
Underactuated Robots

Optimization methods
for planning and control:

Part 1
Giulio Turrisi

2

introduction

• different control techniques exist for fully actuated and underactuated
systems, such as:

1. feedback linearization (FL):

- it can trasform a fully actuated robot in a simple linear system,
easier to control; in the case of underactuation, it linearizes only a
part of the dynamics

- it requires a perfect knowledge of the dynamics, and it may need
a high amount of control effort to cancel nonlinearities

2. energy based control:

- often used in conjunction with FL

- nice theoretical properties, but they require some “work” to be
found

3

optimization in robotics

• another type of controllers which arise from the solution of an
optimization problem

• they are general, i.e., they work both for fully actuated or
underactuated systems

• they can generate complex behaviors that can be elicited though a
user-defined cost function, e.g.

- distance to a goal

- minimum time

- control effort

4

general formulation

• goal: we want to find a feedback that minimizes the cost
function, while satisfying constraints on the input and/or state

5

general formulation

• goal: we want to find a feedback that minimizes the cost
function, while satisfying constraints on the input and/or state

input

6

general formulation

• goal: we want to find a feedback that minimizes the cost
function, while satisfying constraints on the input and/or state

cost function

general formulation

• goal: we want to find a feedback that minimizes the cost
function, while satisfying constraints on the input and/or state

initial state

dynamics (in general
nonlinear)

7

general formulation

• goal: we want to find a feedback that minimizes the cost
function, while satisfying constraints on the input and/or state

input and/or state
constraints, such as:
- limit on the inputs
- maximum velocity

8

9

outline of part 1

• we will look to some methods that can be used to solve our
optimization problem

- dynamic programming

- Hamilton-Jacobi-Bellman (HJB) equation

- Linear Quadratic Regulator

10

dynamic programming

• a first approach is based on a mathematical optimization method
known as dynamic programming (DP)

• for systems with a finite, discrete set of states and actions, DP
represents a numerical algorithm which can compute an optimal
feedback controller

• for continuous systems, DP provides the foundations for the HJB
equation

• in general, it requires an additive cost formulation

running cost cost-to-go

11

dynamic programming

• we will start to look into DP for discrete system and finite problem

• DP seeks a solution from any initial state and requires a
discretization of the input and of the state over a finite dimensional
grid

• our discrete problem (finite horizon) can be formulated as

12

dynamic programming - assumption

• DP exploits the Bellman principle of optimality, which states that in an
optimal sequence of decisions, each subsequence must also be
optimal

• consider a simple graph problem (shortest path)

• to find the optimal controller leading from to the goal, we
need to find first the optimal cost-to-go for each state

running cost

13

dynamic programming - assumption

• DP exploits the Bellman principle of optimality, which states that in an
optimal sequence of decisions, each subsequence must also be
optimal

• consider a simple graph problem (shortest path)

• to find the optimal controller leading from to the goal, we
need to find first the optimal cost-to-go for each state

running cost

20

0
25

17

25

14

dynamic programming - algorithm

• DP searches for the optimal cost-to-go backward (starting from the
goal) and in an iterative fashion. We optimize for

with the boundary condition (on the final state)

• key idea: additive cost and minimization over a single step! For each
discrete state we can search just for a single action

15

dynamic programming - algorithm

• is the true unknown optimal cost-to-go that we want to find

• we can start with an initial guess (for example zero) and iterate
until convergence

starting from the goal where we know the cost-to-go!

0
0

0

0

0

16

dynamic programming - algorithm

• is the true unknown optimal cost-to-go that we want to find

• we can start with an initial guess (for example zero) and iterate
until convergence

starting from the goal where we know the cost-to-go!

20

25

17

0

17

dynamic programming - algorithm

• is the true unknown optimal cost-to-go that we want to find

• we can start with an initial guess (for example zero) and iterate
until convergence

starting from the goal where we know the cost-to-go!

25 0

20

25

17

18

dynamic programming - algorithm

• after each iteration, approaches the true optimal cost to go

• at convergence, we can obtain the optimal control law as

25 0

20

25

17

19

dynamic programming - algorithm

• after each iteration, approaches the true optimal cost to go

• at convergence, we can obtain the optimal control law as

• plugging the optimal control law to the previous equation, we have
that the variation of the cost-to-go depends only on the running cost

20

dynamic programming - grid world

• action [up, down, right, left]

• cost function

21

dynamic programming - pendulum

• suppose we want to find a feedback law to bring a pendulum to
the up equilibrium

• the state is and the goal is defined as

• we have an input constraint

• the generic can be taken as the squared distance of
from

22

dynamic programming - pendulum

• we start discretizing the state and input space of our robot

and discretizing over time

• the smaller is the discretization step used, the more accurate will be
the final solution; obviously at the expense of the time required to
solve the optimization problem

