Optimization methods for planning and control: Part 1

Giulio Turrisi

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

introduction

 different control techniques exist for fully actuated and underactuated systems, such as:

1. feedback linearization (FL):

- it can trasform a fully actuated robot in a simple linear system, easier to control; in the case of underactuation, it linearizes only a part of the dynamics
- it requires a perfect knowledge of the dynamics, and it may need a high amount of control effort to cancel nonlinearities

2. energy based control:

- often used in conjunction with FL
- nice theoretical properties, but they require some "work" to be found

optimization in robotics

- another type of controllers which arise from the solution of an optimization problem
- they are general, i.e., they work both for fully actuated or underactuated systems
- they can generate complex behaviors that can be elicited though a user-defined cost function, e.g.
 - distance to a goal
 - minimum time
 - control effort

$$egin{array}{ll} \min & J(oldsymbol{x}, oldsymbol{u}) \ s.t. & oldsymbol{\dot{x}} = oldsymbol{f}(oldsymbol{x}, oldsymbol{u}) \ oldsymbol{x}_{t_0} = oldsymbol{x}_0 \ oldsymbol{h}(oldsymbol{x}, oldsymbol{u}) \leq 0 \end{array}$$

$$egin{array}{ll} \min & J(oldsymbol{x},oldsymbol{u}) \ oldsymbol{u}(oldsymbol{x}) & oldsymbol{\dot{x}} = oldsymbol{f}(oldsymbol{x},oldsymbol{u}) \ oldsymbol{x}_{t_0} = oldsymbol{x}_0 \ oldsymbol{h}(oldsymbol{x},oldsymbol{u}) \leq 0 \end{array}$$

$$egin{array}{lll} \min & J(oldsymbol{x},oldsymbol{u}) \ s.t. & oldsymbol{x} = oldsymbol{f}(oldsymbol{x},oldsymbol{u}) \ & oldsymbol{cost} = oldsymbol{f}(oldsymbol{x},oldsymbol{u}) \ & oldsymbol{cost} = oldsymbol{f}(oldsymbol{x},oldsymbol{u}) \ & oldsymbol{cost} = oldsymbol{h}(oldsymbol{x},oldsymbol{u}) \ & oldsymbol{cost} = oldsymbol{h}(oldsymbol{x},oldsymbol{u}) \ & oldsymbol{h}(oldsymbol{x},oldsymbol{h}(oldsymbol{h}(oldsymbol{x},oldsymbol{h}(oldsymbol{x},oldsymbol{h}(oldsymbol{h}(oldsymbol{h}(oldsymbol{$$

$$egin{array}{lll} egin{array}{lll} egin{arra$$

• goal: we want to find a feedback $m{u}(m{x})$ that minimizes the cost function, while satisfying constraints on the input and/or state

$$egin{aligned} egin{aligned} oldsymbol{min} & J(oldsymbol{x}, oldsymbol{u}) \ s.t. & oldsymbol{\dot{x}} = oldsymbol{f}(oldsymbol{x}, oldsymbol{u}) \ oldsymbol{x}_{t_0} = oldsymbol{x}_0 \ oldsymbol{h}(oldsymbol{x}, oldsymbol{u}) \leq 0 \ & oldsymbol{h}(oldsymbol{x}) \ & \hbox{input and/or state} \ & \hbox{constraints, such as:} \ & \hbox{- limit on the inputs} \end{aligned}$$

maximum velocity

outline of part 1

- we will look to some methods that can be used to solve our optimization problem
 - dynamic programming
 - Hamilton-Jacobi-Bellman (HJB) equation
 - Linear Quadratic Regulator

dynamic programming

- a first approach is based on a mathematical optimization method known as dynamic programming (DP)
- for systems with a finite, discrete set of states and actions, DP represents a numerical algorithm which can compute an optimal feedback controller $m{u}(m{x})$
- for continuous systems, DP provides the foundations for the HJB equation
- in general, it requires an additive cost formulation

