Underactuated Robots

Optimization methods
for planning and control:
Part 1

Giulio Turrisi

SAPIENZA

W&/ UNIVERSITA DI ROMA

introduction

different control techniques exist for fully actuated and underactuated
systems, such as:

1. feedback linearization (FL):

- it can trasform a fully actuated robot in a simple linear system,
easier to control; in the case of underactuation, it linearizes only a
part of the dynamics

- it requires a perfect knowledge of the dynamics, and it may need
a high amount of control effort to cancel nonlinearities

2. energy based control:
- often used in conjunction with FL

- nice theoretical properties, but they require some “work” to be
found

optimization in robotics

* another type of controllers which arise from the solution of an
optimization problem

* they are general, i.e., they work both for fully actuated or
underactuated systems

* they can generate complex behaviors that can be elicited though a
user-defined cost function, e.g.

- distance to a goal
- minimum time

- control effort

general formulation

 goal: we want to find a feedback w(x) that minimizes the cost
function, while satisfying constraints on the input and/or state

min J(x,u)

u(x)

s.t = f(x,u)
Lty = L0

general formulation

 goal: we want to find a feedback w(x) that minimizes the cost
function, while satisfying constraints on the input and/or state

min J(x,u)

input

general formulation

 goal: we want to find a feedback w(x) that minimizes the cost
function, while satisfying constraints on the input and/or state

cost function

general formulation

 goal: we want to find a feedback w(x) that minimizes the cost
function, while satisfying constraints on the input and/or state

J(x,u)

dynamics (in general
nonlinear)

zi::f(;c,u)

initial state

general formulation

 goal: we want to find a feedback w(x) that minimizes the cost
function, while satisfying constraints on the input and/or state

h(x,u) <0 « input and/or state

constraints, such as:
- limit on the inputs
- maximum velocity

outline of part 1

e we will look to some methods that can be used to solve our
optimization problem

- dynamic programming
- Hamilton-Jacobi-Bellman (HJB) equation

- Linear Quadratic Regulator

dynamic programming

a first approach is based on a mathematical optimization method
known as dynamic programming (DP)

for systems with a finite, discrete set of states and actions, DP
represents a numerical algorithm which can compute an optimal
feedback controller u(x)

for continuous systems, DP provides the foundations for the HJB
equation

in general, it requires an additive cost formulation

fo (z,u)dt + g(x(T))

1) f

running cost cost-to-go

10

dynamic programming
 we will start to look into DP for discrete system and finite problem

* DP seeks a solution w(a) from any initial state &y and requires a
discretization of the input and of the state over a finite dimensional
grid

uclU
rec X

e our discrete problem (finite horizon) can be formulated as

min Zk 0 g(xp, ur) + gy ()

Ug, .., un_1 €U

S.T. Tht1 = fd(.:ck,uk)
L1 € X

11

dynamic programming - assumption

 DP exploits the Bellman principle of optimality, which states that in an
optimal sequence of decisions, each subsequence must also be

optimal

e consider a simple graph problem (shortest path)

| 20
running cost » 5

* to find the optimal controller u(x) leading from xto the goal, we
need to find first the optimal cost-to-go for each state

12

dynamic programming - assumption

 DP exploits the Bellman principle of optimality, which states that in an
optimal sequence of decisions, each subsequence must also be

optimal

e consider a simple graph problem (shortest path)

20
(=N
»5 0

* to find the optimal controller u(x) leading from x(to the goal, we
need to find first the optimal cost-to-go for each state

running cost
25

13

dynamic programming - algorithm

DP searches for the optimal cost-to-go J* backward (starting from the
goal) and in an iterative fashion. We optimize for

J*(xp) = min Zk 0 g(wk,uk)

Uug, .., un_1 €U

with the boundary condition (on the final state)
J(xn) = J"(xN) = gn(ZN)

key idea: additive cost and minimization over a single step! For each
discrete state ' we can search just for a single action

J*(x) = melrb 9(@p, up) + J*(f g(@k, uk)))

14

dynamic programming - algorithm

J* is the true unknown optimal cost-to-go that we want to find

* we can start with an initial guess J™ (for example zero) and iterate
until convergence

A

J*(xr) = umiEﬂU 9(zr, ur) + J*(f g(zh, ur))]

starting from the goal where we know the cost-to-go!

