
Artificial Intelligence In Medicine 139 (2023) 102512

A
0

Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Research paper

Monitoring hybrid process specifications with conflict management: An
automata-theoretic approach
Anti Alman a, Fabrizio Maria Maggi b, Marco Montali b, Fabio Patrizi c, Andrey Rivkin b,d,∗

a Institute of Computer Science, University of Tartu, Narva mnt 18, Tartu, 51009, Tartumaa, Estonia
b Faculty of Computer Science, Free University of Bozen-Bolzano, Dominikanerplatz 3 - piazza Domenicani, 3, Bolzano, 39100, South Tyrol, Italy
c Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, Rome, 00185, Lazio, Italy
d Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads 321, Kgs. Lyngby, 2800, Capital
Region, Denmark

A R T I C L E I N F O

Keywords:
Business process monitoring
Data Petri nets
Declare
Automata
Hybrid process
Process model interplay

A B S T R A C T

Complexity of medical treatments can vary from prescribing medicine for a specific ailment to managing a
complex set of simultaneous medical issues. In the latter case, doctors are assisted by clinical guidelines which
outline standard medical procedures, tests, treatments, etc. To facilitate the use of such guidelines, they can
be digitized as processes and adopted in complex process engines offering additional help to health providers
such as decision support while monitoring active treatments so as to detect flaws in treatment procedures
and suggest possible reactions on them. For example, a patient may present symptoms of multiple diseases
simultaneously (requiring multiple clinical guidelines to be followed), while also being allergic to some often-
used drugs (requiring additional constraints to be respected). This can easily lead to treating a patient based
on a set of process specifications which are not fully compatible with each other. While a scenario like that
commonly occurs in practice, research in that direction has thus far given little consideration to how to
specify multiple clinical guidelines and how to automatically combine their specifications in the context of
the monitoring task. In our previous work (Alman et al., 20222), we presented a conceptual framework for
handling the above cases in the context of monitoring. In this paper, we present the algorithms necessary for
implementing key components of this conceptual framework. More specifically, we provide formal languages
for representing clinical guideline specifications and formalize a solution for monitoring the interplay of such
specifications expressed as a combination of (data-aware) Petri nets and temporal logic rules. The proposed
solution seamlessly handles combination of the input process specifications and provides both early conflict
detection and decision support during process execution. We also discuss a proof-of-concept implementation
of our approach and present the results of extensive scalability experiments.
1. Introduction

Evidence-based medicine has led to the definition of a number
of clinical practice guidelines, containing systematic recommendations
on how to handle patient care. The aim of such guidelines is to
improve the quality of care, to mitigate unjustified deviations, and to
reduce costs. The further transition from clinical practice to computer-
interpretable guidelines (CIGs) has paved the way towards decision sup-
port systems aiding healthcare and administrative professionals in the
modeling, execution, analysis, and continuous improvement of clinical
guidelines [47].

Clinical practice guidelines and their computer-interpretable coun-
terparts are defined by assuming an ideal execution context [8]. This
essentially means that a guideline has unlimited provision of resources

∗ Corresponding author.
E-mail address: ariv@dtu.dk (A. Rivkin).

for its execution, patients suffer only from conditions targeted by
the guideline, and that healthcare providers possess complete medical
knowledge of the above medical conditions as well as of the patient to
which the guideline is applied.

While these assumptions are reasonable when CIGs are used for
documentation, training, and model-driven analysis, they become too
restrictive when employed for execution and decision support. At run-
time, healthcare providers are in fact confronted with the full com-
plexity of dealing with single patients, each presenting their own
specific medical conditions, personal constraints/preferences and co-
morbidities, as well as unanticipated exceptions. On a per-patient basis,
this calls for:
vailable online 5 March 2023
933-3657/© 2023 Published by Elsevier B.V.

https://doi.org/10.1016/j.artmed.2023.102512
Received 31 May 2022; Received in revised form 7 January 2023; Accepted 31 Jan
uary 2023

https://www.elsevier.com/locate/artmed
http://www.elsevier.com/locate/artmed
mailto:ariv@dtu.dk
https://doi.org/10.1016/j.artmed.2023.102512
https://doi.org/10.1016/j.artmed.2023.102512
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2023.102512&domain=pdf

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

t

C
c
i
d
r
a

a

a
i
w

w
w
e
c
p
i
s
t
c
n
a
c
d
t
t
o
s
b
e
o

p

1. integrating multiple CIGs based on the specific medical condition
of the patient, especially in the light of their co-morbidities;

2. considering the interplay between such CIGs and background
medical knowledge;

3. continuously adapting and personalizing the resulting process
depending on the current circumstances, that is, on the history
of executed activities, the effects and data they have produced,
and other relevant events.

The net effect of this complexity is that, while treating the pa-
ient, healthcare providers may deviate from the courses of execution

prescribed by the guideline(s). Deviations may arise for a wide range
of different reasons, from human mistakes to deliberate choices that
depart from the pre-defined execution paths to save patient’s life.
Dedicated techniques have been consequently developed within med-
ical informatics to compare the execution trace and electronic patient
record of a specific patient, with one or more corresponding reference
CIGs. As surveyed in [47], these techniques fall under the name of
compliance checking or critiquing, depending on the input knowledge
they consider and how they use such knowledge to elaborate on the
meaning of and reasons behind the detected deviations. Interestingly,
these notions incarnate, in the clinical setting, one of the main general
analytic tasks of process mining, namely conformance checking [13].

onformance checking is the task of comparing the expected behavior
aptured in a reference process model with the event data tracing actual
nstances of that process, and extract (fine-grained) insights from the
etected deviations. Monitoring techniques for conformance checking at
untime, tracking ongoing process executions and detecting deviations
s soon as possible, have also been extensively investigated [38].

As pointed out in [47], the vast majority of approaches for compli-
nce checking and critiquing present two main shortcomings:

1. compliance is evaluated on a single CIG, and even when multiple
CIGs at once are considered, their interplay with background
medical knowledge is not tackled at all;

2. compliance is evaluated a-posteriori, and the adopted techniques
do not lend themselves to be used at runtime, as they cannot
handle the inherent incompleteness of an ongoing, evolving
execution.

In this work, we tackle these two open challenges, bringing forward
comprehensive formal framework for monitoring multiple process spec-
fications and anticipatory detection of deviations. The framework comes
ith two distinctive features related to specification and monitoring.

As for specification, we adopt and further develop the M3 frame-
ork previously introduced in [2]. The M3 framework brings for-
ard a formal multi-model approach where a process specification
merges from the combination of procedural and declarative process
omponents, which can be respectively used to express CIGs/medical
rocedures and background medical knowledge. The same process
nstance concurrently goes through the various components at the
ame level of abstraction, calling for handling their mutual interplay;
his results in so-called loosely coupled hybrid models [3]. Procedural
omponents are represented using a data-aware extension of Petri
ets [35,43] where transitions are associated to guards that check
nd manipulate numerical data variables using variable-to-constant
omparisons. Declarative rules are specified using a corresponding
ata-aware extension of linear temporal logic over finite traces [18]
hat forms a proper fragment of the logics studied in [12,26,27]. Within
his logic, of particular interest are patterns expressed in a fragment
f data-aware extensions [11,20,39] of the Declare declarative process
pecification language [44,50]. The focus on finite traces is motivated
y the fact that process instances are expected to terminate, possibly
xecuting unboundedly many steps that eventually lead the instance to
ne among alternative final states.

This approach allows us to handle the interplay of different com-
2

onents considering both the control-flow and data dimensions, thus
supporting interaction schemes like those elicited in [8–10] for the
medical domain. An example: if a CIG of interest expects that at least
500mg of paracetamol should be administered to a patient, and back-
ground medical knowledge indicates that for that patient 1000mg is the
maximum quantity, this results in an admissible interval 500-1000mg.
Another example: if a CIG for handling bacterial pneumonia prescribes
two alternative treatments, one based on macrolid and another on
penicillin, and the patient is found to be allergic to penicillin, then
the only treatment that conforms with the CIG and with background
medical knowledge is that of macrolid. More in general, we show
how simultaneously accounting for models from different modeling
paradigms allows us to capture sophisticated forms of scoping and
interaction among such models, going beyond what is captured so far
in the literature on process mining and providing a formal characteriza-
tion of forms of hybrid processes mixing CIGs and background medical
knowledge, such as those in [4,9,10,51,52].

As for monitoring, we resort to methods from runtime verifica-
tion [36], considering in particular the construction of automata-based
monitors for finite traces, extending [16] to account for hybrid models
with data variables and variable-to-constant comparisons. The adoption
of a formal approach to monitoring is not only useful as it guarantees
the construction of correct-by-design monitors, but also because it
goes far beyond the mere consideration of execution prefixes and the
resulting state of affairs. In particular, we can combine the execu-
tion prefix indicating what happened so far within a process instance
(e.g., the sequence of activities to which a patient has been subject
so far) with speculative reasoning on the possible (infinitely many)
future continuations of the instance. This is essential to detect, at the
earliest moment possible, violations that cannot be directly ascribed
as deviations w.r.t. a single procedural component or declarative rule,
but instead emerge as a conflict among different components consid-
ering their mutual interaction given the current execution state. A
state of conflict indicates that, while currently none of the considered
components is permanently violated, every continuation will inevitably
violate at least one of them.

Consider, for example, a CIG that, given the current trace prefix of
a patient treatment process, expects the execution to continue through
a long sequence of activities, culminating in one where penicillin is ad-
ministered to the patient. If the patient is currently found to be allergic
to penicillin, the monitor should immediately report the presence of a
conflict. This aspect has been already extensively studied in the case of
declarative process specifications, [16,26,40,42], but never considering
the hybrid, multi-model setting studied in this paper. This form of early
detection of violations is of particular interest in the medical domain,
as conflicts between different CIGs or between CIGs and background
medical knowledge can often occur and should in fact be explicitly
reported to healthcare professionals, who in turn have responsibility of
handling their resolution — which cannot be hardwired upfront [8,9].

Technically, we substantiate this multi-model specification and
monitoring framework through three novel contributions, which to-
gether provide a complete formalization of the approach outlined
in [2]:

1. First and foremost, we tackle the infinity induced by the pres-
ence of data, which, in general, leads to undecidability of moni-
toring [12]. Specifically, we recast in our setting faithful data ab-
straction techniques for variable-to-constant comparisons, origi-
nally developed towards verification of data Petri nets [19,35].
This allows us to obtain finitely representable monitors based on
traditional finite-state automata.

2. Second, we construct homogeneous monitors for declarative and
procedural components, and define how to combine them into a
unique, global monitor for conflict detection; this is obtained by
computing a form of automata cross product, which conceptually
describes the execution traces of a hybrid specification where

all procedural and declarative components are simultaneously

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

S
a
g
h
e
s
p
(
a
r
(

t
t
h

(
t

r
l
t

applied. This corresponds to the concurrent execution of all
Petri nets contained in the specification, while at the same time
checking the actual and possible satisfaction of constraints.

3. Third, we further refine the global monitor by acknowledging
that monitoring should continue to provide meaningful feedback
even after a violation has been detected. Specifically, we ensure
that when the global monitor returns a permanent violation
(due to an explicit violation of a process specification, or the
presence of a conflict), the monitor continues to operate, and can
distinguish which continuations may lead to incur in additional
violations. We associate a violation cost to each component,
equipping the global monitor with the ability of returning the
best-possible next events, i.e., events that would lead to the
minimum total violation cost that can be obtained based on the
events executed thus far.

The presented monitoring approach has been implemented in a proof-
of-concept tool, which is used for extensive scalability experiments
using a scenario from the medical domain. The experiments cover
input specifications of different complexity, expressiveness, and size,
showing the feasibility of the approach, but also highlighting its current
limitations.

The remainder of this paper is structured as follows. Section 2
provides an example scenario from the medical domain. Section 3
briefly describes the M3 Framework. Section 4 and 5 introduce the
formal definitions and algorithmic solutions underlying the proposed
monitoring approach. Section 6 presents the evaluation of the pro-
posed monitoring approach. Section 7 discusses the related work and
Section 8 concludes the paper.

2. Example scenario

Let us now introduce a simple scenario, taken from the medical
domain, that demonstrates two clinical guidelines together with one
background knowledge constraint. Both guidelines and the constraint
are adopted from the scenario reported in [51]. We use this scenario
to showcase when comorbidity issues may arise during the treatment
process and how the (monitoring) approach proposed in this paper can
help healthcare providers to address such issues. The same guidelines
are discussed in more detail in [4] and originally provided by the
British National Institute for Health and Care Excellence (www.nice.
org.uk).1
cenario. A patient shows up at the emergency department with an
cute stomach pain and immediately gets assigned to one of the emer-
ency physicians. After having looked through the patient’s medical
istory and a brief examination, the doctor concludes that the patient
xperiences a peptic ulcer (PU) relapse and chooses to follow the
tandard PU treatment clinical guideline (CG). The standard procedure
rovided for this CG envisions that, first, a helicobacter pylori test
𝐻𝑃𝑡𝑒) is performed, and then, based on its outcome, either prescribes
moxicillin administration (𝐴𝑇), if the test is positive, or gastric acidity
eduction (𝐺𝐴𝑅) otherwise. Afterwards, a peptic ulcer evaluation exam
𝑃𝑈𝑒𝑣) is performed so as to estimate the effects of the therapy.