$$J(\boldsymbol{x}, \boldsymbol{u}) = \int_0^T g(\boldsymbol{x}, \boldsymbol{u}) dt + g(\boldsymbol{x}(T))$$

running cost cost-to-go

dynamic programming

- we will start to look into DP for discrete system and finite problem
- DP seeks a solution $m{u}(m{x})$ from any initial state $m{x}_0$ and requires a discretization of the input and of the state over a finite dimensional grid

our discrete problem (finite horizon) can be formulated as

$$egin{aligned} \min & \sum_{k=0}^{N-1} g(oldsymbol{x}_k, oldsymbol{u}_k) + g_N(oldsymbol{x}_N) \ s.t. & oldsymbol{x}_{k+1} = oldsymbol{f}_d(oldsymbol{x}_k, oldsymbol{u}_k) \ oldsymbol{x}_{k+1} \in oldsymbol{X} \end{aligned}$$

dynamic programming - assumption

- DP exploits the Bellman principle of optimality, which states that in an optimal sequence of decisions, each subsequence must also be optimal
- consider a simple graph problem (shortest path)

• to find the optimal controller $m{u}(m{x})$ leading from $m{x}_0$ to the goal, we need to find first the optimal cost-to-go for each state

dynamic programming - assumption

- DP exploits the Bellman principle of optimality, which states that in an optimal sequence of decisions, each subsequence must also be optimal
- consider a simple graph problem (shortest path)

• to find the optimal controller $m{u}(m{x})$ leading from $m{x}_0$ to the goal, we need to find first the optimal cost-to-go for each state

• DP searches for the optimal cost-to-go J^st backward (starting from the goal) and in an iterative fashion. We optimize for

$$J^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_0,...,\boldsymbol{u}_{N-1} \in \boldsymbol{U}} \sum_{k=0}^{N-1} g(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

with the boundary condition (on the final state)

$$J(\boldsymbol{x}_N) = J^*(\boldsymbol{x}_N) = g_N(\boldsymbol{x}_N)$$

• key idea: additive cost and minimization over a single step! For each discrete state $m{x}_k$ we can search just for a single action

$$J^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_k \in \boldsymbol{U}} [g(\boldsymbol{x}_k, \boldsymbol{u}_k) + J^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k))]$$

- J^* is the true unknown optimal cost-to-go that we want to find
- we can start with an initial guess \hat{J}^* (for example zero) and iterate until convergence

$$\hat{J}^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_k \in \boldsymbol{U}} [g(\boldsymbol{x}_k, \boldsymbol{u}_k) + \hat{J}^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k))]$$

starting from the goal where we know the cost-to-go!

- J^* is the true unknown optimal cost-to-go that we want to find
- we can start with an initial guess \hat{J}^* (for example zero) and iterate until convergence

$$\hat{J}^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_k \in \boldsymbol{U}} [g(\boldsymbol{x}_k, \boldsymbol{u}_k) + \hat{J}^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k))]$$

starting from the goal where we know the cost-to-go!

- J^* is the true unknown optimal cost-to-go that we want to find
- we can start with an initial guess \hat{J}^* (for example zero) and iterate until convergence

$$\hat{J}^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_k \in \boldsymbol{U}} [g(\boldsymbol{x}_k, \boldsymbol{u}_k) + \hat{J}^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k))]$$

starting from the goal where we know the cost-to-go!

