighborhood of
x0, and ∀T > 0

RV
T (xo) ⊃ Ψ, with Ψ some neighborhood of x0

x0

R
V

T (x )0

• STLC ⇒ controllability ⇒ LA (not vice versa)

• LA is checked through an algebraic test

– let C̄ be the involutive closure of the distribution associated with {f, g1, g2, . . . , gm}

– Chow Theorem (1939): (NCS) is LA from x0 if and only if

dim C̄(x0) = n accessibility rank condition

– an algorithmic test:

C̄ = span
{
v ∈

⋃
k≥0

Ck
}

with

{
C0 = span {f, g1, . . . , gm}
Ck = Ck−1 + span {[f, v], [gj, v], j = 1, .., m : v ∈ Ck−1}
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• only sufficient conditions exists for STLC

• however, for driftless control systems:

LA ⇐⇒ controllability ⇐⇒ STLC

• this equivalence holds also whenever

f(x) ∈ span {g1(x), . . . , gm(x)} ∀x ∈M
(‘trivial’ drift)

• if the driftless control system

ẋ =
m∑

i=1

gi(x)ui

is controllable, then its dynamic extension

ẋ =
m∑

i=1

gi(x)vi

v̇i = ui i = 1, . . . , m

is also controllable (and vice versa)
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• in the linear case ẋ = Ax +
∑m

j=1 bjuj = Ax + Bu, all controllability definitions are
equivalent and the associated tests reduce to the well-known Kalman rank condition:

rank (B AB A2B . . . An−1B ) = n

• a controllability test is a nonholonomy test!

a set of k Pfaffian constraints A(q)q̇ = 0 is nonholonomic if and only if the
associated kinematic model

q̇ = G(q)u =
m∑

i=1

gi(q)ui m = n− k

is controllable, that is

dim C̄ = n

being C̄ the involutive closure of the distribution associated with g1, . . . , gm

⇓

for a nonholonomic system, it is always possible to design open-loop commands that
drive the system from any state to any other state (nonholonomic path planning)
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Stabilizability of Nonholonomic Systems

for a nonlinear control system

ẋ = f(x) +
m∑

j=1

gj(x)uj = f(x) + g(x)u

one would like to build a feedback control law of the form

u = α(x) + β(x)v

in such a way that either

a) a desired closed-loop equilibrium point xe is made asymptotically stable, or

b) a desired feasible closed-loop trajectory xd(t) is made asymptotically stable

• feedback laws are essential in motion control to counteract the presence of disturbances
as well as modeling inaccuracies

• in linear systems, controllability directly implies asymptotic (actually, exponential)
stabilizability at xe by smooth (actually, linear) state feedback

α(x) = K(x− xe)
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• if the linear approximation of the system at xe

δ̇x = Aδx + Bδu δx = x− xe, δu = Kδx

is controllable, then the original system can be locally smoothly stabilized at xe

(a sufficient condition)

• in the presence of uncontrollable eigenvalues at zero, nothing can be concluded
(except that smooth exponential stability is not achievable)

• for kinematic models of nonholonomic systems q̇ = G(q)u, the linear approximation
around xe has always uncontrollable eigenvalues at zero since

A ≡ 0 and rank B = rank G(qe) = m < n

• however, there are necessary conditions for the existence of a C0-stabilizing state
feedback law (next slide)

• whenever these conditions fail, two alternatives are left:

a) discontinuous feedback u = α(x), α ∈ C̄0

b) time-varying feedback u = α(x, t), α ∈ C1
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Brockett stabilization theorem (1983)

if the system

ẋ = f(x, u)

is locally asymptotically C1-stabilizable at xe, then the image of the map

f : M×U → IRn

contains some neighborhood of xe (a necessary condition)

a special case: the driftless system

ẋ =
m∑

i=1

gi(x)ui

with linearly independent vectors gi(xe), i.e.,

rank ( g1(xe) g2(xe) . . . gm(xe) ) = m

is locally asymptotically C1-stabilizable at xe if and only if m ≥ n

⇓

nonholonomic mechanical systems
(either in kinematic or dynamic form)

cannot be stabilized at a point by smooth feedback
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Examples

