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A bs t r ac t 
Based on the recent results of control of the inverted 
pendulum on a cart, we propose a control law of a 
convey-crane which transports a load suspended on 
a cart from a given point to another, minimizing its 
oscillations. The control law derived is based on the 
passivity property of the system. Some simulations 
are presented. 

1 Introduction. 
The inverted pendulum on a cart has originated 
many contributions, its objective is the stabilization 
of the unstable equilibrium point, see for example 
[l], [2], [8] , [9], [lo] and [13]. Much less effort has 
attracted the problem of asymptotic stabilization of 
the lower equilibrium point. The problem of control 
of a convey crane presented in this paper is: given 
the cart in some initial position, bring it to the ori- 
gin keeping the oscillations of the suspended mass 
as small as possible. The system dynamics corre- 
sponds exactly to the equations of the inverted pen- 
dulum on a cart, but now the point of interest is the 
lower equilibrium point. One possible application of 
this system is a convey-crane carrying a heavy load 
from one starting point to  another keeping oscilla- 
tions small. This system is underactuated and is 
not input-output linearizable, [5] or [6]. The stabil- 
ity analysis is carried out using Lyapunov techniques 
and the stabilization control law is based on the orig- 
inal work of Spong and Praly [12] and further devel- 
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opments in Lozano and Fantoni [9]. The present ap- 
proach takes advantage of the passivity of the model. 
The nonlinearities are not canceled and the control 
law may be interpreted as adding a nonlinear damp- 
ing to the system dynamics. The performance of the 
control law is shown in simulations. 

2 Model. 
Consider the convey-crane system as shown in the 
figure 1, where M is the mass of the cart, m the 
mass of the pendulum with the load of the crane, B 
the angle that the pendulum makes with the vertical 
and 1 the length of the rod. We will assume, as in the 
case of the inverted pendulum, that the masses are 
concentrated at their geometrical center, no mass of 
the pole of constant length 1 . 
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Figure 1: 

The equations may be obtained by standard Euler- 
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Lagrange methods or applying Newton's second law. 
The system dynamics may be described by 

The above model corresponds to the model used 
for the inverted pendulum on a cart, replacing B + 
0 + T see [9] or [7].  Notice that M ( q )  is symmetric 
and positive definite, since the parameters M ,  m, 1 
are positive; 

det[M(q)] = ( M + m )  m12-(-mIcos8)2 
= MmL2+m2L2sin2B>0 

( 5 )  

A second well known property is that the param- 
eters of the model are such that the matrix 

r -a 

is skew-symmetric, property required to establish the 
passivity of the model. Recall [4] that for any skew 
symmetric matrix A ,  zTAz = 0. 

Finally the potential energy associated to the pen- 
dulum, may be defined as P = mgl(1 - cos 0).  With 
this definition, P and G(q) are related by 

3 Passivity of the system. 
The total energy of the system. i.e., the sum of the 
kinetic energy of the two masses and the potential 
energy of the pendulum is given by 

E = -  . (8) 
;2 M(q) ;  + P(q)  

= $qTM(q);+mgl(l  - c o d )  

Using (1)-(4) and (6)-(7) we may calculate the 
derivative of the energy E as: 

Integrating the last relationship from zero to t ,  we 
get 

Which proves that if f is the input and & is the 
output, then the system is passive. Note that for in- 
put force zero and restricting B E [0,27r], the system 

(1) has two subsets of equilibrium; 

( * , O , O , O )  is a set of stable equilibrium points; and 

= ( * , O , r , O )  correspond to a set of un- 

stable equilibrium points. The minimum energy cor- 
responds to the lower position of the pendulum and 
equals zero. 

The control objective is: given the initial con- 

s(O), :(O), B ( O ) ,  i(0) = ( ~ 0 ~ 0 ,  BO, 0) bring 

this state to the origin with minimum of oscillations; 

i.e. change the stable set 

be asymptotically stable equilibrium point around 
some neighborhood of the origin. 