15

dynamic programming - algorithm

J* is the true unknown optimal cost-to-go that we want to find

* we can start with an initial guess J™ (for example zero) and iterate
until convergence

A

J*(xr) = umiEﬂU 9(zr, ur) + J*(f g(zh, ur))]

starting from the goal where we know the cost-to-go!

16

dynamic programming - algorithm

J* is the true unknown optimal cost-to-go that we want to find

* we can start with an initial guess J™ (for example zero) and iterate
until convergence

A

J*(xr) = umiEﬂU 9(zr, ur) + J*(f g(zh, ur))]

starting from the goal where we know the cost-to-go!

17

dynamic programming - algorithm

 after each iteration, .J™ approaches the true optimal cost to go
J* — J"

* at convergence, we can obtain the optimal control law u*(x) as

u*(xy) = argem[}ﬂ g(zg, w) + J*(fg(Tr, ur))]

18

dynamic programming - algorithm

after each iteration, ./ * approaches the true optimal cost to go
J* — J"

* at convergence, we can obtain the optimal control law u*(x) as

u*(xy) = argem[}ﬂ g(zg, w) + J*(fg(Tr, ur))]

plugging the optimal control law to the previous equation, we have
that the variation of the cost-to-go depends only on the running cost

A

J*(wk) — j*(fd(a;kvu;{;)) — g(a?]{;,’u;Z)

19

dynamic programming - grid world

* action u € U = [up, down, right, left]

(

1 Tk # x4

* cost function J(x,u) = <

\() T = g4

20

dynamic programming - pendulum

« suppose we want to find a feedback law u(a) to bring a pendulum to
the up equilibrium @,

* thestateis @ = (q, ¢) and the goal is defined as x., = (1, 0)
* we have an input constraint |u| < 1

* the generic g(xx,u) can be taken as the squared distance of T
from x,

LLL L

Iqg+ mgolsing + bg = u
¢ 1N |

21

dynamic programming - pendulum

we start discretizing the state and input space of our robot

g € [-3.14,-3.10, ..., 3.14]
g € [~10,-9.9, ..., 10]
ue[—1,-0.95,...., 1]

and discretizing f() over time

* the smaller is the discretization step used, the more accurate will be
the final solution; obviously at the expense of the time required to
solve the optimization problem

* f,(-)will be a function that will map f, (x, uy) to a successor state
L1 © X

22

dynamic programming - limitations

DP is a powerful optimization technique that has two major
drawbacks that may prevent its use in practice:

- accuracy: this is due to the discretization of the input and state of the
robot

- scalability (curse of dimensionality): as the dimension of the state
and input spaces increases, the computational complexity may
become prohibitive

23

HJB equation

 we can bring DP over a continuous state space and time, obtaining the
Hamilton - Jacobi - Bellman (HJB) equation

* suppose we have a continuous system & = f(:c, u) and a running
additive cost

fo (x,w)dt + g(x(T)) « finite horizon formulation

* the HIJB equation assumes the form of

, & oJ™(t,x
Pt = min [g(@, u) + S5 f (@ w)

(note that JJ* depend also on time)

24

HJB equation - comparison

* DP and HIB are very similar

DP

oJ~™

— min |9(x,u) -

ot

HJB

zb:f(m,u)

0J~"

o 9(x, u)dt + gr(z(T))

= J(x,u)

25

HJB equation - derivation

|”

an “informal” derivation using DP and a discrete time system

we can discretize the final time /" in /N pieces, using the
discretization interval