ullet after each iteration, \hat{J}^* approaches the true optimal cost to go

$$\hat{J}^* o J^*$$

• at convergence, we can obtain the optimal control law $oldsymbol{u}^*(oldsymbol{x})$ as

$$\boldsymbol{u}^*(\boldsymbol{x}_k) = \underset{\boldsymbol{u}_k \in \boldsymbol{U}}{arg \min} \left[g(\boldsymbol{x}_k, \boldsymbol{u}_k) + \hat{J}^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k)) \right]$$

ullet after each iteration, \hat{J}^* approaches the true optimal cost to go

$$\hat{J}^* o J^*$$

ullet at convergence, we can obtain the optimal control law $oldsymbol{u}^*(oldsymbol{x})$ as

$$\mathbf{u}^*(\mathbf{x}_k) = \underset{\mathbf{u}_k \in \mathbf{U}}{arg \min} \left[g(\mathbf{x}_k, \mathbf{u}_k) + \hat{J}^*(\mathbf{f}_d(\mathbf{x}_k, \mathbf{u}_k)) \right]$$

 plugging the optimal control law to the previous equation, we have that the variation of the cost-to-go depends only on the running cost

$$\hat{J}^*(\boldsymbol{x}_k) - \hat{J}^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k^*)) = g(\boldsymbol{x}_k, \boldsymbol{u}_k^*)$$

dynamic programming - grid world

• action $u \in \boldsymbol{U} = [\mathsf{up}, \mathsf{down}, \mathsf{right}, \mathsf{left}]$

• cost function
$$J(m{x},m{u}) = egin{cases} 1 & m{x}_k
eq m{x}_g \ 0 & m{x}_k = m{x}_g \end{cases}$$

		x_g

dynamic programming - pendulum

- suppose we want to find a feedback law $u(m{x})$ to bring a pendulum to the up equilibrium $m{x}_e$
- the state is $m{x}=(q,\dot{q})$ and the goal is defined as $m{x}_e=(\pi,0)$
- we have an input constraint $|u| \leq 1$
- the generic $g(m{x}_k, m{u}_k)$ can be taken as the squared distance of $m{x}_k$ from $m{x}_e$

$$I\ddot{q} + mg_0 l \sin q + b\dot{q} = u$$

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, u)$$

dynamic programming - pendulum

we start discretizing the state and input space of our robot

$$q \in [-3.14, -3.10,, 3.14]$$

 $\dot{q} \in [-10, -9.9,, 10]$
 $u \in [-1, -0.95,, 1]$

and discretizing $f(\cdot)$ over time

- the smaller is the discretization step used, the more accurate will be the final solution; obviously at the expense of the time required to solve the optimization problem
- $m{f}_d(\cdot)$ will be a function that will map $m{f}_k(m{x}_k,u_k)$ to a successor state $m{x}_{k+1} \in m{X}$

dynamic programming - limitations

- DP is a powerful optimization technique that has two major drawbacks that may prevent its use in practice:
 - accuracy: this is due to the discretization of the input and state of the robot
 - scalability (curse of dimensionality): as the dimension of the state and input spaces increases, the computational complexity may become prohibitive

HJB equation

- we can bring DP over a continuous state space and time, obtaining the Hamilton - Jacobi - Bellman (HJB) equation
- suppose we have a continuous system $\dot{m{x}} = m{f}(m{x}, m{u})$ and a running additive cost

$$J(\boldsymbol{x},\boldsymbol{u}) = \int_0^T g(\boldsymbol{x},\boldsymbol{u}) dt + g(\boldsymbol{x}(T))$$
 finite horizon formulation

the HJB equation assumes the form of

$$-\frac{\partial J^*(t, \boldsymbol{x})}{\partial t} = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) + \frac{\partial J^*(t, \boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \right]$$

(note that J^* depend also on time)

HJB equation - comparison

DP and HJB are very similar

DP

$$oldsymbol{x}_{k+1} = oldsymbol{f}_d(oldsymbol{x}_k, oldsymbol{u}_k)$$

$$\sum_{k=0}^{N-1} g(\boldsymbol{x}_k, \boldsymbol{u}_k) + g_N(\boldsymbol{x}_N)$$

$$J^*(\boldsymbol{x}_k) = \min_{\boldsymbol{u}_k} [g(\boldsymbol{x}_k, \boldsymbol{u}_k)] + J^*(\boldsymbol{f}_d(\boldsymbol{x}_k, \boldsymbol{u}_k))]$$