After having performed the helicobacter test, the doctor prescribes
he amoxicillin-based treatment. However, the doctor does not know
hat the patient also suffers from venous thromboembolism (VT) and
as been already followed by a cardiologist from the same hospital.

In acute phases, VT requires an immediate intervention decision
𝐼𝑛𝑡𝐷), chosen among three different possibilities based on the situa-
ion of the specific patient. Mechanical intervention (𝑀𝐼) uses devices

1 While [4,51] do not cite specific guidelines, based on our research the
elevant guidelines are CG184, NG158, and TA287, with the latter high-
ighting Warfarin as a recommended anticoagulation treatment for venous
hromboembolism.
3

that prevent the proximal propagation or embolization of the throm-
bus into the pulmonary circulation, or involves the removal of the
thrombus. The other possibilities are an anticoagulant therapy based
on warfarin (𝑊 𝑇), or a thrombolytic therapy (𝑇𝑇). To help the patient
coping with the acute phase of VT, the cardiologist had prescribed the
warfarin therapy that the patient was already following at the moment
when the test was performed.

It is known that any interaction between amoxicillin therapy (in the
PU procedure) and warfarin therapy (in the VT procedure) is usually
avoided in medical practice, since amoxicillin increases the anticoag-
ulant effect of warfarin, raising the risk of bleedings. Therefore, in
cases where the PU and VT procedures are performed simultaneously,
it would be important to alert healthcare providers simultaneously
following one patient with multiple conditions about the impossibility
of administering warfarin and amoxicillin together (that is, activities
𝐴𝑇 and 𝑊 𝑇 cannot coexist in the same treatment case). This constraint
(we call it C) is an example of basic medical knowledge [9] forming an
additional process specification in the given scenario.

As we have mentioned above, the patient was tested positive on
helicobacter pylori while undergoing the warfarin therapy. Using con-
straint C, even without knowing about other therapies, the doctor can
be alerted by the hospital medical workflow management system about
a conflict arising between two CGs and C. For this outlier, but possible
situation the doctor is offered three alternatives to proceed:

1. Violating PU (by skipping the amoxicillin therapy);
2. Violating VT (by using an alternative anticoagulant);
3. Violating C (giving priority to the two procedures).

After have been informed about the presence of the conflict, the emer-
gency physician can assess the patient’s case with respect to the other
treatment in progress, weigh the implications of one choice over the
others, and finally make an informed decision. Since one should avoid
by any means complications such as serious bleeding (which could
happen if C is ignored), and given that skipping the amoxicillin therapy
is rather costly, due the lack of viable alternatives for treating peptic
ulcer in case of helicobacter pylori, the doctor chooses to violate the VT
procedure as there are other anticoagulants (e.g., heparin) that may be
less effective but do not interact strongly with amoxicillin.

The above reasoning can be achieved by assigning violation costs to
the CG specifications and background knowledge constraints. Like that,
the hospital workflow management system can use this information to
provide a more apt solution. For example, the option to violate C should
come with the highest cost (among the other process specifications).

Notice that we can also deal with (meta-)constraints [15] that
impose conditions on the process execution depending on the truth
value of other constraints. As an example, we will specify a meta-
constraint dictating that if constraint C gets violated, then the patient
must be placed under heightened observation, which is represented as
requiring an additional activity 𝐻𝑂𝑏𝑠.

3. M3 framework

In our previous work [2], we have introduced the Multi-Model
Monitoring Framework (M3 Framework) to address scenarios like the
one described in Section 2. In this section we give a brief overview
of this framework, thus setting the stage for the monitoring approach
presented in Sections 4 and 5. For more details on the framework itself
we refer the reader to [2].

The M3 framework is organized in phases which allow for elicit-
ing, managing, and monitoring hybrid process specifications. It sup-
ports scenarios with multiple procedural and declarative specifications,
where the former can be executed concurrently and the latter work
as global constraints that implicitly induce additional dependencies
between the procedural specifications. Both declarative and procedural
specifications are stored in a specification repository (see Fig. 1), which

is constantly updated during the model elicitation phase, and then used

http://www.nice.org.uk
http://www.nice.org.uk
http://www.nice.org.uk

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.
Fig. 1. Conceptual overview of the M3 Framework.
for monitoring individual cases in the case-specific preparation and
monitoring phases.

Elicitation Phase. The elicitation phase of the M3 Framework is en-
visioned as a continuous case-agnostic phase, during which domain
knowledge (standard procedures, classifiers, etc.) and organizational
context (business priorities, available resources, etc.) are transformed
into concrete process specifications, which are then stored in a dedi-
cated specification repository. Both declarative and procedural speci-
fications are supported, and multiple specifications of either paradigm
can be used to represent a single global process, thus supporting not
only hybrid process specifications, but also, for example, component-
based and aspect-oriented modeling approaches [34]. Full agreement
between the individual process specifications is not assumed, instead
each specification is associated with a priority value that is used during
monitoring to provide guidance to the user in resolving any potential
conflicts. Each specification is also associated with a priority value
that is later used in the monitoring phase to handle conflicts. Concrete
approaches for handling the elicitation phase are out of the scope of
this paper.

Preparation Phase. The preparation phase of the M3 Framework is
envisioned as a case-specific non-recurrent phase in which an incom-
ing case is assessed, relevant process specifications are selected, and
a corresponding hybrid specification is automatically created as an
input for the following monitoring phase. This hybrid specification will
encompass the combined behavior of all selected specifications, the
corresponding specification priorities, and, if required, also additional
case-specific modifications. The selected process specifications can be
smaller fragments of a single business process, but also fragments or
full specifications of multiple, separately defined (but concurrently
executed) business processes. The main functionalities of this phase are
formalized in Section 5 and evaluated in Section 6.

Monitoring Phase. The monitoring phase of the M3 Framework is
envisioned as an ongoing case-specific phase, covering the entire du-
ration of the case being monitored. During this phase, the state of
the monitor and the set of next recommended actions (with payloads)
are updated after the occurrence of each event, therefore providing
guidance towards the successful completion of the case. The monitoring
phase is also envisioned to allow for optional modifications of the
current hybrid process specification so as to handle emerging case
characteristics that were unforeseen during the preparation phase.
However the implementation of this functionality is currently left for
future work. Similarly to the previous phase, the main functionalities
of this phase are formalized in Section 5 and evaluated in Section 6
(including concrete examples of the output of this phase).
4

4. Process components

In this section, we define the models used to specify declarative and
procedural data-aware process components based on Multi Perspective-
Declare (MP-Declare) [11,20,39]) and data Petri nets (DPNs [35,43])
respectively.

We start by fixing some preliminary notions related to events and
traces. An event signature is a tuple ⟨𝑛, 𝐴⟩, where 𝑛 is the activity name
and 𝐴 = {𝑎1,… , 𝑎𝓁} is the set of event attribute (names). We assume
a finite set  of event signatures, each having a distinct name (thus
we can simply refer to an event signature by its name). With  =
⋃

⟨𝑛,𝐴⟩∈ 𝑛 and  =
⋃

⟨𝑛,𝐴⟩∈ 𝐴 we respectively denote the sets of all
event and attribute names from  .

An event of signature ⟨𝑛, 𝐴⟩ is a pair 𝑒 = ⟨𝑛, 𝜈⟩ where 𝜈 ∶ 𝐴 ↦ R is
a total value assignment function. For simplicity, we assume attributes
ranging over reals equipped with comparison predicates (simpler types
such as strings with equality and booleans can be seamlessly encoded).
We call a finite sequence 𝜎 = 𝑒1 ⋯ 𝑒𝓁 of events a trace. Given a trace 𝜎,
|𝜎| denotes its length and 𝜎(𝑖), for 1 ≤ 𝑖 ≤ |𝜎|, denotes 𝑒𝑖.

Multi-Perspective Declare with Local Conditions. For declarative
process components, we rely on a multi-perspective variant of the
well-known process modeling language Declare [50]. A Declare model
consists of template-based constraints that must be satisfied through-
out the process execution. The template syntax and semantics are
formalized using Linear Temporal Logic over finite traces (LTL𝑓) [44].

Definition 1. An LMP-Declare constraint is an expression of the form:
𝛷 ∶= ⊤ ∣ 𝑥 ∣ 𝑎 ⊙ 𝑐 ∣ 𝐗𝛷 ∣ 𝛷1𝐔𝛷2 ∣ ¬𝛷 ∣ 𝛷1 ∧𝛷2, where 𝑥 ∈  , 𝑎 ∈  ,
⊙ ∈ {⟨,=, ⟩} and 𝑐 ∈ R.

Formulas of the form 𝑎 ⊙ 𝑐 and 𝑥 are called atomic. We define the
usual abbreviations: 𝑎 ≤ 𝑐 = ¬(𝑎 > 𝑐), 𝑎 ≥ 𝑐 = ¬(𝑎 < 𝑐), and
𝑎 ≠ 𝑐 = ¬(𝑎 = 𝑐); 𝛷1 ∨ 𝛷2 = ¬(¬𝛷1 ∧ ¬𝛷2); 𝛷1 → 𝛷2 = ¬𝛷1 ∨ 𝛷2;
𝐅𝛷 = ⊤𝐔𝛷 (eventually); and 𝐆𝛷 = ¬𝐅¬𝛷 (globally).

Notice that the language of boolean combinations of attribute-to-
constant comparisons without event variables closely resembles that of
variable-to-constant conditions in [35], thus providing a good basis for
combining declarative constraints with procedural models expressed
with DPNs. As in standard LTL𝑓 , 𝐗 denotes the strong next operator
(which requires the existence of a next state where the inner formula
holds), while 𝐔 stands for strong until (which requires the right-hand
formula to eventually hold, forcing the left-hand formula to hold in all
intermediate states).

We inductively define when an LMP-Declare constraint 𝛷 is satisfied
by a trace 𝜎 at position 1 ≤ 𝑖 ≤ |𝜎|, written 𝜎, 𝑖 ⊧ 𝛷, as follows:

∙ 𝜎, 𝑖 ⊧ ⊤;
∙ 𝜎, 𝑖 ⊧ 𝑥 iff 𝜎(𝑖) = ⟨𝑛, 𝜈⟩ and 𝑥 = 𝑛;
∙ 𝜎, 𝑖 ⊧ 𝑎 ⊙ 𝑐 iff 𝜎(𝑖) = ⟨𝑛, 𝜈⟩, 𝜈(𝑎) is defined and 𝜈(𝑎)⊙ 𝑐;

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

r

Fig. 2. DPN representations for the peptic ulcer (left) and venous thromboembolism (right) clinical guideline fragments. We use prefixes r: and w: to distinguish read and write
guards respectively. Trivial, true guards are omitted for brevity.
S
t

(
i
T
b
a
⟨

n
c
n
T
w

a
a
𝐷
o
𝑀

t
i
o
d
s
a
t
w
m

D
l
i

∙ 𝜎, 𝑖 ⊧ 𝜑 iff 𝜎(𝑖) ⊧ 𝜑;
∙ 𝜎, 𝑖 ⊧ 𝛷1 ∧𝛷2 iff 𝜎, 𝑖 ⊧ 𝛷1 and 𝜎, 𝑖 ⊧ 𝛷2;
∙ 𝜎, 𝑖 ⊧ ¬𝛷 iff 𝜎, 𝑖 ̸⊧ 𝛷1;
∙ 𝜎, 𝑖 ⊧ 𝐗𝛷 iff 𝑖 < |𝜎| and 𝜎, 𝑖 + 1 ⊧ 𝛷;
∙ 𝜎, 𝑖 ⊧ 𝛷1𝐔𝛷2 iff there exists 𝑗, 1 ≤ 𝑗 ≤ |𝜎|, s.t. 𝜎, 𝑗 ⊧ 𝛷2 and for

every 𝑘, 1 ≤ 𝑘 ≤ 𝑗 − 1, we have 𝜎, 𝑘 ⊧ 𝛷1.

Example 1. Consider two event signatures ⟨a , {𝑥, 𝑦}⟩ and ⟨b, {𝑧}⟩. The
negation response LMP-Declare constraint 𝐆(a → ¬𝐗𝐅(b ∧ 𝑧 > 10))
captures that whenever event a occurs then b cannot later occur with
its attribute 𝑧 carrying a value greater than 10.

Data Petri nets. We define data Petri nets (DPNs) by adjusting [35,43]
to our needs. In particular, our definition needs to accommodate the
fact that a monitored trace will be matched against multiple process
components (which will be the focus of Section 5).