_ L
0 = N
we can approximate the continuous time system and the cost as

Tr+1 = T + f(Tr, ug)d

J(@,w) = Y0 g(@r, wr)d
the DP equation is

P~

J*(kd, x) = m&n lg(x,u)d + J*((k+ 1)), + f(x,u)d)

26

HJB equation - derivation

P~

J*(kd,x) = mlitn lg(x,u)d + J*((k+ 1)), + f(x,u)d)

* we can expand with Taylor the last term

A~

J*((k+1)d,x+ f(x,u)d =

J*(kS,) - 8(55 | %‘Z:f(az,uﬁ

 and plug it back in the DP equation

7+ (M) = min lo(a w3+ J* (M)

0J* (kd,x . 0J" (kd,x
| E’?t)6 ' éga:)f(mvu)é]

HJB equation - derivation

0 = min [g(ax,u)d +2L022) 5 4 OTAROZ) £ 4y)4)]
U

" @ : " . 0J " (kd,x
g0 = min [g(@,)5 + 50 S (@, w)d]

* we can now divide by 0 and take the limit for 6 — O obtaining

o0J™(t, . . O0J" (t,x
8(75 2 = 9(z,u) - a(.f; L f(z,u))

28

HJB equation - solution

* if the system is control-affine
T = fi(x)+ fo(x)u
and we restrict the running cost to be quadratic in the input u
g(x,u) = g1(x) + v'Ru

we can rewrite the HJB equation as

oJ* (t,x)

or— = min [g1 (@) + u'Ru - D2 (fy (@) + folx)u)]

 we can solve it computing the gradient over u

* — 0J" ,213/
u* = —1tRfo(z) Ja(;)

|

unknown

29

Linear Quadratic Regulator

J* can be found numerically also in the continuous formulation

some problems can even have a closed form solution of the HIB
equation

HIB —— — 227 — min [g(z,u) + G f(z, u)]
U

for linear system the resulting optimal control is called Linear
Quadratic Regulator (LQR)

for nonlinear system, one can solve a LQR problem for the linearized
system at an equilibrium point

this solution is valid only in a neighborhood of the equilibrium point
(more on this later)

30

Linear Quadratic Regulator - derivation

e consider the linear system

x(t) = Ax(t) + Bu(t)

* and the quadratic cost

J(@,u) = 2(T)Qa(T) + [, (@(t) Qu(t) + u(t) Rul(t))dt

2 !

where Q,Q > 0, R > 0 are usually diagonal
control effort

* the HIB equation is

0= mliLn ['Qx + u' Ru + 2L - %‘Z(Aw%—Bu)]

with the boundary condition J*(T',) = =(T)'Q sz (T

31

Linear Quadratic Regulator - derivation

0= mlibn ['Qx + u' Ru A aé]: | %‘Z (Ax + Bu)]

* we can search for a solution of the form J*(¢,x) = '’ P(t)x obtaining

e the HJB becomes

0 = min [#'Qx + v Ru + ' P(t)x + 2x' P(t)(Ax + Bu)|
u

e we can obtain the minimum computing the gradient w.r.t u (being

R non-singular)

2BP(t)x + 2u'R = 0
to be found

l
u=—-R 'B'P(t)x

32

Linear Quadratic Regulator - derivation

e substituting back u in the HIB equation we obtain
0=a'(Pt)+ P(t)A+ A'P(t)— Pt)BR 'B'P(t) + Q)x

* in order to solve the HIB, P(t)should satisfy the continuous time
Riccati equation

P(t)=—(Pt)A+ A'P(t)— P(t)BR 'B'P(t) + Q)
with the boundary condition P(T') = Q¢

e we can solve this numerically (different solvers are available)! Once
P(1) is found, the optimal control law becomes

u*'=—-R 'B'P(t)x

33

Linear Quadratic Regulator - infinite horizon

e we can solve the LQR in the infinite horizon case
J(x,u) = [~ x(t) Qx(t) + u(t) Ru(t)dt