• unicycle (n = 3)

g1 =

(
cos θ
sin θ
0

)
g2 =

(
0
0
1

)
g3 = [g1, g2] =

(− sin θ
cos θ

0

)
dim C̄ = 3 for all q

• car-like robot (RD) (n = 4)

g1 =

 cos θ
sin θ

tanφ/`
0

 g2 =

0
0
0
1



g3 = [g1, g2] =

 0
0

−1/` cos2 φ
0



g4 = [g1, g3] =

−sin θ/` cos2 φ
cos θ/` cos2 φ

0
0


dim C̄ = 4 away from the singularity at φ = ±π/2 of g1
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• car-like robot (FD) (n = 4)

g1 =

 cos θ cosφ
sin θ cosφ
sinφ/`

0

 g2 =

0
0
0
1



g3 = [g1, g2] =

 cos θ sinφ
sin θ sinφ
− cosφ/`

0



g4 = [g1, g3] =

−sin θ/`
cos θ/`

0
0


dim C̄ = 4 for all q

• N-trailer system (n = N + 4) dim C̄ = n for all q

• all the previous WMRs are controllable (STLC); none of these is smoothly stabilizable
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NONHOLONOMIC MOTION PLANNING

• the objective is to build a sequence of open-loop input commands that steer the
system from qi to qf satisfying the nonholonomic constraints

• there exist canonical model structures for which the steering problem can be solved
efficiently

– chained form

– power form

– Caplygin form

• interest in the transformation of the original model equation into one of these forms

• such model structures allow also a simpler design of feedback stabilizers (necessarily,
non-smooth or time-varying)

• we limit the analysis to the case of systems with two inputs, where the three above
forms are equivalent (via a coordinate transformation)
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Chained Forms

• a (2, n) chained form is a two-input driftless control system

ż = g1(z)v1 + g2(z)v2

in the following form

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1
...

żn = zn−1v1

• denoting repeated Lie brackets as adk
g1

g2

adg1g2 = [g1, g2] adk
g1

g2 = [g1, ad
k−1
g1

g2]

one has

g1 =


1
0
z2

z3...
zn−1

 g2 =


0
1
0
0
...
0

 ⇒ adk
g1

g2 =


0
...

(−1)k

...
0


in which (−1)k is the (k + 2)-th entry
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• a one-chain system is completely nonholonomic (controllable) since the n vectors

{g1, g2, . . . , adi
g1

g2, . . .} i = 1, . . . , n− 2

are independent

• v1 is called the generating input, z1 and z2 are called base variables

• if v1 is (piecewise) constant, the system in chained form behaves like a (piecewise)
linear system

• chained systems are a generalization of first- and second-order controllable systems for
which sinusoidal steering from zi to zf minimizes the integral norm of the input

• different input commands can be used, e.g.

– sinusoidal inputs

– piecewise constant inputs

– polynomial inputs
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steering with sinusoidal inputs

• it is a two-phase method:

I. steer the base variables z1 and z2 to their desired values zf1 and zf2 (in finite time)

II. for each zk+2, k ≥ 1, steer zk+2 to its final value zf,k+2 using

v1 = α sinωt v2 = β cos kωt

over one period T = 2π/ω, where α, β are such that

αkβ

k!(2ω)k
= zf,k+2(T )− zk+2(0)

this guarantees zi(T ) = zi(0) = zfi for i < k

in phase II, this step-by-step procedure adjusts one variable at a time by exploiting the
closed-form integrability of the system equations under sinusoidal inputs

• phase II can be executed also all at once, choosing

v1 = a0 + a1 sinωt

v2 = b0 + b1 cosωt + . . . + bn−2 cos(n− 2)ωt

and solving numerically for the n+1 unknowns in terms of the desired variation of the
n− 2 states
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steering with piecewise constant inputs

• an idea coming from multirate digital control, with the travel time T divided in subin-
tervals of length δ over which constant inputs are applied

v1(τ) = v1,k
τ ∈ [(k − 1)δ, kδ)

v2(τ) = v2,k

• it is convenient to keep v1 always constant and take n− 1 subintervals so that

T = (n− 1)δ v1 =
zf1 − z01

T

and the n− 1 constant values of input v2

v2,1, v2,2, . . . , v2,n−1

are obtained solving a triangular linear system coming from the closed-form integration
of the model equations

• if zf1 = z01, an intermediate point must be added

• for small δ, a fast motion but with large inputs
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steering with polynomial inputs

• idea similar to piecewise constant input, but with improved smoothness properties
w.r.t. time (remember that kinematic models are controlled at the (pseudo)velocity
level)