Let  be a finite set of event signatures.  is the language of guards
over  , where a guard is a boolean combination of atomic formulas
𝑎⊙𝑐. We can then specialize the notion of satisfaction to guards: given
an assignment 𝛼 ∶  → R and an atomic condition 𝑎⊙𝑐, we have that
𝛼 ⊧ 𝑎 ⊙ 𝑐 iff 𝛼(𝑎) ⊙ 𝑐. Boolean combinations of atomic conditions are
defined as usual. We denote by 𝑉 𝑎𝑟(𝛾) the set of attributes mentioned
in a guard 𝛾.

Definition 2. A Petri net with data and variable-to-constant conditions
(DPN) over a set  of event signatures is a tuple 𝐷 = (𝑃 , 𝑇 , 𝐹 , 𝑙, 𝑉 , 𝑟, 𝑤),
where:

∙ (𝑃 , 𝑇 , 𝐹) is a Petri net graph, where 𝑃 and 𝑇 are two finite
disjoint sets of places and transitions, and 𝐹 ∶ (𝑃 ×𝑇)∪(𝑇 ×𝑃) → N
is the net’s flow relation;

∙ 𝑙 ∶ 𝑇 →  ∪ {𝜏} is a total labeling function assigning a label
from  ∪ {𝜏} to every transition 𝑡 ∈ 𝑇 , with 𝜏 denoting a silent
transition;

∙ 𝑉 ⊆  is the set of net’s variables;
∙ 𝑟 ∶ 𝑇 →  and 𝑤 ∶ 𝑇 →  are two read and write guard-
assignment functions, mapping every 𝑡 ∈ 𝑇 into a read and write
guard from  .

We respectively call 𝑉 𝑎𝑟𝑟(𝑡) and 𝑉 𝑎𝑟𝑤(𝑡) the sets of 𝑡’s read and
write variables. Given 𝑥 ∈ 𝑃 ∪ 𝑇 , the preset and the postset of 𝑥 are,
espectively, the sets ∙𝑥 = {𝑦 ∣ 𝐹 (𝑦, 𝑥) > 0} and 𝑥∙ ∶= {𝑦 ∣ 𝐹 (𝑥, 𝑦) > 0}.

Example 2. Fig. 2 shows two DPNs encoding the clinical guideline
fragments discussed in Section 2. The two figures employ string con-
stants, which can be easily encoded into dedicated real numbers to fit
our formal definition.

We turn to the DPN execution semantics. A state of a DPN 𝐷 =
(𝑃 , 𝑇 , 𝐹 , 𝑙, 𝑉 , 𝑟, 𝑤) over  is a pair (𝑀,𝛼), where: (1) 𝑀 ∶ 𝑃 → N is
a total marking function, assigning a number 𝑀(𝑝) of tokens to every
5

place 𝑝 ∈ 𝑃 ; (2) 𝛼 ∶ 𝑉 → R is a total variable valuation assigning a
real value to every variable in 𝑉 . A DPN can progress from one state
to another if one of its enabled transitions fires. A transition is enabled
if all its input places contain sufficiently many tokens to consume and
both its read and write guards are satisfied. More formally, given a a
DPN 𝐷 = (𝑃 , 𝑇 , 𝐹 , 𝑙, 𝑉 , 𝑟, 𝑤), transition 𝑡 ∈ 𝑇 is enabled in state (𝑀,𝛼)
under partial valuation 𝛽 ∶ 𝑉 ↛ R, denoted (𝑀,𝛼)[𝑡, 𝛽⟩, iff: (1) 𝛽 is
defined on all variables 𝑣 ∈ 𝑉 𝑎𝑟𝑟(𝑡) ∪ 𝑉 𝑎𝑟𝑤(𝑡); (2) 𝛽(𝑣) = 𝛼(𝑣), for every
𝑣 ∈ 𝑉 𝑎𝑟𝑟(𝑡); (3) 𝛽 ⊧ 𝑟(𝑡) and 𝛽 ⊧ 𝑤(𝑡); (4)𝑀(𝑝) ≥ 𝐹 (𝑝, 𝑡), for every 𝑝 ∈ ∙𝑡.

Then, if 𝑡 ∈ 𝑇 is enabled in state (𝑀,𝛼) under 𝛽, it can fire and
produce a new state (𝑀 ′, 𝛼′) s.t. (1) 𝑀 ′(𝑝) =𝑀(𝑝) −𝐹 (𝑝, 𝑡) +𝐹 (𝑡, 𝑝), for
every 𝑝 ∈ 𝑃 ; (2) 𝛼′(𝑣) = 𝛽(𝑣), for every 𝑣 ∈ 𝑉 𝑎𝑟𝑤(𝑡); (3) 𝛼′(𝑣) = 𝛼(𝑣), for
every 𝑣 ∈ 𝑉 ⧵𝑉 𝑎𝑟𝑤(𝑡). We denote transition firing as (𝑀,𝛼)[𝑡, 𝛽⟩(𝑀 ′, 𝛼′).
tate (𝑀 ′, 𝛼′) is reachable from (𝑀,𝛼), if there exists a sequence of
ransition firings from (𝑀,𝛼) to (𝑀 ′, 𝛼′).

In this paper, we deal only with DPNs that are safe and well-formed
over their respective set of event signatures ). The former means that
n every reachable state, each place can have at most one token.
his is done for convenience (our approach seamlessly works for 𝑘-
ounded nets). The latter means that transitions and event signatures
re compatible, that is: (i) for every 𝑡 ∈ 𝑇 with 𝑙(𝑡) = 𝑛, where
𝑛, 𝐴⟩ ∈  , we have that 𝑉 𝑎𝑟𝑤(𝑡) = 𝐴; (ii) for every 𝑡 ∈ 𝑇 with 𝑙(𝑡) = 𝜏,
et variables are left untouched, that is, 𝑤(𝑡) ≡ ⊤. The first requirement
aptures the intuition that the payload of an event is used to update the
et variables, provided that the corresponding write guard is satisfied.
he second requirement indicates that variables are only manipulated
hen a visible transition, triggered by an event, fires.

Consider a DPN with initial state and final marking (DPNIF), denoted
s �̄� = (𝐷, (𝑀0, 𝛼0),𝑀𝑓), where 𝐷 is a DPN, (𝑀0, 𝛼0) is the initial sate
nd 𝑀𝑓 is the state of 𝐷 (called initial state), and 𝑀𝑓 a marking of

(called final marking). A run of �̄� is a sequence of transition firings
f 𝐷 that starts from (𝑀0, 𝛼0) and finally leads to a state (𝑀,𝛼) with
=𝑀𝑓 .
Let us now define when a trace complies with a DPNIF. This captures

hat the events contained in the trace can be turned into a correspond-
ng run, possibly inserting 𝜏-transitions, while keeping the relative
rder of events and their correspondence to elements in the run. To
o so, we need a preliminary notion. Given two sequences 𝜎1 and 𝜎2
uch that |𝜎2| ≥ |𝜎1|, an order-preserving injection 𝜄 from 𝜎1 to 𝜎2 is
total injective function from the elements of 𝜎1 to those of 𝜎2, such

hat for every two elements 𝑒1, 𝑒2 in 𝜎1 where 𝑒2 comes later than 𝑒1,
e have that 𝜄(𝑒2) comes later than 𝜄(𝑒1) in 𝜎2. This notion allows to
ap traces into (possibly longer) runs of a DPNIF.

efinition 3. A trace 𝜎 = 𝑒1 ⋯ 𝑒𝑛 complies with a DPNIF �̄� with
abeling function 𝑙 if there exists a run 𝜌 of �̄� and an order-preserving
njection 𝜄 from 𝜎 to 𝜌 such that:

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

𝛼
𝛼

a
w

a
c
o
s
l
t
a

5

i
w
g
b

D
s
s
t
𝑞

r
a
s
t
g

a
a
a
i
a
w
c
t
⟨

s
F

n
a
d

F
b
u
s
t
o
r
o
c

w
s

∙ for every 𝑒 = ⟨𝑛, 𝜈⟩ in 𝜎 s.t. 𝜄(𝑒) = [𝑡, 𝛽⟩, we have that 𝑙(𝑡) = 𝑛 and
𝛽 corresponds to 𝜈 for the written variables 𝑉 𝑎𝑟𝑤(𝑡)2;

∙ every element [𝑡, 𝛽⟩ in 𝜌 that does not correspond to any element
from 𝜎 via 𝜄 is so that 𝑙(𝑡) = 𝜏.

5. Monitoring approach

In this section we provide our main technical contribution: the
construction of monitors for hybrid processes. In our context, a hybrid
process  over a set  of event signatures is simply a set of pro-
cess components, that is, LMP-Declare constraints and DPNIFs over  .
Then, monitoring a trace against  basically amounts to running this
trace concurrently over all the DPNIFs of , simultaneously checking
whether all constraints in  are satisfied. When the trace is completed,
it is additionally checked that the trace is indeed accepted by the
DPNIFs. An important clarification, when characterizing the concurrent
execution over multiple DPNIFs, is that such components may come
from different sources, not necessarily employing all the event signa-
tures from  . In this light, it would be counterintuitive to set that a
DPNIF rejects an event because its signature is not at all used therein.
We fix this by assuming that whenever such a situation occurs, the
DPNIF simply ignores the currently processed event.

Given this basis, the construction of monitors for such hybrid pro-
cesses goes through multiple conceptual and algorithmic steps, detailed
next.

5.1. Interval abstraction

The first challenge that one has to overcome is related to reasoning
with data conditions, that is, checking whether a condition is satisfied
by an assignment, and checking whether a condition is satisfiable (both
operations will be instrumental when constructing automata). The main
issue is that, due to the presence of data, there are infinitely many
distinct assignments from variables/attributes to values, which induce
infinitely many states to consider in the DPNs (even when the net
is bounded). We deal with this infinity by building on the faithful
abstraction techniques studied in [35], recasting them in our more
complex setting. The idea is to avoid referring to single real values,
and instead predicate over a fixed number of intervals, which in turn
leads us to propositional reasoning. This comes from the observation
that data conditions can distinguish between only those constants that
are explicitly mentioned therein; hence, it suffices to consider only the
constants used in the process components (i.e., some atomic condition,
guard, or initial DPN assignment) to delimit the intervals to consider.

Technically, let  = {𝑐1,… , 𝑐𝑚} be a finite set of values from R
assuming, without loss of generality, that 𝑐𝑖 < 𝑐𝑖+1, for 1 ≤ 𝑖 ≤ 𝑚 − 1.
We then partition R into  = {(−∞, 𝑐1), (𝑐𝑚,∞)} ∪ {(𝑐𝑖, 𝑐𝑖) ∣ 1 ≤ 𝑖 ≤
𝑚}∪{(𝑐𝑖, 𝑐𝑖+1) ∣ 1 ≤ 𝑖 ≤ 𝑚−1}. Notice that  is finite, with a size that is
linear in 𝑚, and can be also seen as a fixed set of propositions, which is
crucial for our approach. Each interval in the partition is an equivalence
region for the satisfaction of the atomic formulas in the following sense:
given two valuations 𝛼 and 𝛼′ defined over 𝑎, such that 𝛼(𝑎) and 𝛼′(𝑎)
are from the same region 𝑅 ∈  , then 𝛼 ⊧ 𝑣⊙𝑐 if and only if 𝛼′ ⊧ 𝑣⊙𝑐.

We exploit this as follows. We fix a finite set 𝑉 of variables (re-
ferring to attributes) and lift an assignment 𝛼 ∶ 𝑉 → R into a
corresponding region assignment �̃� ∶ 𝑉 →  so that, for every 𝑎 ∈ 𝑉 ,
̃ (𝑎) returns the unique interval to which 𝛼(𝑎) belongs. We can then use
̃ to check whether a formula holds over 𝛼. For example, 𝛼(𝑎) satisfies
𝑎 > 𝑐 with 𝑐 ∈  if and only if �̃�(𝑎) = (𝑐1, 𝑐2) with 𝑐1 > 𝑐. The
same reasoning can be similarly done for other comparison operators
and carries over boolean combinations of atomic formulas. The key

2 Recall that 𝛽 involves both read and written variables. The read variables
re used to guarantee that the fired transition is enabled, and it is on the
ritten variables that 𝜈 and 𝛽 must agree.
6

observation here is that doing this check amounts to propositional
reasoning, and so does checking satisfiability of atomic formulas: in
fact, since both 𝑉 and  are finite, there are only finitely many region
assignments that can be defined from 𝑉 to  .

Given the process components of interest, we fix 𝑉 to the set  of
ll the attributes in the event signature  of the system under study (this
ontains all variables used in its process components), and  to the set
f all constants used in the initial states of the DPNs, or mentioned in
ome condition of a process component. We then consistently apply the
ifting strategy from assignments to region assignments, when it comes
o traces and DPN states. In the remainder, we assume that 𝑉 and 
re fixed as described above.