* the cost to go does not depend anymore from time

oJ" __
ot =0

* the Riccati equation becomes the Algebraic Riccati Equation (ARE)
0=—-(PA+A'P-PBR 'B'P+Q)

and the controller becomes a static state feedback

uw = —R 'B'Px

1)

it does not depend on time anymore

34

Linear Quadratic Regulator - linearization

* for a nonlinear system, LQR is usually activated when the system is
near an equilibrium point

* inthis case, since LQR works for linear system, we need to perform a
linearization of the state equations

 we start from the nonlinear system & = f(x,u) and we find an
equilibrium point (., u.) suchthat f(x., u.) =0

 we then do a change of coordinates

r=r—x., U=U— U,

r=a=f(x, u)

Linear Quadratic Regulator - linearization

== f(x, u)

* and expand f(a:', 'u,) with a first-order Taylor approximation

f(Na -2

+ = A% 4+ B

xe,ue(w —) g{,,

T

oue (U — Ue)

* the resulting LQR controller assumes the form of

t=—-R 'BP(x —x.)

36

Linear Quadratic Regulator - Pendubot

for underactuated robots, LQR is activated when the system is near an
equilibrium point

example: Pendubot, 2R robot in the vertical plane
state: o = (q17 q2, Q17 q2)
only the first link g7 is actuated, g2 is passive

we want to swing-up the system from the stable equilibrium down-
down (the two links point downward) o = (0,0, 0,0), to the up-up
equilibrium x. = (7,0,0,0)

design a LQR to work in the neighborhood of @,

37

Linear Quadratic Regulator - Pendubot

e starting from the initial state &y we can apply (for example) an
energy based controller that can bring the system near the equilibrium
point . (inside the basin of attraction)

* then we can switch the controller to LQR to stabilize the system
around &,

* to design the LQR, we need to linearize the Pendubot equations
around . and choose Q > 0,R >0

\

scalar

diagonal 4x4 matrix

38

Linear Quadratic Regulator - Pendubot

* swing-up maneuver with an energy based controller and stabilization
with the LQR

39

Linear Quadratic Regulator - Pendubot

e LQR activated inside the basin of attraction

zo = (3.35,0.2011, —1.0,0.017)

40

Linear Quadratic Regulator - Pendubot

LQR activated outside the basin of attraction - the linearization (and
hence the LQR) is no longer valid

zo = (3.7,—0.2,—2.0,0.017)

41

Linear Quadratic Regulator - Pendubot

* the control effort can be reduced increasing R

18 T T T T T T T T T 4
u* u*
16 +
J b
14 F
12 - 27
= 10 E
g = 1
— —
g 8 g
& £ ol
g 4 g]
- o
4k -1 E
2L
2
]
_2 1 1 1 1 1 1 1 1 1 —:i i i 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Time (s) Time (s)

42

Linear Quadratic Regulator - Pendubot

e the basin of attraction (the validity of the LQR controller) changes
w.r.t. the chosen weights), R

Position (rad)
Position (rad)

g1
— {2
_2 L i i i L I L ! ! _9 i I i L 1 ! !
0 01 02 03 04 05 06 07 08 09 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s) Time (s)

43

Linear Quadratic Regulator - Pendubot

e equilibrium up-up

44

Linear Quadratic Regulator - Pendubot

e equilibrium down-up

45

Linear Quadratic Regulator - Quadrotor

* hovering

46

summary

some methods for finding a control law u*(x) that is optimal w.r.t to
a cost function

DP is only applicable on small, finite and discrete state and input
spaces

the HIB equation is the extension of the DP equation for state - input
space and time

the Riccati equation is a special solution of the HIB equation for linear
system; the resulting LQR can be used as a control law for nonlinear
systems, but it only works in the vicinity of the linearization point

47