HJB

$$\dot{m{x}} = m{f}(m{x},m{u})$$

$$\sum_{k=0}^{N-1} g(\boldsymbol{x}_k, \boldsymbol{u}_k) + g_N(\boldsymbol{x}_N) \qquad \int_0^T g(\boldsymbol{x}, \boldsymbol{u}) dt + g_T(\boldsymbol{x}(T))$$

$$-rac{\partial J^*}{\partial t} = \min_{m{u}} \left[g(m{x}, m{u}) + rac{\partial J^*}{\partial m{x}} m{f}(m{x}, m{u})
ight]$$

HJB equation - derivation

- an "informal" derivation using DP and a discrete time system
- ullet we can discretize the final time T in N pieces, using the discretization interval

$$\delta = \frac{T}{N}$$

we can approximate the continuous time system and the cost as

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{f}(\boldsymbol{x}_k, \boldsymbol{u}_k)\delta$$

$$J(\boldsymbol{x}, \boldsymbol{u}) = \sum_{k=0}^{N} g(\boldsymbol{x}_k, \boldsymbol{u}_k) \delta$$

the DP equation is

$$\tilde{J}^*(k\delta, \boldsymbol{x}) = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u})\delta + J^*((k+1)\delta, \boldsymbol{x} + \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})\delta) \right]$$

HJB equation - derivation

$$\tilde{J}^*(k\delta, \boldsymbol{x}) = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u})\delta + J^*((k+1)\delta, \boldsymbol{x} + \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})\delta) \right]$$

we can expand with Taylor the last term

$$\tilde{J}^*((k+1)\delta, \boldsymbol{x} + \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})\delta =$$

$$\tilde{J}^*(k\delta, \boldsymbol{x}) + \frac{\partial \tilde{J}^*}{\partial t}\delta + \frac{\partial \tilde{J}^*}{\partial \boldsymbol{x}}\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u})\delta$$

and plug it back in the DP equation

$$\begin{split} \tilde{J}^*(k\delta, \boldsymbol{x}) &= \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) \delta + \tilde{J}^*(k\delta, \boldsymbol{x}) \right. \\ &+ \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial t} \delta + \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \delta \right] \end{split}$$

HJB equation - derivation

$$0 = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) \delta + \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial t} \delta + \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \delta \right]$$

$$- \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial t} \delta = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) \delta + \frac{\partial J^*(k\delta, \boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \delta \right]$$

ullet we can now divide by δ and take the limit for $\delta o 0$ obtaining

$$-\frac{\partial J^*(t, \boldsymbol{x})}{\partial t} = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) + \frac{\partial J^*(t, \boldsymbol{x})}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \right]$$

HJB equation - solution

if the system is control-affine

$$\dot{x} = f_1(x) + f_2(x)u$$

and we restrict the running cost to be quadratic in the input $oldsymbol{u}$

$$g(\boldsymbol{x}, \boldsymbol{u}) = g_1(\boldsymbol{x}) + \boldsymbol{u}' \boldsymbol{R} \boldsymbol{u}$$

we can rewrite the HJB equation as

$$-\frac{\partial J^*(t, \boldsymbol{x})}{\partial t} = \min_{\boldsymbol{u}} \left[g_1(\boldsymbol{x}) + \boldsymbol{u}' \boldsymbol{R} \boldsymbol{u} + \frac{\partial J^*(t, \boldsymbol{x})}{\partial \boldsymbol{x}} (\boldsymbol{f}_1(\boldsymbol{x}) + \boldsymbol{f}_2(\boldsymbol{x}) \boldsymbol{u}) \right]$$

ullet we can solve it computing the gradient over $oldsymbol{u}$

Linear Quadratic Regulator

- J^* can be found numerically also in the continuous formulation
- some problems can even have a closed form solution of the HJB equation

$$\longrightarrow \quad -\frac{\partial J^*}{\partial t} = \min_{\boldsymbol{u}} \left[g(\boldsymbol{x}, \boldsymbol{u}) + \frac{\partial J^*}{\partial \boldsymbol{x}} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}) \right]$$