.2. Encoding into guarded finite-state automata

To capture the execution semantics of process components, we
ntroduce a semi-symbolic automaton whose transitions are decorated
ith boolean combinations of atomic formula. For ease of reference,
iven an event signature  , we denote with  the language of such
oolean combinations.

efinition 4. A guarded finite-state automaton (GFA) over set  of event
ignatures is a tuple  = ⟨𝑄, 𝑞0,→, 𝐹 ⟩, where: (i) 𝑄 is a finite set of
tates; (ii) 𝑞0 ∈ 𝑄 is the initial state; (iii) ⟶ ⊆ 𝑄× ×𝑄 is the labeled
ransition relation; and (iv) 𝐹 ⊆ 𝑄 is the set of final states. We write

𝜑
⟶ 𝑞′ for ⟨𝑞, 𝜑, 𝑞′⟩ ∈ ⟶, and call 𝜑 (transition) guard.

GFA-runs of  consist of finite sequences of the form 𝑞0
𝜑1
⟶ ⋯

𝜑𝑛
⟶

𝑞𝑛, where 𝑞𝑛 ∈ 𝐹 . The set of runs accepted by  is denoted as .
A trace 𝜎 = 𝑒1 ⋯ 𝑒𝑚 over  is accepted by  if there exists a GFA-
un 𝑞0

𝜑1
⟶ ⋯

𝜑𝑚
⟶ 𝑞𝑚 such that 𝑒𝑖 ⊧ 𝜑𝑖, for 1 ≤ 𝑖 ≤ 𝑚. In general,

n event 𝑒 can satisfy the guards of many transitions outgoing from a
tate 𝑞, as guards are not required to be mutually exclusive. Thus, a
race may correspond to many GFA-runs. In this sense, GFAs are, in
eneral, nondeterministic.

It is key to observe that GFAs can behave like standard finite-state
utomata. In fact, by setting  to a finite set of constants including
ll those mentioned in the automata guards, we can apply the interval
bstraction from Section 5.1. In particular, in place of considering the
nfinitely many events over  , we can work over the finitely many
bstract events defined using region assignments over  . For example,
e can check whether a trace 𝜎 = ⟨𝑛1, 𝜈1⟩⋯ ⟨𝑛𝑚, 𝜈𝑚⟩ is accepted by  by

hecking whether the abstract trace ⟨𝑛1, �̃�1⟩⋯ ⟨𝑛𝑚, �̃�𝑚⟩ does so. Notice
hat, to construct this abstract trace, it suffices to represent each event
𝑛, 𝜈⟩ in 𝜎 using equivalence regions from  , s.t. every 𝜈(𝑎) = 𝑐 is
ubstituted either with [𝑐, 𝑐], if [𝑐, 𝑐] ∈  , or with (𝑐′, 𝑐′′) s.t. 𝑐 ∈ (𝑐′, 𝑐′′).
rom here, we denote the abstract trace as 𝜎 .

Thanks to this, we can build GFAs using standard automata tech-
iques (e.g., for LTL𝑓 , as discussed below), and directly apply standard
lgorithms, coupled with our interval abstraction, to minimize and
eterminize GFAs.

rom LMP-Declare constraints to GFAs. Finite-state automata have
een extensively used for monitoring of LTL𝑓 formula and, in partic-
lar, Declare constraints [15,18]. In our context, the latter are repre-
ented using GFAs in which guards carry only propositions referring
o activity names. In the case of LMP-Declare, the guards are formulas
f  which, however, thanks to the interval abstraction, can be
epresented using a finite number of proposition. Hence, we can build
n top of the standard finite-state automaton construction for a Declare
onstraint [15], in which transitions are labeled by the formulas from
 mentioned within the constraint. We keep only those transitions
hose labels are satisfiable formulas (as discussed in Section 5.1,

atisfiability checking is done via propositional reasoning). Lastly, it

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

e

F
a
D

(
b
m
t
𝑆
v
e

O

v
a
s
(
a
t
o
p
m

(
s
e
i
t
b

(
t

is important to mention that the obtained GFA is kept complete so that
ach of its states can process every event of a signature from  .

rom DPNIFs to GFAs. Next, we discuss the key aspects of constructing
GFA which accepts all and only those traces that comply with a given
PNIF �̄� = (𝐷, (𝑀0, 𝛼0),𝑀𝑓).

The main issue is that the set 𝑆 of DPN states reachable from
𝑀0, 𝛼0) is in general infinite even when the net is bounded (i.e., has
oundedly many markings). This is due to the existence of infinitely
any valuations for the net variables. The infinity can be tamed using

he partitioning strategy defined above, which induces a partition of
into equivalence classes, according to the intervals assigned to the

ariables of 𝐷. Formally, given two assignments 𝛼, 𝛼′ we say that 𝛼 is
quivalent to 𝛼′, written 𝛼 ∼ 𝛼′, iff for every 𝑣 ∈ 𝑉 there exists 𝑅 ∈ 

s.t. 𝛼(𝑣), 𝛼′(𝑣) ∈ 𝑅. Then, two states (𝑀,𝛼), (𝑀 ′, 𝛼′) ∈ 𝑆 are said to be
equivalent, written (𝑀,𝛼) ∼ (𝑀 ′, 𝛼′) iff 𝑀 = 𝑀 ′ and 𝛼 ∼ 𝛼′. Observe
that the assignments of two equivalent states satisfy exactly the same
net guards. By [𝑆]∼, we denote the quotient set of 𝑆 induced by the
equivalence relation ∼ over states defined above.

Based on Section 5.1 we directly get that [𝑆]∼ is finite. We can then
conveniently represent each equivalence class of [𝑆]∼ by (𝑀, �̃�), explic-
itly using the region assignment in place of the infinitely many corre-
sponding value-based ones. This provides the basis for the following
encoding.

Definition 5 (GFA Induced by a DPNIF). For a given DPNIF �̄� =
(𝐷, (𝑀0, 𝛼0),𝑀𝑓) with 𝐷 = (𝑃 , 𝑇 , 𝐹 , 𝑙, 𝑟, 𝑤), the GFA induced by �̄� is
𝐷 = ⟨𝑄, 𝑞0,→, 𝐹 ⟩ s.t.:

1. 𝑄 = [𝑆]∼;
2. 𝑞0 = (𝑀0, �̃�0), where �̃�0(𝑣) = [𝛼0(𝑣), 𝛼0(𝑣)], for all 𝑣 ∈ 𝑉 ;
3. ⟶ ⊆ 𝑄 ×  × 𝑄 is s.t. (𝑀, �̃�)

𝑎∧𝜓
⟶ (𝑀 ′, �̃�′) iff there exists a

transition 𝑡 ∈ 𝑇 and a partial valuation 𝛽 s.t. (𝑀,𝛼)[𝑡, 𝛽⟩(𝑀 ′, 𝛼′),
with:

(a) 𝛼(𝑣) ∈ �̃�(𝑣) and 𝛼′(𝑣) ∈ �̃�′(𝑣), for every 𝑣 ∈ 𝑉 ;
(b) 𝑎 = 𝑙(𝑡);
(c) 𝜓 =

⋀

𝑣∈𝑉 𝑎𝑟(𝑤(𝑡)) 𝜙𝑣 such that:

(i) 𝜙𝑣 ≡ (𝑣 > 𝑐𝑖 ∧ 𝑣 < 𝑐𝑖+1), if �̃�′(𝑣) = (𝑐𝑖, 𝑐𝑖+1);
(ii) 𝜙𝑣 ≡ (𝑣 = 𝑐𝑖), if �̃�′(𝑣) = (𝑐𝑖, 𝑐𝑖);

4. 𝐹 ⊆ 𝑄 is s.t. (𝑀, �̃�) ∈ 𝐹 iff 𝑀 =𝑀𝑓 .

Next, we introduce an algorithm that, given a DPNIF
�̄� = (𝐷, (𝑀0, 𝛼0),𝑀𝑓), constructs the GFA 𝐷 corresponding to it (that
is, it represents all possible behaviors of �̄�). In the algorithm, we make
use of the following functions:

• 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑀, �̃�) returns a set of transitions and region assignments
{(𝑡, 𝛽) ∣ (𝑀,𝛼)[𝑡, 𝛽⟩ with 𝑡 ∈ 𝑇 , 𝛽(𝑣) ∈ 𝛽(𝑣), 𝛼(𝑣) ∈ �̃�(𝑣), for 𝑣 ∈
𝑉 }. Here 𝛽 matches only the ‘‘allowed’’ regions. That is, for every
𝑡, we construct multiple 𝛽 that account for all possible combinations
of equivalence regions assigned to each variable in 𝑤(𝑡) and 𝑟(𝑡)
s.t. 𝛽 ⊧ 𝑤(𝑡) and 𝛽 ⊧ 𝑟(𝑡).

• 𝑔𝑢𝑎𝑟𝑑(𝑡, �̃�) returns a formula 𝜓 as in Definition 3(c).
• 𝑓𝑖𝑟𝑒(𝑀, 𝑡, 𝛽) returns a pair (𝑀, �̃�) as in Definition 3.

It is easy to see that the above functions are computable. For 𝑒𝑛𝑎𝑏𝑙𝑒𝑑
there are always finitely many combinations of regions from R sat-
isfying the guards of 𝑡, whereas formulas produced by 𝑔𝑢𝑎𝑟𝑑 can be
constructed using a version of the respective procedure from Defini-
tion 5 that uses 𝛽 instead of �̃�′, and next states returned by 𝑓𝑖𝑟𝑒 can be
generated using the DPN firing rule, proviso that it has to be invoked
in the context of equivalence regions.

The actual algorithm builds on top of the classical one for the Petri
net reachability graph construction (see, e.g., [46]). In the algorithm,
we treat silent transitions as regular 𝜖-transitions (assuming that  as
7

well as ⟶ of the output automaton are suitably extended with 𝜏). We
Algorithm 1 Compute GFA from DPN
Input: DPNIF �̄� = (𝐷, (𝑀0 , 𝛼0),𝑀𝑓) with 𝐷 = (𝑃 , 𝑇 , 𝐹 , 𝑙, 𝑟, 𝑤)
utput: GFA ⟨𝑄, 𝑞0 ,→, 𝐹 ⟩
𝑄 ∶= (𝑀0 , �̃�0), where �̃�0(𝑣) = [𝛼0(𝑣), 𝛼0(𝑣)], for 𝑣 ∈ 𝑉
 ∶= {(𝑀0 , �̃�0)}
⟶ ∶= ∅
while  ≠ ∅ do

select (𝑀, �̃�) from 
 ∶=  ⧵ (𝑀, �̃�)
for all (𝑡, 𝛽) ∈ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑(𝑀, �̃�) do

(𝑀 ′ , �̃�′) ∶= 𝑓𝑖𝑟𝑒(𝑀, 𝑡, 𝛽)
if (𝑀 ′ , �̃�′) ∉ 𝑄 then

𝑄 ∶= 𝑄 ∪ {(𝑀 ′ , �̃�′)}
 ∶=  ∪ {(𝑀 ′ , �̃�′)}

end if
𝜓 ∶= 𝑙(𝑡)
if 𝑤(𝑡) ≢ ⊤ then

𝜓 ∶= 𝜓 ∧ 𝑔𝑢𝑎𝑟𝑑(𝑡, �̃�′)
end if
⟶ ∶= ⟶ ∪ {(𝑀, �̃�)

𝜓
⟶ (𝑀 ′ , �̃�′)}

end for
end while

discuss later on how such 𝜖-transitions can be eliminated from resulting
GFAs.

Theorem 1. Algorithm 1 effectively computes a GFA 𝐷 induced by a
DPNIF �̄�, is sound and terminates.

However, it is important to notice that, Algorithm 1 is not guaran-
teed to produce GFAs that are complete. To ensure the completeness
of the algorithm output, the following additional modifications have to
be performed.

(M1) Given that the algorithm treats 𝜏-transitions as normal ones, we
need to compile them away from the so-obtained GFA 𝐷. This is done
ia the standard procedure for finite-state automata (see, e.g., [33])
dopted to our setting. This procedure allows to collapse sequences of
tates in which each 𝑞 ∈ 𝑄 is s.t. there are 𝑘 runs 𝑞

𝜏
⟶ ⋯

𝜏
⟶ 𝑞′𝑖

where every transition is labeled with 𝜏) and 𝑞′𝑖
𝜑

⟶ 𝑞′′𝑖 , with 𝜑 ≠ 𝜏
nd 1 ≤ 𝑖 ≤ 𝑘. The removal is done by replacing each 𝑞 ∈ 𝑄 with
he set of all the 𝑞′𝑖 states and by adding transitions to predecessors
f 𝑞 (if any) as well as 𝑞′′𝑖 . While the 𝜖-transition removal procedure
roduces deterministic automata, its counterpart working with GFAs
ay produce an automaton that is non-deterministic.

M2) The output GFA has to be made ‘‘tolerant’’ to events whose
ignature is not at all used in the DPNIF. This is done by introducing
xtra loops in →𝑖 from Definition 5 as follows: for every 𝑞 ∈ 𝑄𝑖 we
nsert a looping transition 𝑞

𝜓
⟶ 𝑞, where 𝜓 =

⋀

𝑎∈( ⧵
⋃

𝑡∈𝑇 𝑙(𝑡))
𝑎. Like

hat, the GFA can skip irrelevant events that could never be processed
y the net.

