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introduction

• different control techniques exist for fully actuated and underactuated 
systems, such as:

1. feedback linearization (FL): 

- it can trasform a fully actuated robot in a simple linear system, 
easier to control; in the case of underactuation, it linearizes only a 
part of the dynamics

- it requires a perfect knowledge of the dynamics, and it may need
a high amount of control effort to cancel nonlinearities

2. energy based control: 

- often used in conjunction with FL

- nice theoretical properties, but they require some “work” to be 
found
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optimization in robotics

• another type of controllers which arise from the solution of an 
optimization problem

• they are general, i.e., they work both for fully actuated or 
underactuated systems

• they can generate complex behaviors that can be elicited though a 
user-defined cost function, e.g.

- distance to a goal

- minimum time

- control effort
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general formulation 

• goal: we want to find a feedback             that minimizes the cost 
function, while satisfying constraints on the input and/or state



5

general formulation 

• goal: we want to find a feedback             that minimizes the cost 
function, while satisfying constraints on the input and/or state

input



6

general formulation 

• goal: we want to find a feedback             that minimizes the cost 
function, while satisfying constraints on the input and/or state

cost function



general formulation 

• goal: we want to find a feedback             that minimizes the cost 
function, while satisfying constraints on the input and/or state

initial state

dynamics (in general 
nonlinear)
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general formulation 

• goal: we want to find a feedback             that minimizes the cost 
function, while satisfying constraints on the input and/or state

input and/or state 
constraints, such as:
- limit on the inputs
- maximum velocity   
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outline of part 1

• we will look to some methods that can be used to solve our 
optimization problem  

- dynamic programming 

- Hamilton-Jacobi-Bellman (HJB) equation

- Linear Quadratic Regulator
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dynamic programming

• a first approach is based on a mathematical optimization method 
known as dynamic programming (DP)

• for systems with a finite, discrete set of states and actions, DP 
represents a numerical algorithm which can compute an optimal 
feedback controller

• for continuous systems, DP provides the foundations for the HJB 
equation

• in general, it requires an additive cost formulation

running cost cost-to-go
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dynamic programming 

• we will start to look into DP for discrete system and finite problem

• DP seeks a solution            from any initial state and requires a 
discretization of the input and of the state over a finite dimensional 
grid 

• our discrete problem (finite horizon) can be formulated as
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dynamic programming - assumption

• DP exploits the Bellman principle of optimality, which states that in an 
optimal sequence of decisions, each subsequence must also be 
optimal

• consider a simple graph problem (shortest path)

• to find the optimal controller             leading from       to the goal, we 
need to find first the optimal cost-to-go for each state

running cost
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dynamic programming - algorithm

• DP searches for the optimal cost-to-go       backward (starting from the 
goal) and in an iterative fashion. We optimize for

with the boundary condition (on the final state)

• key idea: additive cost and minimization over a single step! For each
discrete state we can search just for a single action
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dynamic programming - algorithm 

• is the true unknown optimal cost-to-go that we want to find 

• we can start with an initial guess        (for example zero) and iterate 
until convergence

starting from the goal where we know the cost-to-go!  
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dynamic programming - algorithm 
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dynamic programming - algorithm 

• after each iteration,       approaches the true optimal cost to go

• at convergence, we can obtain the optimal control law               as  
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dynamic programming - algorithm 

• after each iteration,       approaches the true optimal cost to go

• at convergence, we can obtain the optimal control law               as  

• plugging the optimal control law to the previous equation, we have 
that the variation of the cost-to-go depends only on the running cost
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dynamic programming - grid world 

• action                      [up, down, right, left]

• cost function                   
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dynamic programming - pendulum

• suppose we want to find a feedback law            to bring a pendulum to 
the up equilibrium

• the state is                       and the goal is defined as   

• we have an input constraint  

• the generic                       can be taken as the squared distance of         
from



22

dynamic programming - pendulum 

• we start discretizing the state and input space of our robot

and discretizing           over time 

• the smaller is the discretization step used, the more accurate will be 
the final solution; obviously at the expense of the time required to 
solve the optimization problem

• will be a function that will map                        to a successor state                   
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dynamic programming - limitations

• DP is a powerful optimization technique that has two major 
drawbacks that may prevent its use in practice:

- accuracy: this is due to the discretization of the input and state of the 
robot

- scalability (curse of dimensionality): as the dimension of the state 
and input spaces increases, the computational complexity may 
become prohibitive
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HJB equation

• we can bring DP over a continuous state space and time, obtaining the 
Hamilton - Jacobi - Bellman (HJB) equation