• the controls are chosen as

v1 = sign(zf1 − z01)

v2 = c0 + c1t + . . . + cn−2t
n−2

with T = zf1 − z01 and c0, . . . , cn obtained solving the linear system coming from the
closed-form integration of the model equations

M(T )

 c0

c1...
cn−2

+ m(zi, T ) =

 zf2

zf3
...

zfn


with M(T ) nonsingular for T 6= 0

• if zf1 = z01, an intermediate point must be added

• for small T , a fast motion but with large inputs
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WMRs in Chained Form

• unicycle

the change of coordinates

z1 = x

z2 = tan θ

z3 = y

and input transformation

u1 = v1/ cos θ

u2 = v2 cos2 θ

yield

ż1 = v1

ż2 = v2

ż3 = z2v1

other, globally defined transformations are possible

• unicycle with N trailers

an ‘ad hoc’ transformation can be found (it starts using as (x, y) the position of the
last trailer instead of the position of the trailing car)
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• car-like robot (RD)

scaling first u1 by cos θ

ẋ = u1

ẏ = u1 tan θ

θ̇ =
1

`
u1 sec θ tanφ

φ̇ = u2

then setting

z1 = x

z2 =
1

`
sec3 θ tanφ

z3 = tan θ

z4 = y

and

u1 = v1

u2 = −
3

`
v1 sec θ sin2 φ +

1

`
v2 cos3 θ cos2 φ

yields

ż1 = v1

ż2 = v2

ż3 = z2v1

ż4 = z3v1
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Path Planning for the Unicycle

simulation 1: qi = (−1,3,150◦), qf = (0,0,90◦)
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simulation 2: qi = (1,3,150◦), qf = (0,0,90◦)
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FEEDBACK CONTROL OF NONHOLONOMIC SYSTEMS

Basic Problems

• target system: unicycle

– the kinematic models of most single-body WMRs can be reduced to a unicycle

– most of the presented design techniques can be systematically extended to chained-
form transformable systems

• basic motion tasks

(a) point-to-point motion (PTPM)

(a)

start

goal

trajectory

time
t

e   = (e ,e )x y

start

p

(b) trajectory following (TF)
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• PTPM via feedback: posture stabilization

– w.l.o.g., the origin (0,0,0) is assumed to be the desired posture

– a nonsquare (q∈IR3, u∈IR2) state regulation problem

– need to use discontinuous/time-varying feedback in view of Brockett Theorem

– poor, erratic transient performance is often obtained (inefficient, unsafe in the
presence of obstacles)

• TF via feedback: asymptotic tracking

– the desired trajectory qd(t) must be feasible, i.e., must comply with the
nonholonomic constraints

– a square (ep∈IR2, u∈IR2) error zeroing problem

– smooth feedback can be used here because the linear approximation along a
nonvanishing trajectory is controllable (see later)

⇓

asymptotic tracking is easier (and more useful) than
posture stabilization for nonholonomic systems
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Asymptotic Tracking

• a reference output trajectory (xd(t), yd(t)) is given

• control action: feedforward + error feedback

error may be defined w.r.t. the reference output (output error) or the associated
reference state (state error)

• given an initial posture and a desired trajectory (xd(t), yd(t)) there is a unique associated
state trajectory qd(t) = (xd(t), yd(t), θd(t)) which can be computed as

θd(t) = ATAN2(ẏd(t), ẋd(t)) + kπ k = 0,1

• feedforward command generation: we have

ud1(t) = ±
√

ẋ2
d(t) + ẏ2

d(t)

ud2(t) =
ÿd(t)ẋd(t)− ẍd(t)ẏd(t)

ẋ2
d(t) + ẏ2

d(t)
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− the choice of sign for ud1(t) produces forward or backward motion

− to be exactly reproducible, (xd(t), yd(t)) should be twice differentiable

− θd(t) may be computed off-line and used in order to define a state error

− if ud1(t̄ ) = 0 for some t̄ (e.g., at a cusp)

neither ud2(t̄ ) nor θd(t̄ ) are defined

⇒ a continuous motion is guaranteed by keeping the same orientation attained at t̄−
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asymptotic tracking: controllability

linear approximation along qd(t) = (xd(t), yd(t), θd(t))

• define:
ud1, ud2 the inputs associated to qd(t)
q̃ = q − qd the state tracking error
ũ1 = u1 − ud1 and ũ2 = u2 − ud2 the input variations