M3) The resulting GFA has to be extended with two types of extra
ransitions.

• The first one tackles invalid net executions where a partial run
cannot be completed into a proper run due to a data-related
deadlock. This can occur due to the violation of read versus write
guards of all transitions that, from the control-flow perspective,
could actually fire. To deal with this issue, for every state (𝑀, �̃�) ∈
𝑄𝑖 and every transition 𝑡 ∈ 𝑇𝑖, if �̃� ̸⊧ 𝑟(𝑡) and 𝑀(𝑝) ≥ 𝐹𝑖(𝑝, 𝑡) for
every 𝑝 ∈ 𝑃𝑖, then we add (𝑀, �̃�)

𝜓
⟶ (𝑀, �̃�) to →𝑖, where 𝜓 is as

in Definition 5 (see 3). This is only done when 𝜓 is satisfiable.
• The second one addresses write-related issues arising when the

event to be processed carries values that violate all the write
guards of candidate transitions. We handle this as follows: for
every (𝑀, �̃�) ∈ 𝑄𝑖 and every 𝑡 ∈ 𝑇𝑖 s.t. 𝑤(𝑡) ≢ ⊤, add (𝑀, �̃�)

𝑎∧𝜓
⟶

(𝑀, �̃�) to →𝑖, where, for 𝑡 ∈ 𝑇𝑖 and every 𝑝 ∈ ∙𝑡 s.t. 𝑀(𝑝) ≥ 𝐹 (𝑝, 𝑡),
𝑎 = 𝑙(𝑡) and 𝜓 is as in Definition 5 (see 3), with all 𝜑𝑣 being

computed now for a combination of equivalence regions from  ,

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

𝜅
=
T
h
w
m
c
m

i
s
b
r
a

n
𝑞
o
d
𝑒

t
a
S
d
t

6

o
b
c
f

each of which is composed into (partial) variable region valuation
𝛽 ∶ 𝑉 →  s.t. 𝛽 ̸⊧ 𝑣 ⊙ 𝑐, for every 𝑣 ⊙ 𝑐 in 𝑤(𝑡). This is only
done if 𝜓 is actually satisfiable. This step can be also optimized
by putting all such 𝜓 in one DNF formula, which in turn reduces
the number of transitions in the GFA.

Proposition 1. Let 𝐷 be a GFA induced by a DPNIF �̄�. Application of
modifications (M1), (M2) and (M3) to 𝐷 produces a new GFA ′

𝐷 that
is complete.

Now, whenever we get a complete GFA for a DPNIF, we can use the
former to check whether a log trace is compliant with the net.

Theorem 2. A given trace 𝜎 = 𝑒1 ⋯ 𝑒𝑛 is compliant with a DPNIF
�̄� = (𝐷, (𝑀0, 𝛼0),𝑀𝑓) iff abstract trace 𝜎 is accepted by the GFA 𝐷
induced by �̄�.

5.3. Combining GFAs

Given a hybrid process  with 𝑛 components, we know from
Section 5.2 how to compute a GFA 𝑖 for each component ℎ𝑖 of .
Such GFA is addition minimized and determinized, which means that,
being 𝑖 complete, it will have a single trap state capturing all traces
that permanently violate ℎ𝑖.

To perform monitoring, we follow the approach of colored au-
tomata [15,40] and label each automaton state 𝑞 of 𝑖 with one of
four truth values, respectively indicating whether the corresponding
process component is temporarily satisfied (TS), temporarily violated
(TV), permanently satisfied (PS), or permanently violated (PV) in 𝑞. As
for constraints, these values are interpreted exactly like in [15,40]. As
for DPNIF, TS means that the current trace is accepted by the DPNIF,
but can be extended into a trace that is not, while TV means that the
current trace is a good prefix of a trace that will be accepted by the
DPNIF (PV and PS are defined dually). At the level of 𝑖, we define a
labeling function 𝜁𝑖 as follows: (i) 𝜁𝑖(𝑞) = 𝑃𝑆 iff 𝑞 ∈ 𝐹 and all transitions
outgoing from 𝑞 are self-loops; (ii) 𝜁𝑖(𝑞) = 𝑇𝑆 iff 𝑞 ∈ 𝐹 and there is some
transition outgoing from 𝑞 that is not a self-loop; (iii) 𝜁𝑖(𝑞) = 𝑃𝑉 iff
𝑞 ∉ 𝐹 and all transitions outgoing from 𝑞 are self-loops; (iv) 𝜁𝑖(𝑞) = 𝑇𝑉
iff 𝑞 ∉ 𝐹 and there is some transition outgoing from 𝑞 that is not a
self-loop.

The so-obtained labeled GFAs are local monitors for the single
process components of . To monitor  as a whole and do early
detection of violations arising from conflicting components, we need
to complement such automata with a global GFA , capturing the
interplay of components. We do so by defining  as a suitable product
automaton, obtained as a cross-product of the local GFAs, suitably
annotated to retain some relevant information.

Technically,  = ⟨𝑄, 𝑞0,→, 𝐹 ⟩, where: (i) 𝑄 = 𝑄1 × ⋯ × 𝑄𝑛; (ii)
𝑞0 = ⟨𝑞10,… , 𝑞𝑛0⟩; (iii) ⟶ is s.t. ⟨𝑞1,… , 𝑞𝑛⟩

𝜑
⟶ ⟨𝑞′1,… , 𝑞′𝑛⟩ iff 𝜑 =

𝜑1 ∧ ⋯ ∧ 𝜑𝑛, with 𝑞𝑖
𝜑𝑖
⟶𝑖 𝑞′𝑖 and 𝜑 is satisfiable by exactly one event;

(iv) 𝐹 = 𝐹1 × ⋯ × 𝐹𝑛. Notice that guards of  must be satisfiable by
some event. Otherwise, related labeled transitions are omitted as there
is no event to trigger them.

Given labeling functions 𝜁𝑖 for components ℎ𝑖 of , we define a
labeling function 𝜁 on the states 𝑞 = ⟨𝑞1,… , 𝑞𝑛⟩ ∈ 𝑄 of , indicating
whether all components from  are overall temporarily/permanently
violated/satisfied. Formally, 𝜁 ∶ 𝑄 ↦ {𝑇𝑆, 𝑇 𝑉 , 𝑃𝑆, 𝑃𝑉 } is s.t.: (i)
𝜁 (𝑞) = 𝑃𝑉 iff 𝜁𝑖(𝑞𝑖) = 𝑃𝑉 , for some 1 ≤ 𝑖 ≤ 𝑛; (ii) 𝜁 (𝑞) = 𝑃𝑆 iff
𝜁𝑖(𝑞𝑖) = 𝑃𝑆, for all 1 ≤ 𝑖 ≤ 𝑛; (iii) 𝜁 (𝑞) = 𝑇𝑆 iff 𝜁𝑖(𝑞𝑖) = 𝑇𝑆, for all
1 ≤ 𝑖 ≤ 𝑛; (iv) 𝜁 (𝑞) = 𝑇𝑉 , otherwise.
8

5.4. Best event identification

It is crucial to notice that, differently from local GFAs, the global
GFA  is not minimized. This allows the monitor to distinguish among
different combinations of permanently violated components, in turn
allowing for fine-grained feedback on what are the ‘‘best’’ events that
could be processed next. To substantiate this, we pair a hybrid pro-
cess  with a violation cost function that, for each of its components,
returns a natural number indicating the cost incurred for violating that
component.

To augment  with costs, we associate each of its states 𝑞 ∈ 𝑄
with two cost indicators: (i) a value 𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞), which contains the sum
of the costs associated with the constraints violated in 𝑞; (ii) a value
𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞), which contains the best value 𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞′), Assuming that 𝑐𝑖
is the cost associated with the violation of constraint 𝜑𝑖, we compute
𝑐𝑜𝑠𝑡𝑐𝑢𝑟 and 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡 as follows:

1. for every state 𝑞 = ⟨𝑞1,… , 𝑞𝑛⟩ ∈ 𝑄, let

𝑐𝑜𝑠𝑡0𝑏𝑒𝑠𝑡(𝑞) = 𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞) =
∑

1≤𝑖≤𝑛
𝑐𝑜𝑠𝑡(𝑞𝑖),

where 𝑐𝑜𝑠𝑡(𝑞𝑖) = 0 if 𝑞𝑖 ∈ 𝐹𝑖, and 𝑐𝑖 otherwise;
2. repeat the following until 𝑐𝑜𝑠𝑡𝑖+1𝑏𝑒𝑠𝑡(𝑞) = 𝑐𝑜𝑠𝑡𝑖𝑏𝑒𝑠𝑡(𝑞), for all 𝑞 ∈ 𝑄:

for every state 𝑞 ∈ 𝑄, 𝑐𝑜𝑠𝑡𝑖+1𝑏𝑒𝑠𝑡(𝑞) ∶= min{𝑐𝑜𝑠𝑡𝑖𝑏𝑒𝑠𝑡(𝑞
′) ∣ 𝑞

𝜑
⟶ 𝑞′} ∪

{𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞)};
3. return 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡.

It is immediate to see that a fixpoint is eventually reached in finite
time and the algorithm terminates. To this end, observe that, for all
𝑞 ∈ 𝑄, 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞) is a non-negative integer. Moreover, at each iteration
𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞) can only decrease. Thus, after a finite number of steps, the
minimum 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞) for each state 𝑞 ∈ 𝑄 is achieved, which corresponds
to the termination condition.

We can also see that the algorithm is correct, i.e., that if 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞) =
then, from 𝑞: (i) there exists a path in  to some state 𝑞′ s.t. 𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞′)
𝜅, and (ii) there exists no path to some state 𝑞′′ s.t. 𝑐𝑜𝑠𝑡𝑐𝑢𝑟(𝑞′′) < 𝜅.

hese come as a consequence of step 2 of the algorithm. By this, we
ave that, after the 𝑖th iteration 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞) contains the value of the state
ith the minimum cost achievable from 𝑞 through a path containing at
ost 𝑖 transitions. When the fixpoint is reached, it means that even

onsidering longer paths will not improve the value, i.e., the value is
inimal.

Using , 𝑐𝑜𝑠𝑡𝑐𝑢𝑟 and 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡, we can find the next ‘‘best events’’,
.e., those events that allow for satisfying the combination of con-
traints that guarantees the minimum cost. Technically, let 𝜎 = 𝑒1 ⋯ 𝑒𝓁
e the input trace and consider the set 𝛤 = {𝜌1,… , 𝜌𝑛} of the
uns of  on 𝜎. Let 𝑞𝑖𝓁 be the last state of each 𝜌𝑖 and let 𝑞 =
rg min𝑞∈{𝑞1𝓁 ,…,𝑞𝑛𝓁}{𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞)}.

If, for some 𝑖, 𝑞 = 𝑞𝑖𝓁 , then 𝑞 is the best achievable state and
o event can further improve the cost. Otherwise, take a successor
′ of 𝑞 s.t. 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞′) = 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞). Notice that by the definition
f 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡, one such 𝑞′ necessarily exists, otherwise 𝑞 would have a
ifferent cost 𝑐𝑜𝑠𝑡𝑏𝑒𝑠𝑡(𝑞). The best events are then the events 𝑒∗ with
∗ ⊧ 𝜑, for 𝜑 s.t. 𝑞

𝜑
⟶ 𝑞′.

Notice that, to process the trace in the global GFA , and to detect
he best events, we again move back and forth from traces/events
nd their abstract representation based on intervals, as discussed in
ection 5.1. In particular, notice that there may be infinitely many
ifferent best events, obtained by different attribute assignments within
he same intervals.

. Evaluation of the monitoring approach

In this section we first provide three concrete examples of the output
f the monitoring approach from Section 5, which are then followed
y an extensive set of scalability experiments. The source code of the
orresponding proof-of-concept implementation along with all input
iles used in this section are publicly available at https://git.io/JM0iA.

https://git.io/JM0iA

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.
Fig. 3. Monitoring results for the three example traces (activities before 𝐻𝑃𝑡𝑒 omitted)
6.1. Examples of monitoring results

Recall that, in the example scenario (Section 2), (1) the patient was
undergoing warfarin therapy (𝑊 𝑇) when the treatment of peptic ulcer
(PU) started, (2) PU treatment guideline mandates amoxicillin therapy
(𝐴𝑇) if the helicobacter pylori test returns positive (𝐻𝑃𝑒𝑣[𝑟𝑒𝑠𝑢𝑙𝑡=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒]),
(3) 𝐴𝑇 and 𝑊 𝑇 cannot coexist in the same case (constraint C), (4) and
if constraint C is violated, then we require an additional activity 𝐻𝑂𝑏𝑠
(meta-constraint).

Keeping the above in mind, we hand-crafted three traces to demon-
strate the output of the monitoring approach from Section 5). For each
trace, we used the process specifications from the example scenario
with the following violation costs: PU – 10; VT – 5; Constraint C – 15;
Meta-constraint – 3.