• will be a function that will map to a successor state

23

dynamic programming - limitations

• DP is a powerful optimization technique that has two major
drawbacks that may prevent its use in practice:

- accuracy: this is due to the discretization of the input and state of the
robot

- scalability (curse of dimensionality): as the dimension of the state
and input spaces increases, the computational complexity may
become prohibitive

24

HJB equation

• we can bring DP over a continuous state space and time, obtaining the
Hamilton - Jacobi - Bellman (HJB) equation

• suppose we have a continuous system and a running
additive cost

• the HJB equation assumes the form of

(note that depend also on time)

finite horizon formulation

25

HJB equation - comparison

• DP and HJB are very similar

DP HJB

26

HJB equation - derivation

• an “informal” derivation using DP and a discrete time system

• we can discretize the final time in pieces, using the
discretization interval

• we can approximate the continuous time system and the cost as

• the DP equation is

27

HJB equation - derivation

• we can expand with Taylor the last term

• and plug it back in the DP equation

28

HJB equation - derivation

• we can now divide by and take the limit for obtaining

29

HJB equation - solution

• if the system is control-affine

and we restrict the running cost to be quadratic in the input

we can rewrite the HJB equation as

• we can solve it computing the gradient over

unknown

30

Linear Quadratic Regulator

• can be found numerically also in the continuous formulation

• some problems can even have a closed form solution of the HJB
equation

• for linear system the resulting optimal control is called Linear
Quadratic Regulator (LQR)

• for nonlinear system, one can solve a LQR problem for the linearized
system at an equilibrium point

• this solution is valid only in a neighborhood of the equilibrium point
(more on this later)

HJB

31

Linear Quadratic Regulator - derivation

• consider the linear system

• and the quadratic cost

where are usually diagonal

• the HJB equation is

with the boundary condition

control effort

32

Linear Quadratic Regulator - derivation

• we can search for a solution of the form obtaining

• the HJB becomes

• we can obtain the minimum computing the gradient w.r.t (being
d non-singular)

to be found

33

Linear Quadratic Regulator - derivation

• substituting back in the HJB equation we obtain

• in order to solve the HJB, should satisfy the continuous time
Riccati equation

with the boundary condition

• we can solve this numerically (different solvers are available)! Once
cccccis found, the optimal control law becomes

34

Linear Quadratic Regulator - infinite horizon

• we can solve the LQR in the infinite horizon case

• the cost to go does not depend anymore from time

• the Riccati equation becomes the Algebraic Riccati Equation (ARE)

and the controller becomes a static state feedback

it does not depend on time anymore

35

Linear Quadratic Regulator - linearization

• for a nonlinear system, LQR is usually activated when the system is
near an equilibrium point

• in this case, since LQR works for linear system, we need to perform a
linearization of the state equations

• we start from the nonlinear system and we find an
equilibrium point such that

• we then do a change of coordinates

36

Linear Quadratic Regulator - linearization

• and expand with a first-order Taylor approximation

• the resulting LQR controller assumes the form of

37

Linear Quadratic Regulator - Pendubot

• for underactuated robots, LQR is activated when the system is near an
equilibrium point

• example: Pendubot, 2R robot in the vertical plane

• state:

• only the first link is actuated, is passive

• we want to swing-up the system from the stable equilibrium down-
down (the two links point downward) , to the up-up
equilibrium

• design a LQR to work in the neighborhood of

38

Linear Quadratic Regulator - Pendubot

• starting from the initial state we can apply (for example) an
energy based controller that can bring the system near the equilibrium
point (inside the basin of attraction)

• then we can switch the controller to LQR to stabilize the system
around

• to design the LQR, we need to linearize the Pendubot equations
around and choose

diagonal 4x4 matrix

scalar

39

Linear Quadratic Regulator - Pendubot

• swing-up maneuver with an energy based controller and stabilization
with the LQR

40

Linear Quadratic Regulator - Pendubot

• LQR activated inside the basin of attraction

41

Linear Quadratic Regulator - Pendubot

• LQR activated outside the basin of attraction - the linearization (and
hence the LQR) is no longer valid

42

Linear Quadratic Regulator - Pendubot

• the control effort can be reduced increasing

43

Linear Quadratic Regulator - Pendubot

• the basin of attraction (the validity of the LQR controller) changes
w.r.t. the chosen weights

44

Linear Quadratic Regulator - Pendubot

• equilibrium up-up

45

Linear Quadratic Regulator - Pendubot

• equilibrium down-up

46

Linear Quadratic Regulator - Quadrotor

• hovering

47

summary

• some methods for finding a control law that is optimal w.r.t to
a cost function

• DP is only applicable on small, finite and discrete state and input
spaces

• the HJB equation is the extension of the DP equation for state - input
space and time

• the Riccati equation is a special solution of the HJB equation for linear
system; the resulting LQR can be used as a control law for nonlinear
systems, but it only works in the vicinity of the linearization point