• the linear approximation along qd(t) is

˙̃q =

 0 0 −ud1 sin θd

0 0 ud1 cos θd

0 0 0

q̃ +

 cos θd 0
sin θd 0

0 1

( ũ1

ũ2

)
a time-varying system

⇒ the N&S controllability condition is that the controllability Gramian is nonsingular

• a simpler analysis can be performed by ‘rotating’ the state tracking error

q̃R =

 cos θd sin θd 0
− sin θd cos θd 0

0 0 1

 q̃

according to the reference orientation θd
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• we get

˙̃qR =

 0 ud2 0
−ud2 0 ud1

0 0 0

 q̃R +

 1 0
0 0
0 1

( ũ1

ũ2

)

• when ud1 and ud2 are constant, the linearization becomes time-invariant and control-
lable, since

(B AB A2B ) =

 1 0 0 0 −u2
d2 ud1ud2

0 0 −ud2 ud1 0 0
0 1 0 0 0 0


has rank 3 provided that either ud1 or ud2 is nonzero

⇒ the kinematic model of the unicycle can be locally asymptotically stabilized by
linear feedback along trajectories consisting of linear or circular paths executed at a
constant velocity

(actually: the same can be proven for any nonvanishing trajectory)
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linear control design

• designed using a (slightly different) linear approximation along the reference trajectory

• define the state tracking error e as(
e1

e2

e3

)
=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

(xd − x
yd − y
θd − θ

)

• use a nonlinear transformation of velocity inputs

u1 = ud1 cos e3 − v1

u2 = ud2 − v2

• the error dynamics becomes

ė=

 0 ud2 0
−ud2 0 0

0 0 0

e +

(
0

sin e3

0

)
ud1 +

 1 0
0 0
0 1

( v1

v2

)

• linearizing around the reference trajectory, one obtains the same linear time-varying
equations as before, now with state e and input (v1, v2)
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• define the ‘linear’ feedback law

v1 = −k1 e1

v2 = −k2 sign(ud1(t)) e2 − k3 e3

with gains

k1 = k3 = 2ζa k2 =
a2 − ud2(t)2

|ud1(t)|

• the closed-loop characteristic polynomial is (λ+2ζa)(λ2+2ζaλ+a2), ζ ∈ (0,1) a > 0

• a convenient gain scheduling is achieved letting

a = a(t) =
√

u2
d2(t) + bu2

d1(t) =⇒ k1 = k3 = 2ζ

√
u2

d2(t) + bu2
d1(t), k2 = b |ud1(t)|

these gains go to zero when the state trajectory stops (and local controllability is lost)

• the actual controls are nonlinear and time-varying

• even if the eigenvalues are constant, local asymptotic stability is not guaranteed as the
system is still time-varying

⇒ a Lyapunov-based analysis is needed
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nonlinear control design

for the previous error dynamics, define

v1 = −k1(ud1(t), ud2(t)) e1

v2 = −k̄2 ud1(t)
sin e3

e3
e2 − k3(ud1(t), ud2(t)) e3

with constant k̄2 > 0 and positive, continuous gain functions k1(·, ·) and k3(·, ·)

theorem if ud1, ud2, u̇d1 u̇d2 are bounded, and if ud1(t) 6→ 0 or ud2(t) 6→ 0 as t →∞, the
above control globally asymptotically stabilizes the origin e = 0

proof based on the Lyapunov function

V =
k̄2

2

(
e2
1 + e2

2

)
+

e2
3

2

nonincreasing along the closed-loop solutions

V̇ = −k1k̄2e
2
1 − k3e

2
3 ≤ 0

⇒ ‖e(t)‖ is bounded, V̇ (t) is uniformly continuous, and V (t) tends to some limit value

⇒ using Barbalat lemma, V̇ (t) tends to zero

⇒ analyzing the system equations, one can show that (u2
d1 + u2

d2)e
2
i (i = 1,2,3) tends to

zero so that, from the persistency of the trajectory, the thesis follows
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dynamic feedback linearization

• define the output as η = (x, y); differentiation w.r.t. time yields

η̇ =

(
ẋ
ẏ

)
=

(
cos θ 0
sin θ 0

)(
u1

u2

)
⇒ cannot recover u2 from first-order differential information

• add an integrator on the linear velocity input

u1 = ξ, ξ̇ = a ⇒ η̇ = ξ

(
cos θ
sin θ

)
new input a is the unicycle linear acceleration

• differentiating further

η̈ =

(
cos θ −ξ sin θ
sin θ ξ cos θ

)(
a
u2

)
• assuming ξ 6= 0, we can let(

a
u2

)
=

(
cos θ −ξ sin θ
sin θ ξ cos θ

)−1(
v1

v2

)
obtaining

η̈ =

(
η̈1

η̈2

)
=

(
v1

v2

)
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• the resulting dynamic compensator is