• suppose we have a continuous system                            and a running 
additive cost

• the HJB equation assumes the form of

(note that       depend also on time)

finite horizon formulation
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HJB equation - comparison

• DP and HJB are very similar 

DP HJB
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HJB equation - derivation

• an “informal” derivation using DP and a discrete time system

• we can discretize the final time       in        pieces, using the 
discretization interval  

• we can approximate the continuous time system and the cost as

• the DP equation is



27

HJB equation - derivation 

• we can expand with Taylor the last term

• and plug it back in the DP equation
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HJB equation - derivation 

• we can now divide by     and take the limit for               obtaining
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HJB equation - solution

• if the system is control-affine

and we restrict the running cost to be quadratic in the input

we can rewrite the HJB equation as

• we can solve it computing the gradient over    

unknown
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Linear Quadratic Regulator

• can be found numerically also in the continuous formulation

• some problems can even have a closed form solution of the HJB 
equation

• for linear system the resulting optimal control is called Linear 
Quadratic Regulator (LQR)

• for nonlinear system, one can solve a LQR problem for the linearized 
system at an equilibrium  point

• this solution is valid only in a neighborhood of the equilibrium point 
(more on this later)

HJB
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Linear Quadratic Regulator - derivation

• consider the linear system

• and the quadratic cost

where                                    are usually diagonal

• the HJB equation is 

with the boundary condition

control effort
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Linear Quadratic Regulator - derivation 

• we can search for a solution of the form                                      obtaining

• the HJB becomes

• we can obtain the minimum computing the gradient w.r.t     (being             
d  non-singular)

to be found
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Linear Quadratic Regulator - derivation 

• substituting  back     in the HJB equation we obtain

• in order to solve the HJB,          should satisfy the continuous time 
Riccati equation  

with the boundary condition  

• we can solve this numerically (different solvers are available)! Once     
cccccis found, the optimal control law becomes
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Linear Quadratic Regulator - infinite horizon

• we can solve the LQR in the infinite horizon case

• the cost to go does not depend anymore from time 

• the Riccati equation becomes the Algebraic Riccati Equation (ARE)

and the controller becomes a static state feedback

it does not depend on time anymore
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Linear Quadratic Regulator - linearization

• for a nonlinear system, LQR is usually activated when the system is 
near an equilibrium point 

• in this case, since LQR works for linear system, we need to perform a 
linearization of the state equations

• we start from the nonlinear system                            and we find an 
equilibrium point                    such that 

• we then do a change of coordinates     
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Linear Quadratic Regulator - linearization 

• and expand                  with a first-order Taylor approximation

• the resulting LQR controller assumes the form of 
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Linear Quadratic Regulator - Pendubot

• for underactuated robots, LQR is activated when the system is near an 
equilibrium point 

• example: Pendubot, 2R robot in the vertical plane

• state:  

• only the first link is actuated,       is passive 

• we want to swing-up the system from the stable equilibrium down-
down (the two links point downward)                                , to the up-up 
equilibrium  

• design a LQR to work in the neighborhood of  
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Linear Quadratic Regulator - Pendubot

• starting from the initial state         we can apply (for example) an 
energy based controller that can bring the system near the equilibrium 
point        (inside the basin of attraction) 

• then we can switch the controller to LQR to stabilize the system 
around 

• to design the LQR, we need to linearize the Pendubot equations 
around         and choose 

diagonal 4x4 matrix

scalar 
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Linear Quadratic Regulator - Pendubot

• swing-up maneuver with an energy based controller and stabilization 
with the LQR 
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Linear Quadratic Regulator - Pendubot

• LQR activated inside the basin of attraction
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Linear Quadratic Regulator - Pendubot

• LQR activated outside the basin of attraction - the linearization (and 
hence the LQR) is no longer valid
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Linear Quadratic Regulator - Pendubot

• the control effort can be reduced increasing
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Linear Quadratic Regulator - Pendubot

• the basin of attraction (the validity of the LQR controller) changes 
w.r.t. the chosen weights          
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Linear Quadratic Regulator - Pendubot

• equilibrium up-up 
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Linear Quadratic Regulator - Pendubot

• equilibrium down-up 
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Linear Quadratic Regulator - Quadrotor

• hovering 
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summary

• some methods for finding a control law               that is optimal w.r.t to 
a cost function

• DP is only applicable on small, finite and discrete state and input 
spaces 

• the HJB equation is the extension of the DP equation for state - input 
space and time

• the Riccati equation is a special solution of the HJB equation for linear 
system; the resulting LQR can be used as a control law for nonlinear
systems, but it only works in the vicinity of the linearization point