The monitoring results shown on Fig. 3 omit all activities before
𝐻𝑃𝑡𝑒, as the results up to and including that event are the same
for all three traces. More specifically, the stopping cost (i.e., the sum
of all violation costs if process execution would stop after 𝐻𝑃𝑡𝑒) is
10 because the PU guideline requires further activities to occur (also
reflected by the corresponding monitoring status TV). Meanwhile, in
the same state, the best reachable cost of 0 indicates that finishing the
treatment without any violations would still be possible (also reflected
by the global monitoring status TV).

However, after the event 𝐻𝑃𝑒𝑣[𝑟𝑒𝑠𝑢𝑙𝑡=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒], we reach a permanent
violation in the global state, despite the fact that no concrete process
specifications are violated. This is because, the PU guideline now
requires the activity 𝐴𝑇 to occur, which, given that in our scenario
𝑊 𝑇 has already occurred, would violate constraint C. Our monitoring
approach can detect such issues during the ongoing treatment case and
provide recommendations on how to proceed based on the violation
costs of the input process specifications.

In the first example (Fig. 3(a)), the doctor follows the recommenda-
tions of our monitoring approach by first executing 𝐺𝐴𝑅 (violating the
PU guideline) and then 𝑃𝑈𝑒𝑣. This leads to a total violation cost of 10,
which is also the lowest reachable total violation cost after the event
𝐻𝑃𝑒𝑣[𝑟𝑒𝑠𝑢𝑙𝑡=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒] had occurred. In the second example (Fig. 3(b))
the doctor instead decided to continue following the PU guideline
by executing the activity 𝐴𝑇 , followed by the activity 𝑃𝑈𝑒𝑣. This
lead to the total violation cost of 18 since both constraint C and the
meta-constraint were violated. Finally, in the third example (Fig. 3(c))
the doctor also decided to continue following the PU guideline, but
in this case executed the additional activity 𝐻𝑂𝑏𝑠 thus fulfilling the
meta-constraint and leading to total violation cost of 15.
9

6.2. Scalability experiments

All scalability experiments are based on extending the input spec-
ifications from Section 2 (excluding the meta-constraint) to explore
four scalability dimensions. The first dimension considers the input size
of the DPN components and the number of LMP-Declare constraints.
The second dimension investigates the effect of the guard placement
and the total number of guards in the DPNs. The third dimension tests
the effect of synchronization activities in the DPN specifications. The
fourth dimension investigates the performance of the approach based
on the number of individual input specifications. The first and the last
dimensions are explored considering DPNs with and without guards.
All experiments were performed on a 6-core Intel i7 10850H machine
with 2 × 16GB of RAM.

Two artificially generated event logs are used for the tests. Both con-
tain 200 traces, including up to 50% of negative examples depending on
the specification used in each test. The first log is used to test the first
three scalability dimensions, while the second one is used for testing
the last dimension.

6.2.1. Input specification size
The size of input specifications greatly affects the performance

of our approach as larger specifications induce more states to be
considered in the final GFA, which also needs to account for more in-
terleavings. To test scalability along this dimension, we have performed
experiments on iteratively increased specifications from Section 6.1
obtained by creating specification copies with renamed activities and
appending such copies to original models (notice that for DPNs this is
done via sequential composition of nets). We report on the test results
in Table 1, where ‘Test no. 0’ uses the original models and all the
consecutive tests use its iteratively increased variants. Two sets of tests
were performed, one considering only the control flow (by removing
all the DPN guards), and the other considering both control flow and
data perspectives.

With the available RAM, we were able to scale from 5 places and
5 transitions in the PU DPN, 3 places and 4 transitions in the VT DPN,
and 1 constraint in the Declare model (Test no. 0) up to 29 places and
35 transitions in the extended PU DPN, 15 places and 28 transitions
in the extended VT DPN, and 7 constraints in the extended Declare
model (Test no. 6). The results related to the GFA (construction time
and number of states) indicate that realistic process specifications are
feasible even with the current prototype implementation (especially if
only the control flow is considered), but RAM required (as well as the

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.
Table 1
Scalability wrt the size of input specifications.

Test
no.

Control Flow Only Control Flow & Data

GFA
Time (s)

GFA
States

Event
Avg. (ms)

GFA
Time (s)

GFA
States

Event
Avg. (ms)

0 0.035 54 0.659 0.054 80 0.762
1 0.068 272 0.756 0.175 462 0.883
2 0.187 1026 0.768 0.897 1824 0.940
3 0.610 3484 0.842 3.044 6306 1.009
4 2.096 11278 0.868 10.740 20588 1.116
5 7.644 35560 0.934 43.283 65230 1.228
6 28.552 110298 0.951 199.689 202952 1.304

Table 2
Scalability wrt the number of guards and position of a guard in DPN control flow.

Test
no.

Number of guards Guard position

GFA
Time (s)

GFA
States

Event
Avg. (ms)

GFA
Time (s)

GFA
States

Event
Avg. (ms)

0 27.577 110298 0.914 27.938 110298 0.956
1 36.624 112592 0.947 36.417 112592 0.988
2 46.076 116118 1.029 37.379 113816 1.004
3 56.978 121436 1.100 38.716 115572 1.006
4 73.798 129590 1.126 38.323 118292 1.003
5 94.108 142476 1.183 40.134 122652 1.015
6 138.823 163958 1.277 41.463 130076 1.013
7 205.075 202952 1.293 47.936 143952 0.933

constriction time) start to quickly ramp up once the input specifications
become larger. The average processing time of each incoming event
remains below 2 ms in all tests.

6.2.2. DPN guards
The results from Section 6.2.1 show that considering the data

perspective can increase the computational complexity significantly.
To understand better that increase, we use the largest specifications
from Table 1 (‘Test no. 6’, ‘Only Control Flow’) as the baseline. For
each test, we systematically added read and write guards to both DPNs,
constraining the behavior of one of the otherwise free-choice decision
points in the control flow. The first set of tests focuses on the number of
guards by first constraining the behavior of the earliest decision-point
of both DPNs (Test no. 1), then the second earliest (Test no. 2), then the
third earliest (Test no. 3), etc. until the behavior of all decision points
is fully guarded (Test no. 7). The second set of tests follows the same
pattern, but instead of adding extra guards, we move the same guards
forward by one decision point in each test (see Table 2).

As expected, both the time required for constructing the GFA as well
as the number of its states increase as the number of guards grows.
Notice that the increasing number of states is not only due to the
additional guards in the specifications, but also due to their positions
moving more towards the end of the process models. This is confirmed
by the second set of tests where the number of GFA states (and also
required time) increases in each test despite no additional guards are
added (only the position of the guards changes). This indicates that data
dependant decision points should be placed as early as possible in the
control flow to increase the performance of our approach.

6.2.3. Synchronization activities
In our framework, process specifications can be connected both via

declarative constraints as well as activities they share. Each of such
activities becomes a synchronization point between the specifications
that contain it, since the respective GFA will be able to progress on
this activity so that violations are avoided only when executions of all
involved specifications containing it will reach a state in which this
activity can be executed simultaneously by all such specifications. We
performed two sets of tests to check the effect of synchronization points
10
Table 3
Scalability wrt the number of synchronizations and position of a synchronization in
DPN control flow.

Test
no.

Number of syncronisations Syncronisation position

GFA
Time (s)

GFA
States

Event
Avg. (ms)

GFA
Time (s)

GFA
States

Event
Avg. (ms)

0 28.670 110298 0.945 28.699 110298 0.931
1 29.140 107463 0.920 28.162 107463 0.897
2 29.807 103228 0.984 29.341 102891 0.947
3 28.581 97173 0.956 27.235 96521 0.967
4 26.907 88866 0.930 23.900 88323 0.920
5 24.331 78631 0.967 21.137 80073 0.975
6 19.694 69870 0.892 20.845 79949 0.982

Table 4
Scalability wrt the number of input specifications.

Test
no.

Control Flow Only Control Flow & Data

GFA
Time (s)

GFA
States

Event
Avg. (ms)

GFA
Time (s)

GFA
States

Event
Avg. (ms)

0 0.017 4 0.785 0.034 6 0.864
1 0.030 36 0.801 0.054 64 1.042
2 0.051 216 0.946 0.137 512 1.304
3 0.124 1296 1.034 0.821 4096 1.433
4 0.484 7776 1.146 5.066 32768 1.640
5 2.950 46656 1.194 43.002 262144 1.865

on scalability. Results for both sets are reported in Table 3 make use
of the same model from Table 1 (‘Test no. 6’, ‘Only Control Flow’) as
baseline. There, the overlapping activities were always placed between
repetitions of the original control flow pattern and unique names were
used for each added activity. The first set of tests focuses on the number
of synchronization points by adding one additional overlapping activity
in each test, whereas the second set concentrates on the position of
synchronization by moving a single overlapping activity towards the
end of the control flow.

As expected, both the time required for constructing the GFA and
also the number of states in the GFA decrease as the number syn-
chronization points increases. A single synchronization point near the
beginning of the process model reduces the number of GFA states by
2835 (‘Test no. 0’ vs. ‘Test no. 1’). This trend becomes more significant
when more synchronization points are added. With 6 synchronization
points (Test no. 6), the number of GFA states decreases by ∼ 37%.
However, the placement of the synchronization points also affects the
resulting GFA (specifically, the trend is reversed when compared to
DPN guard placement): a single synchronization point near the end of
the control flow reduces the number of GFA states by ∼ 28% (‘Test no.
0’ vs. ‘Test no. 6’), which is better than having four synchronization
points at the beginning of the control flow in the first set of tests.

6.2.4. Number of input specifications
For the sake of completeness, we also present updated results on the

scalability w.r.t. the number of input specifications already presented
in [2], i.e., we increase the number of procedural specifications by cre-
ating copies of the same DPN (with renamed activities/attributes), and
we connect each pair of consecutive copies with a declarative process
specification consisting of a single constraint. More specifically, we use
the VT DPN (Section 2) and a Not Co-Existence constraints between
the WT activities of two consecutive copies. ‘Test no. 0’ contains only
the original VT DPN, while each following test adds one copy of the
VT DPN and one Declare constraint containing one Not Co-Existence
constraint. As in Section 6.2.1, the tests are performed both with and
without considering the data perspective (see Table 4).

As in [2], the number of GFA states rapidly increases together

with the number of models in input specifications. Interestingly, the

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

m
d
a
l
i
t
s
i
d
t
m

t
o
i
s
t
p
t
t
o
a
t

f
c
f
a
e
s
s
c
b
I
o
s
f
a
c
c
(
w
l
b
r

o
v
t
w

inclusion of the data perspective seems to have a greater impact here
than in the previous tests, both in terms of the number of GFA states
and time requirements. However, as in [2], the average time required
for processing the events, while slightly increasing, remains nearly
instantaneous in all the tests.

7. Related work

We provide an account of related work by considering approaches
for modeling and monitoring processes specified using procedural and
declarative approaches. We point out the lack of hybrid proposals that
cover the modeling complexity addressed in our work while providing
monitoring capabilities. We give particular consideration to relevant
contributions developed within the medical domain and dealing with
clinical guidelines.

Monitoring declarative specifications. Our approach has its root in
the formal approach to monitoring through runtime verification [36].
This amounts to take a declarative specification of a property of interest
and automatically construct a correct-by-design monitor that checks
the state of a property on the basis of the trace monitored so far
and of all its possible continuations. This realizes a form of reactive

onitoring that is complementary to predictive monitoring [23]. Pre-
ictive monitoring implicitly learns from historical (complete) traces
function mapping trace prefixes to some indicator about the (most

ikely) future outcome(s). As surveyed in [23], the most common
ndicators are predictions to categorical or numerical values (such as
he expected overall cost or completion time of an instance), or to
equences of future events (guessing the most likely next steps of an
nstance). Hence, while predictive monitoring can learn a probability
istribution over the (most likely) next steps given a monitored partial
race, reactive monitoring exhaustively reasons on all its (infinitely
any) possible continuations.

Traditionally, runtime verification deals with declarative specifica-
ions expressed linear- [6] and branching-time [28] logics interpreted
ver infinite traces/computation trees. As said, the monitoring output
s emitted by the monitor not only depending on the trace monitored
o far, but also on its possible continuations and how they interact with
he monitored property. Dealing with continuations of infinite length
oses the challenge that not all properties are monitorable, in the sense
hat the monitor may not be able to determine to which output a given
race should be mapped. This is related to the intrinsic nondeterminism
f 𝜔-structures and, in turn, calls for an extensive investigation aimed
t singling out the largest monitorable fragments of the considered
emporal logic [1,6].