ξ̇ = v1 cos θ + v2 sin θ

u1 = ξ

u2 =
v2 cos θ − v1 sin θ

ξ

• as the dynamic compensator is 1-dim, we have n + 1 = 4, equal to the total number
of output differentiations

⇒ in the new coordinates

z1 = x

z2 = y

z3 = ẋ = ξ cos θ

z4 = ẏ = ξ sin θ

the system is fully linearized and described by two chains of second-order input-output
integrators

z̈1 = v1

z̈2 = v2
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• the dynamic feedback linearizing controller has a potential singularity at ξ = u1 = 0,
i.e., when the unicycle is not rolling

a singularity in the dynamic extension process is structural for nonholonomic systems

• for the (exactly) linearized system, a globally exponentially stabilizing feedback is

v1 = ẍd(t) + kp1(xd(t)− x) + kd1(ẋd(t)− ẋ)
v2 = ÿd(t) + kp2(yd(t)− y) + kd2(ẏd(t)− ẏ)

with PD gains kpi > 0, kdi > 0, for i = 1,2

– the desired trajectory (xd(t), yd(t)) must be smooth and persistent, i.e.,
u2

d1 = ẋ2
d + ẏ2

d must never go to zero

– cartesian transients are linear

– ẋ and ẏ can be computed as a function ξ and θ; alternatively, one can use estimates
of ẋ and ẏ obtained from odometric measurements

– for exact tracking, one needs q(0) = qd(0) and ξ(0) = ud1(0) (⇒ pure feedforward)
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experiments with SuperMARIO

• a two-wheel differentially-driven vehicle (with caster)

• the aluminum chassis measures 46 × 32 × 30.5 cm (l/w/h) and contains two motors,
transmission elements, electronics, and four 12 V batteries; total weight about 20 kg

• each wheel independently driven by a DC motor (peak torque ≈ 0.56 Nm); each motor
equipped with an encoder (200 pulse/turn) and a gearbox (reduction ratio 20)

• typical nonidealities of electromechanical systems: friction, gear backlash, wheel slip-
page, actuator deadzone and saturation

• due to robot and motor dynamics, discontinuous velocity commands cannot be realized
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two-level control architecture

control

algorithms
radio

modem

communication

boards

PID

microcontroller

power 

electronics

wheel 

motor

left wheel

(incl. gearbox)encoder
∆φL

ωL

right wheel

(incl. gearbox)

ωR

∆φR

as above

ωL ωR,

radio

link

∆φL
∆φR

,

serial

port

PC ROBOT

• control algorithms (with reference generation) are written in C++ and run with a
sampling time of Ts = 50 ms on a remote server

• the PC communicates through a radio modem with the serial communication boards
on the robot

• actual commands are the angular velocities ωR and ωL of right and left wheel (instead
of driving and steering velocities u1 and u2):

u1 =
r (ωR + ωL)

2
u2 =

r (ωR − ωL)

d

with d = axle length, r = wheel radius

• reconstruction of the current robot state based on encoder data (dead reckoning)
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experiments on an eight-shaped trajectory
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• the reference trajectory

xd(t) = sin
t

10
yd(t) = sin

t

20
t ∈ [0, T ]

starts from the origin with θd(0) = π/6 rad

• a full cycle is completed in T = 2π · 20 ≈ 125 s

• the reference initial velocities are

ud1(0) ' 0.1118 m/s, ud2(0) = 0 rad/s.
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experiment 1: the robot initial state is on the reference trajectory

tracking error norm
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experiment 2: the robot initial state is off the reference trajectory
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Posture Stabilization: A Bird’s Eye View

• the main obstruction is the non-smooth stabilizability of WMRs at a point

• two main approaches

– time-varying stabilizers: an exogenous time-varying signal is injected in the
controller

– discontinuous stabilizers: the controller is time invariant but discontinuous at the
origin

• drawbacks: slow convergence (time-varying), oscillatory transient (both)

• improvements

– mixed time-varying/discontinuous stabilizers

– non-Lyapunov, discontinuous stabilizers: through coordinate transformations
that circumvent Brockett’s obstruction or via dynamic feedback linearization

↪→ excellent transient performance!
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