- for linear system the resulting optimal control is called Linear Quadratic Regulator (LQR)
- for nonlinear system, one can solve a LQR problem for the linearized system at an equilibrium point
- this solution is valid only in a neighborhood of the equilibrium point (more on this later)

Linear Quadratic Regulator - derivation

consider the linear system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

and the quadratic cost

$$J(\boldsymbol{x},\boldsymbol{u}) = \boldsymbol{x}(T)'\boldsymbol{Q}_f\boldsymbol{x}(T) + \int_0^T (\boldsymbol{x}(t)'\boldsymbol{Q}\boldsymbol{x}(t) + \boldsymbol{u}(t)'\boldsymbol{R}\boldsymbol{u}(t))dt$$
 where $\boldsymbol{Q}_f,\boldsymbol{Q} \geq 0,\boldsymbol{R}>0$ are usually diagonal control effort

the HJB equation is

$$0 = \min_{\boldsymbol{u}} \left[\boldsymbol{x}' \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{u}' \boldsymbol{R} \boldsymbol{u} + \frac{\partial J^*}{\partial t} + \frac{\partial J^*}{\partial \boldsymbol{x}} (\boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{u}) \right]$$

with the boundary condition $J^*(T, \boldsymbol{x}) = \boldsymbol{x}(T)' \boldsymbol{Q}_f \boldsymbol{x}(T)$

Linear Quadratic Regulator - derivation

$$0 = \min_{\boldsymbol{u}} \left[\boldsymbol{x}' \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{u}' \boldsymbol{R} \boldsymbol{u} + \frac{\partial J^*}{\partial t} + \frac{\partial J^*}{\partial \boldsymbol{x}} (\boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{u}) \right]$$

• we can search for a solution of the form $J^*(t, \boldsymbol{x}) = \boldsymbol{x}' \boldsymbol{P}(t) \boldsymbol{x}$ obtaining

the HJB becomes

$$0 = \min_{\mathbf{u}} \left[\mathbf{x}' \mathbf{Q} \mathbf{x} + \mathbf{u}' \mathbf{R} \mathbf{u} + \mathbf{x}' \dot{\mathbf{P}}(t) \mathbf{x} + 2 \mathbf{x}' \mathbf{P}(t) (\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}) \right]$$

• we can obtain the minimum computing the gradient w.r.t u (being $oldsymbol{R}$ non-singular)

$$2 m{B} m{P}(t) m{x} + 2 m{u}' m{R} = 0$$
 to be found $m{u} = - m{R}^{-1} m{B}' m{P}(t) m{x}$

Linear Quadratic Regulator - derivation

• substituting back $oldsymbol{u}$ in the HJB equation we obtain

$$0 = x'(\dot{P}(t) + P(t)A + A'P(t) - P(t)BR^{-1}B'P(t) + Q)x$$

• in order to solve the HJB, P(t) should satisfy the continuous time Riccati equation

$$\dot{\boldsymbol{P}}(t) = -(\boldsymbol{P}(t)\boldsymbol{A} + \boldsymbol{A}'\boldsymbol{P}(t) - \boldsymbol{P}(t)\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}'\boldsymbol{P}(t) + \boldsymbol{Q})$$

with the boundary condition ${m P}(T) = {m Q}_f$

• we can solve this numerically (different solvers are available)! Once ${m P}(t)$ is found, the optimal control law becomes

$$\boldsymbol{u}^* = -\boldsymbol{R}^{-1}\boldsymbol{B}'\boldsymbol{P}(t)\boldsymbol{x}$$