4 Damping oscillations control 
law 

Notice that if = 0 and E = 0 then 

(11) 
1 '  
2 
-mL2e2 = mgl(cos6 - 1) 

this equation has the only solution 8 ,  B = (0,O). 

In order to take advantage of the passivity prop- 
erty of the system, let us propose as a Lyapunov 
function candidate the following: 

( '1 
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The explicit control law defined by (17) is 

(12) 
kE  kX 

V(q, 4) = +%7, 4) + -p2 
where k E ,  kx  are strictly positive constants. The 
Lyapunov function candidate V(q, 4) is positive def- 
inite if we restrict 8 E [0,2r) .  Differentiating V(q, 4) 
and using (9) we get 

From system dynamics 

1 
[M(q)l-l = det ( M  (4 ) )  

l), and from 

where det ( M  ( 4 ) )  = m l 2  (A4 + msin2 8) 
we may get and it is given by 

m12 mlcos8 1 ml cos0 ibl + m 

0 { - [ m1sF8'2 ] - [ mgls in8  ] + [ ;f 1 )  
From the above equation, we get 

.. 1 x =  
M + msin2 8 

(15) 

and 

For sake of simplicity we will consider M = m = 
1 = 1, then we propose the control law such that: 

for some y > 0 which gives us 

i. = -yx2 

1 
f = -- ( k x z  + yh)  

kE 

The control law (19) guarantees V = -yz2 which 
is negative semidefinite, therefore the closed loop is 
stable [7]. 

4.1 Asymptotic Stability Analysis. 
Using the Invariance principle of LaSalle, we will 
prove the following: 

Theorem 1 The closed loop system given by eqva- 
tions (1)  and (19) has the origin asymptotically sta- 
ble .for all points in R4 \{ (0, 0, r, 0)) 

Proof. 

From V = -yz2 negative semidefinite, it remains 
to be proven that the whole state converges to zero. 
This follows from h + 0 which implies x + a which 

we assume different from zero. Then f + ---a dif- 

ferent from zero, which leads to a contradiction, see 
[9] for details. Then II: + 0 and f + 0. Now making 
G, z and f zero in (15) and (16) we get 

kX 
kE 

sin8 (li2 +gcosO\) = 0 

these equations have solutions 8 ,8  = (n r, 0) ( '> 

5 Simulation results 

For comparison reasons, we obtained from (15) and 
(16) a linearized model of the convey crane around 
its lower equilibrium point and with a force f = 0. 

r o  1 0 0 1  r o i  
M 

1M 0 0 -  

model with k = [ 3 3.69 .71 -.87 3 .  Simula- 
tions were performed using SIMULINK, we consid- 
ered M = 1, m = 1, 1 = 1 and g = 9.8 m/s2, and 

the initial conditions are (z(O), h(O), O(O), i ( 0 ) )  = 

(-5,0, -7r/4,0) . The parameters of the control law 
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(19) were ICE = 1, IC, = 3 and y = 4.3. Figure 2 shows 
the angle 8 for the original and linearized models 
with their respective controllers, Figure 3 shows the 
position of the cart z. Figure 4 and Figure 5 show 
the angle 0 and the position of the cart 2, now for 
the initial conditions (-5,0,0,0). In these two cases 
and for different initial conditions, the proposed con- 
troller outperforms the linearized controller, more- 
over stability region for the proposed controller is al- 
most all R4 and stability region for linearized system 
is a neigbhorhood around the origin. 

6 Concluding Remarks 
We presented a control law for the convey crane 
model which is similar to the inverted pendulum on a 
cart, considering the lower equilibrium point as the 
control objective. We proved asymptotic stability 
of the proposed control law based on a Lyapunov 
function which is based on the energy of the sys- 
tem. The convergence analysis was completed using 
the LaSalle’s Invariance Theorem. Simulations show 
that the region of attraction is practically the whole 
state space. 
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Figure 2: Angle Theta for initial state (-5,0,-45’,0) 
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Figure 3: Cart position for initial state (-5,0,-45°,0) 

Figure 4: Angle Theta for initial state (-5,0,0,0) 

Figure 5: Cart position for initial state (-5,0,0,0) 
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