A radically different spectrum emerges when continuations have a
inite (though unbounded) length, as considered in this work. In this
ase, specifications expressed in LTL𝑓 and linear dynamic logic over
inite traces [18] correspond to properties of regular languages and
re always monitorable. More specifically, an arbitrary property can be
ncoded into a deterministic monitor expressed as a conventional finite-
tate automaton, enriched with a labeling that maps every automaton
tate into a single, provably correct monitoring output [16,20,40]. This
onstitutes the technical backbone of our approach, and has in fact
een already applied to monitor (propositional) Declare specifications.
n particular, [40] first showed how to deal at once with monitoring
f single constraints and their interplay, while [42] continued [40] by
howing how this automata-theoretic approach can be used to return
ine-grained feedback on conflicts involving multiple constraints. This
pproach has been further developed in [16,20], formally proving the
orrectness of this approach, while also showing how to monitor meta-
onstraints that predicate on the monitoring state of other constraints
e.g., expressing compensation properties on what is expected to hold
hen a given Declare constraint is permanently violated). The Declare

anguage has also been extended to account for multiple perspectives
y considering activity payloads and data-aware constraints, with cor-
esponding monitoring approaches defined either posing assumption
11
n the data domain [21], or accepting incompleteness of the emitted
erdict [39]. None of these works has considered a data-aware ex-
ension of Declare that indeed admits finitely representable monitors,
hich we do here focussing on LMP-Declare. Recent works have pushed

the boundaries of data-aware extensions of LTL𝑓 constraints [26,27]
for which monitors can be constructed. Such approaches subsume
LMP-Declare but have not considered the immersion of declarative
constraints inside hybrid specifications, as done here.

Monitoring Petri nets. Many Petri net-based monitoring approaches
focus on diagnosis of discrete event systems, such that with each
observed string of events the diagnosis procedure at hand associates
a diagnosis state (such as ‘normal’, ‘faulty’ or ‘uncertain’). One of the
first monitoring approaches dealing with Petri nets is studied in [55].
There, the author proposes an on-line fault detection technique based
on monitoring the number of tokens in P-invariants that also allows
to ‘‘predict’’ the future system behavior whenever the fault is being
detected. A similar idea is also used in [32], where the authors extend
original system models with additional places so as to capture P-
invariants allowing to detect and isolate system failures. Notice that
in both of these works the failure states are ‘‘hardwired’’ in the system
models and failures are detected only when loss/duplication of tokens
happens in related places. Another seminal work [60] considers system
Petri net models without failures and treats each event occurrence that
does not match firing conditions properly as a failure. There are also
works related to the domain of workflow management systems. For
example, [54] proposes a workflow management system that encom-
passes workflow monitoring and delay prediction modules based on
resource-aware Petri nets.

There are many more monitoring/diagnosis approaches based on
Petri nets. One of the main features they have in common is that
the system is represented as a single monolithic process (although
there are works, such as [29,30], that study monitoring approaches for
distributed/modular specifications, synchronizations between modules
therein have to be encoded a priori), which can be insufficient in
domains with highly flexible and knowledge-intensive processes.

Conformance and compliance checking for CIGs. The interplay of
multiple process specifications (both procedural and declarative) has
however been addressed to some extent from the perspective of confor-
mance checking. A recent work [24] studies the conformance checking
task for mixed-paradigm process models that integrate Petri nets and
Declare constraints. However, this setting does not consider any activity
payloads and, as customary in conformance checking, the authors focus
on alignment of complete traces and not on (runtime) monitoring of
ongoing incomplete process executions. There are two other research
lines that consider multiple process and constraint specifications, both
related to the medical domain and often studied in the context of
devising adequate treatment for comorbid patients. The first line fo-
cuses on interactions between CGs and BMK from the view-point of the
conformance checking problem [9] (i.e., how to handle cases where the
non-conformance with respect to a clinical guideline is caused by the
correct application of basic medical knowledge). The second one stud-
ies the same interactions within the GLARE framework, but from the
perspective of explainability [52,53,62] (i.e., how can the actions taken
during the treatment of a specific patient be automatically explained
given the presence of multiple CGs and BMK). While these approaches
to a certain extent consider the interplay of procedural and declarative
models, their respective tasks of interest are performed on historical
data and do not consider streams of events. Interestingly, regardless
the main distinction between our on-line monitoring framework and
the a posteriori analysis studied along the research lines mentioned
above, there are some points in common. First of all, in order to
account for all possible interactions between actions, both approaches
rely on structures that compute all such interactions explicitly. The only
difference lies in their type: while our approach has to account for all

possible states of the system, the approach in GLARE would focus only

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.

H
s
p
d
p

e
a
o
r
t
e
m
a
a
c
i
a
o
c
m
F
i
s

A

v
g
A

R

on concrete CIGs that are relevant to a given patient. GLARE is also able
to merge parts of multiple CIGs in order to provide adequate treatments
for given comorbid patients. Currently, our monitoring approach does
not support this feature, but we plan to work on an automated gener-
ation of possible ‘‘repair’’ strategies that could be then selected by the
user. Finally, in [10], the authors discuss how GLARE can be used to
account for concurrent executions of CIGs being simultaneously applied
to one patient, and how to treat exceptions raised by incompatible CIGs.
Such exceptions are pre-computed and stored in a special knowledge
base. This is very similar to our approach in which we create a product
automaton, accounting for all possible interactions between all the
hybrid specification components, and assigning to each of its states a
violation/satisfaction label.

Formalisms for representing CIGs. Many different formalisms and
notations have been developed to represent CIGs. The vast major-
ity adopts a flow-chart paradigm, with atomic activities composed
through sequencing, choices, concurrency operators, and more complex
control-flow patterns [14,48]. Several efforts have been made towards
formalizing the core elements of such proposals in a notation-agnostic
way, by employing variants of (colored) Petri nets [7,31,49]. This
relates directly to our approach, where procedural process components
are represented using data Petri nets, which form a well-behaved
fragment of colored Petri nets, amenable to (runtime) verification.

The long-standing debate on how to infuse flexibility in process
modeling languages and management systems [57] has pervaded re-
search on CIGs as well. Several approaches have been devised to
provide a more flexible execution of CIGs, ranging from adaptive
runtime support [58] to exception handling [56]. At the same time,
flexibility by design has also been studied through declarative ap-
proaches, in particular adapting Declare to CIGs [45]. This proposal
is subsumed by the extension of Declare covered in our work.

Given this account, domain-specific hybrid languages combining no-
tations for procedural and declarative CIG modeling could be naturally
studied starting from our contribution.

Hybrid models. In addition to the aforementioned approaches, re-
search in relation to hybrid business process representations (HBPRs)
is currently ongoing. The term hybrid refers, in this case, to combining
declarative and procedural modeling paradigms into a unified modeling
approach which would allow expressing both strict and flexible aspects
of a single process in the same model. A conceptual framework and
a common terminology for these types of models has been proposed
recently [3] and a number of open research challenges related to
HBPRs have been identified [61]. Some process mining approaches for
HBPRs [22,41,59] have also been developed. However, to the best of
our knowledge, there are currently no monitoring approaches suitable
for hybrid settings.

8. Conclusion

The ability to monitor the interplay of different process models is
useful in domains where process instances tend to have high variability.
An example of this is the medical domain where standard treatment
procedures are described as clinical guidelines and multiple guidelines
need to be often executed simultaneously, therefore giving rise to in-
terplay and possible conflicts. Furthermore, because a clinical guideline
cannot account for all possible preconditions that a patient may have,
it is also necessary to employ declarative knowledge (such as allergies,
prior conditions etc.) which further complicates the process execution.

This paper proposes and formalizes a monitoring approach that can
take into consideration the interplay of multiple process specifications
(both procedural and declarative), and can anticipate possible viola-
tions that may occur when executing such specifications all together.
Such anticipation can help either to avoid violations or (if avoiding
the violations is not possible) to minimize their effect on the whole
12

execution (by considering a total violation cost computed using special
violation costs assigned to every single specification). The proposed
approach is limited in that it can only provide recommendations ‘‘lo-
cally’’ by considering only immediate next events. However, in the
future we plan to extend our technique with the ability of providing
non-local recommendations on continuations of the trace, which is
readily supported by automata-based techniques. We also want to
explore different possible execution semantics for concurrent execution
of multiple process models, in particular for what concerns local and
shared activities.

Another, natural continuation of this work is to adopt a more
sophisticated language to express conditions on data attributes, going
beyond variable-to-constant comparisons adopted here. We plan to do
so by exploiting recent results on data Petri nets and LTL𝑓 [25–27].

owever, the more general languages adopt therein call for data ab-
traction techniques that are more sophisticated than the interval-based
ropositionalization approach used here. Hence, extending along this
irection calls for further investigation, especially from the algorithmic
oint of view.

To test our approach in practice, we performed various scalability
xperiments in a proof-of-concept implementation of the proposed
pproach. On the one hand, they revealed good performance in terms
f monitoring incoming events, with average event processing times
emaining near-instantaneous in all of the tests. On the other hand,
he experiments demonstrated that the main limiting factor is, as
xpected, the construction of the complete hybrid specification used for
onitoring, which requires considerable amount of time and memory

nd, consequently, limits the size and number of input procedural
nd declarative specifications. However, we note that these drawbacks
an be overcome by incorporating the optimization techniques widely
nvestigated in the automata construction for LTL𝑓 specifications, such
s those in [5,17,37,63]. These can indeed be all integrated directly in
ur approach. Another possibility is to shift some of the computational
omplexity towards event processing, which is per se very fast and only
ildly affected by both the size and number of the input specifications.

urthermore, even without these improvements, the proposed approach
s already able to handle processes of realistic, though relatively small,
izes (∼ 60 activities across process specifications).

cknowledgments

The work of A. Alman was supported by the European Social Fund
ia ‘‘ICT programme’’ measure and by the Estonian Research Council
rant PRG1226. F.M. Maggi was supported by the UNIBZ project CAT.
. Rivkin was parially supported by the UNIBZ project WineID.

eferences

[1] Aceto L, Achilleos A, Francalanza A, Ingólfsdóttir A, Lehtinen K. Adventures in
monitorability: from branching to linear time and back again. Proc ACM Program
Lang 2019;3(POPL):52:1–29.

[2] Alman A, Maggi FM, Montali M, Patrizi F, Rivkin A. Multi-model monitoring
framework for hybrid process specifications. In: Advanced information systems
engineering - 34th international conference, CAiSE 2022, Leuven, Belgium, June
6-10, 2022, Proceedings. Lecture notes in computer science, vol. 13295, Springer;
2022, p. 319–35.

[3] Andaloussi AA, Burattin A, Slaats T, Kindler E, Weber B. On the declarative
paradigm in hybrid business process representations: A conceptual framework
and a systematic literature study. Inf Syst 2020;91:101505.

[4] Anselma L, Piovesan L, Terenziani P. Temporal detection and analysis of
guideline interactions. Artif Intell Med 2017;76:40–62.

[5] Bansal S, Li Y, Tabajara LM, Vardi MY. Hybrid compositional reasoning for
reactive synthesis from finite-horizon specifications. In: AAAI. AAAI Press; 2020,
p. 9766–74.

[6] Bauer A, Leucker M, Schallhart C. Comparing LTL semantics for runtime
verification. Logic Comput 2010.

[7] Beccuti M, Bottrighi A, Franceschinis G, Montani S, Terenziani P. Modeling
clinical guidelines through Petri nets. In: Combi C, Shahar Y, Abu-Hanna A,
editors. Proceedings of the 12th conference on artificial intelligence in medicine.
LNCS, vol. 5651, 2009, p. 61–70.

http://refhub.elsevier.com/S0933-3657(23)00026-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb1
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb2
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb3
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb4
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb5
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb6
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb7

Artificial Intelligence In Medicine 139 (2023) 102512A. Alman et al.
[8] Bottrighi A, Chesani F, Mello P, Molino G, Montali M, Montani S, et al. A hybrid
approach to clinical guideline and to basic medical knowledge conformance. In:
Combi C, Shahar Y, Abu-Hanna A, editors. Proceedings of the 12th conference on
artificial intelligence in medicine. Lecture notes in computer science, vol. 5651,
2009, p. 91–5.

[9] Bottrighi A, Chesani F, Mello P, Montali M, Montani S, Terenziani P. Confor-
mance checking of executed clinical guidelines in presence of basic medical
knowledge. In: Proc. of BPM workshops. LNBIP, vol. 100, Springer; 2011, p.
200–11.

[10] Bottrighi A, Piovesan L, Terenziani P. A general framework for the distributed
management of exceptions and comorbidities. In: Zwiggelaar R, Gamboa H,
Fred ALN, i Badia SB, editors. Proceedings of the 11th international joint
conference on biomedical engineering systems and technologies (BIOSTEC 2018)
- Volume 5: HEALTHINF, Funchal, Madeira, Portugal, January 19-21, 2018.
SciTePress; 2018, p. 66–76. http://dx.doi.org/10.5220/0006552800660076.

[11] Burattin A, Maggi FM, Sperduti A. Conformance checking based on
multi-perspective declarative process models. Expert Syst Appl 2016;65:194–211.