Linear Quadratic Regulator - infinite horizon

we can solve the LQR in the infinite horizon case

$$J(\boldsymbol{x}, \boldsymbol{u}) = \int_0^\infty \boldsymbol{x}(t)' \boldsymbol{Q} \boldsymbol{x}(t) + \boldsymbol{u}(t)' \boldsymbol{R} \boldsymbol{u}(t) dt$$

the cost to go does not depend anymore from time

$$\frac{\partial J^*}{\partial t} = 0$$

the Riccati equation becomes the Algebraic Riccati Equation (ARE)

$$0 = -(PA + A'P - PBR^{-1}B'P + Q)$$

and the controller becomes a static state feedback

$$\boldsymbol{u}^* = -\boldsymbol{R}^{-1}\boldsymbol{B}'\boldsymbol{P}\boldsymbol{x}$$

it does not depend on time anymore

Linear Quadratic Regulator - linearization

- for a nonlinear system, LQR is usually activated when the system is near an equilibrium point
- in this case, since LQR works for linear system, we need to perform a linearization of the state equations
- we start from the nonlinear system $\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x},\boldsymbol{u})$ and we find an equilibrium point $(\boldsymbol{x}_e,\boldsymbol{u}_e)$ such that $\boldsymbol{f}(\boldsymbol{x}_e,\boldsymbol{u}_e)=0$
- we then do a change of coordinates

Linear Quadratic Regulator - linearization

$$\dot{\hat{m{x}}} = \dot{m{x}} = m{f}(m{x}, m{u})$$

• and expand $oldsymbol{f}(oldsymbol{x},oldsymbol{u})$ with a first-order Taylor approximation

the resulting LQR controller assumes the form of

$$\hat{oldsymbol{u}} = -oldsymbol{R}^{-1}oldsymbol{B}oldsymbol{P}(oldsymbol{x} - oldsymbol{x}_e)$$

- for underactuated robots, LQR is activated when the system is near an equilibrium point
- example: Pendubot, 2R robot in the vertical plane
- state: $x = (q_1, q_2, \dot{q}_1, \dot{q}_2)$
- only the first link q_1 is actuated, q_2 is passive
- we want to swing-up the system from the stable equilibrium downdown (the two links point downward) ${m x}_0=(0,0,0,0)$, to the up-up equilibrium ${m x}_e=(\pi,0,0,0)$
- design a LQR to work in the neighborhood of $oldsymbol{x}_e$

- starting from the initial state $m{x}_0$ we can apply (for example) an energy based controller that can bring the system near the equilibrium point $m{x}_e$ (inside the basin of attraction)
- then we can switch the controller to LQR to stabilize the system around $oldsymbol{x}_e$
- to design the LQR, we need to linearize the Pendubot equations around ${m x}_e$ and choose ${m Q} \ge 0, R>0$

swing-up maneuver with an energy based controller and stabilization with the LQR

LQR activated inside the basin of attraction

$$\mathbf{x_0} = (3.35, 0.2011, -1.0, 0.017)$$

 LQR activated outside the basin of attraction - the linearization (and hence the LQR) is no longer valid

$$\mathbf{x_0} = (3.7, -0.2, -2.0, 0.017)$$

• the control effort can be reduced increasing ${\cal R}$

• the basin of attraction (the validity of the LQR controller) changes w.r.t. the chosen weights Q, R

equilibrium up-up

equilibrium down-up

Linear Quadratic Regulator - Quadrotor

hovering

summary

- some methods for finding a control law $m{u}^*(m{x})$ that is optimal w.r.t to a cost function
- DP is only applicable on small, finite and discrete state and input spaces
- the HJB equation is the extension of the DP equation for state input space and time
- the Riccati equation is a special solution of the HJB equation for linear system; the resulting LQR can be used as a control law for nonlinear systems, but it only works in the vicinity of the linearization point