[12] Calvanese D, de Giacomo G, Montali M, Patrizi F. Verification and monitoring for
first-order LTL with persistence-preserving quantification over finite and infinite
traces. In: Raedt LD, editor. Proceedings of the 31st international joint conference
on artificial intelligence. ijcai.org; 2022, p. 2553–60.

[13] Carmona J, van Dongen BF, Solti A, Weidlich M. Conformance checking - relating
processes and models. Springer; 2018.

[14] De Clercq PA, Kaiser K, Hasman A. Computer-interpretable Guideline Formalisms.
In: ten Teije A, Miksch S, Lucas PJF, editors. Computer-based medical guidelines
and protocols: a primer and current trends. Studies in health technology and
informatics, vol. 139, IOS Press; 2008, p. 22–43.

[15] de Giacomo G, de Masellis R, Grasso M, Maggi FM, Montali M. Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: BPM. LNCS,
vol. 8659, Springer; 2014, p. 1–17.

[16] de Giacomo G, de Masellis R, Maggi FM, Montali M. Monitoring constraints
and metaconstraints with temporal logics on finite traces. ACM Trans Softw Eng
Methodol 2022;31(4):68:1–44.

[17] de Giacomo G, Favorito M. Compositional approach to translate LTLf/ldlf into
deterministic finite automata. In: Biundo S, Do M, Goldman R, Katz M, Yang Q,
Zhuo HH, editors. Proceedings of the 31st international conference on automated
planning and scheduling. AAAI Press; 2021, p. 122–30.

[18] de Giacomo G, Vardi MY. Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI. IJCAI/AAAI; 2013, p. 854–60.

[19] De Leoni M, Felli P, Montali M. Strategy synthesis for data-aware dynamic
systems with multiple actors. In: KR. 2020, p. 315–25.

[20] de Masellis R, Maggi FM, Montali M. Monitoring data-aware business constraints
with finite state automata. In: ICSSP. ACM; 2014, p. 134–43.

[21] de Masellis R, Maggi FM, Montali M. Monitoring data-aware business constraints
with finite state automata. In: ICSSP. ACM; 2014, p. 134–43.

[22] De Smedt J, De Weerdt J, Vanthienen J. Fusion Miner: Process discovery for
mixed-paradigm models. Decis Support Syst 2015;77:123–36.

[23] Di Francescomarino C, Ghidini C. Predictive process monitoring. In: van der
Aalst WMP, Carmona J, editors. Process mining handbook. LNBIP, vol. 448,
Springer; 2022, p. 320–46.

[24] van Dongen BF, De Smedt J, Di Ciccio C, Mendling J. Conformance checking of
mixed-paradigm process models. Inf Syst 2021;102.

[25] Felli P, De Leoni M, Montali M. Soundness verification of data-aware process
models with variable-to-variable conditions. Fundam Inform 2021;182(1):1–29.

[26] Felli P, Montali M, Patrizi F, Winkler S. Monitoring arithmetic temporal prop-
erties on finite traces. In: Proceedings of the 37th AAAI conference on artificial
intelligence. AAAI Press; 2023, (in press).

[27] Felli P, Montali M, Winkler S. Linear-time verification of data-aware dynamic
systems with arithmetic. In: Proceedings of the 36th AAAI conference on artificial
intelligence. AAAI Press; 2022, p. 5642–50.

[28] Francalanza A, Aceto L, Ingólfsdóttir A. Monitorability for the Hennessy-Milner
logic with recursion. Formal Methods Syst Des 2017;51(1):87–116.

[29] Genc S, Lafortune S. Distributed diagnosis of discrete-event systems using Petri
nets. In: van der Aalst WMP, Best E, editors. Applications and theory of petri
nets 2003. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003, p. 316–36.

[30] Genc S, Lafortune S. Distributed diagnosis of place-bordered Petri nets. IEEE
Trans Autom Sci Eng 2007;4(2):206–19. http://dx.doi.org/10.1109/TASE.2006.
879916.

[31] Grando MA, Glasspool D, Fox J. Petri nets as a formalism for comparing
expressiveness of workflow-based clinical guideline languages. In: Ardagna D,
Mecella M, Yang J, editors. Proceedings of the business process management
workshops. LNBIP, vol. 17, Springer; 2008, p. 348–60.

[32] Hadjicostis CN, Verghese GC. Monitoring discrete event systems using Petri net
embeddings. In: Donatelli S, Kleijn J, editors. Application and theory of petri
nets 1999. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999, p. 188–207.

[33] Hopcroft JE, Motwani R, Ullman JD. Introduction to automata theory, languages,
and computation. Pearson international edition, third ed.. Addison-Wesley; 2007.

[34] Jalali A, Maggi FM, Reijers HA. A hybrid approach for aspect-oriented business
process modeling. J Softw Evol Process 2018;30(8).
13
[35] de Leoni M, Felli P, Montali M. A holistic approach for soundness verification
of decision-aware process models. In: ER. LNCS, vol. 11157, Springer; 2018, p.
219–35.

[36] Leucker M, Schallhart C. A brief account of runtime verification. J Log Algebr
Methods Program 2009;78(5):293–303. http://dx.doi.org/10.1016/j.jlap.2008.
08.004.

[37] Li J, Zhang L, Zhu S, Pu G, Vardi MY, He J. An explicit transition system
construction approach to LTL satisfiability checking. Form Aspects Comput
2018;30(2):193–217.

[38] Ly LT, Maggi FM, Montali M, Rinderle-Ma S, van der Aalst WMP. Compliance
monitoring in business processes: Functionalities, application, and tool-support.
Inf Syst 2015;54:209–34.

[39] Maggi FM, Montali M, Bhat U. Compliance monitoring of multi-perspective
declarative process models. In: EDOC. IEEE; 2019, p. 151–60.

[40] Maggi FM, Montali M, Westergaard M, van der Aalst WMP. Monitoring business
constraints with linear temporal logic: An approach based on colored automata.
In: BPM. LNCS, vol. 6896, Springer; 2011, p. 132–47.

[41] Maggi FM, Slaats T, Reijers HA. The automated discovery of hybrid processes.
In: BPM. LNCS, vol. 8659, Springer; 2014, p. 392–9.

[42] Maggi FM, Westergaard M, Montali M, van der Aalst WMP. Runtime verification
of LTL-based declarative process models. In: RV. LNCS, vol. 7186, Springer; 2011,
p. 131–46.

[43] Mannhardt F, de Leoni M, Reijers HA, van der Aalst WMP. Balanced multi-
perspective checking of process conformance. Computing 2016;98(4):407–37.

[44] Montali M, Pesic M, van der Aalst WMP, Chesani F, Mello P, Storari S.
Declarative specification and verification of service choreographies. ACM Trans
Web 2010;4(1):3:1–62.

[45] Mulyar N, Pesic M, van der Aalst WMP, Peleg M. Declarative and procedural
approaches for modelling clinical guidelines: Addressing flexibility issues. In: ter
Hofstede AHM, Benatallah B, Paik H, editors. Proceedings of the business process
management workshops. LNCS, vol. 4928, Springer; 2007, p. 335–46.

[46] Murata T. Petri nets: Properties, analysis and applications. Proc IEEE
1989;77(4):541–80.

[47] Peleg M. Computer-interpretable clinical guidelines: A methodological review. J
Biomed Inform 2013;46(4):744–63.

[48] Peleg M, Mulyar N, van der Aalst WMP. Pattern-based analysis of
computer-interpretable guidelines: Don’t forget the context. Artif Intell Med
2012;54(1):73–4.

[49] Peleg M, Tu SW, Manindroo A, Altman RB. Modeling and analyzing biomedical
processes using workflow/Petri net models and tools. In: Fieschi M, Coiera EW,
Li YJ, editors. Proceedings of the 11th world congress on medical informatics.
Studies in health technology and informatics, vol. 107, IOS Press; 2004, p. 74–8.

[50] Pesic M, Schonenberg H, van der Aalst WMP. DECLARE: full support for
loosely-structured processes. In: EDOC. IEEE Computer Society; 2007, p.
287–300.

[51] Piovesan L, Terenziani P, Dupré DT. Temporal conformance analysis and
explanation on comorbid patients. In: HEALTHINF. SciTePress; 2018, p. 17–26.

[52] Piovesan L, Terenziani P, Dupré DT. Conformance analysis for comorbid patients
in answer set programming. J Biomed Inform 2020;103:103377. http://dx.doi.
org/10.1016/j.jbi.2020.103377.

[53] Piovesan L, Terenziani P, Molino G. GLARE-SSCPM: an intelligent system to
support the treatment of comorbid patients. IEEE Intell Syst 2018;33(6):37–46.
http://dx.doi.org/10.1109/MIS.2018.2886697.

[54] Pla A, Gay P, Meléndez J, López B. Petri net-based process monitoring: a
workflow management system for process modelling and monitoring. J Intell
Manuf 2014;25(3):539–54.

[55] Prock J. A new technique for fault detection using Petri nets. Automatica
1991;27(2):239–45.

[56] Quaglini S, Stefanelli M, Lanzola G, Caporusso V, Panzarasa S. Flexible guideline-
based patient careflow systems. Artif Intell Med 2001;22(1):65–80. http://dx.doi.
org/10.1016/S0933-3657(00)00100-7.

[57] Reichert M, Weber B. Enabling flexibility in process-aware information systems
- challenges, methods, technologies. Springer; 2012.

[58] Reuter C, Dadam P, Rudolph S, Deiters W, Trillsch S. Guarded process spaces
(GPS): A navigation system towards creation and dynamic change of healthcare
processes from the end-user’s perspective. In: Daniel F, Barkaoui K, Dustdar S,
editors. Proceedings of the business process management workshops. LNBIP, vol.
100, Springer; 2011, p. 237–48.

[59] Sadiq SW, Orlowska ME, Sadiq W. Specification and validation of process
constraints for flexible workflows. Inf Syst 2005;30(5):349–78.

[60] Sahraoui A, Atabakhche H, Courvoisier M, Valette R. Joining Petri nets and
knowledge based systems for monitoring purposes. In: Proceedings. 1987 IEEE
international conference on robotics and automation, Vol. 4. 1987, p. 1160–5.
http://dx.doi.org/10.1109/ROBOT.1987.1087858.

[61] Slaats T. Declarative and hybrid process discovery: Recent advances and open
challenges. J Data Semant 2020;9(1):3–20.

[62] Spiotta M, Terenziani P, Theseider Dupré D. Temporal conformance analysis
and explanation of clinical guidelines execution: An answer set programming
approach. IEEE Trans Knowl Data Eng 2017;29(11):2567–80.

[63] Zhu S, Tabajara LM, Li J, Pu G, Vardi MY. In: Sierra C, editor. Symbolic LTLf
synthesis. ijcai.org; 2017, p. 1362–9.

http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb8
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb9
http://dx.doi.org/10.5220/0006552800660076
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb11
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb12
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb13
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb14
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb15
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb16
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb17
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb18
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb19
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb20
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb21
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb22
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb22
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb22
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb23
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb24
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb25
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb26
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb26
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb26
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb26
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb26
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb27
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb28
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb29
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb29
http://dx.doi.org/10.1109/TASE.2006.879916
http://dx.doi.org/10.1109/TASE.2006.879916
http://dx.doi.org/10.1109/TASE.2006.879916
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb31
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb32
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb33
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb34
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb35
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb35
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb37
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb38
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb39
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb40
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb41
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb42
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb43
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb44
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb44
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb44
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb44
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb44
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb45
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb46
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb46
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb46
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb47
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb47
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb47
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb48
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb48
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb48
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb48
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb48
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb49
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb50
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb50
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb50
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb50
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb50
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb51
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb51
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb51
http://dx.doi.org/10.1016/j.jbi.2020.103377
http://dx.doi.org/10.1016/j.jbi.2020.103377
http://dx.doi.org/10.1016/j.jbi.2020.103377
http://dx.doi.org/10.1109/MIS.2018.2886697
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb54
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb54
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb54
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb54
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb54
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb55
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb55
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb55
http://dx.doi.org/10.1016/S0933-3657(00)00100-7
http://dx.doi.org/10.1016/S0933-3657(00)00100-7
http://dx.doi.org/10.1016/S0933-3657(00)00100-7
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb57
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb57
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb57
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb58
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb59
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb59
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb59
http://dx.doi.org/10.1109/ROBOT.1987.1087858
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb61
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb61
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb61
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb62
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb62
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb62
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb62
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb62
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb63
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb63
http://refhub.elsevier.com/S0933-3657(23)00026-X/sb63

	Monitoring hybrid process specifications with conflict management: An automata-theoretic approach
	Introduction
	Example Scenario
	M3 Framework
	Process Components
	Monitoring Approach
	Interval Abstraction
	Encoding into Guarded Finite-state Automata
	Combining GFAs
	Best Event Identification

	Evaluation of the Monitoring Approach
	Examples of Monitoring Results
	Scalability Experiments
	Input Specification Size
	DPN Guards
	Synchronization Activities
	Number of Input Specifications

	Related Work
	Conclusion
	Acknowledgments
	References

