
Evaluating ASP and commercial solvers on the

CSPLib

Toni Mancini, Davide Micaletto, Fabio Patrizi, Marco Cadoli

Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”,
via Salaria 113, I-00198 Roma, Italy,

tmancini|micaletto|patrizi|cadoli@dis.uniroma1.it

February 23, 2007

Abstract

This paper1 deals with four solvers for combinatorial problems: the
commercial state-of-the-art solver Ilog opl, and the research ASP systems
dlv, smodels and cmodels. The first goal of this research is to evaluate
the relative performance of such systems when used in a purely declarative
way, using a reproducible and extensible experimental methodology. In
particular, we consider a third-party problem library, i.e., the CSPLib,
and uniform rules for modelling and selecting instances. The second goal
is to analyze the marginal effects of popular reformulation techniques on
the various solving technologies. In particular, we consider structural
symmetry breaking, the adoption of global constraints, and the addition
of auxiliary predicates. Finally, we evaluate, on a subset of the problems,
the impact of numbers and arithmetic constraints on the different solving
technologies.

Results show that there is not a single solver winning on all problems,
and that reformulation is almost always beneficial: symmetry-breaking
may be a good choice, but its complexity has to be carefully chosen, by
taking into account also the particular solver used. Global constraints
often, but not always, help opl, and the addition of auxiliary predicates
is usually worth, especially when dealing with ASP solvers. Moreover,
interesting synergies among the various modelling techniques exist.

1 Introduction

The last decade has witnessed a large effort in the development of solvers for
combinatorial problems. The traditional approach based on writing ad hoc algo-
rithms, complete or incomplete, or translating in a format suitable for Integer

1A preliminary version of this paper appeared as [4].

1

Programming solvers2, has been challenged by the use of libraries for Con-
straint Programming (CP), such as Ilog solver3, interfaced through classical
programming languages, e.g. C++ or Prolog. At the same time, the need for
a higher level of abstraction and declarativeness led to the design and develop-
ment of general purpose languages for constraint modelling and programming
–e.g. opl [24], xpressmp4 or gams [7]– and languages based on specific solvers,
such as ampl [13], dlv [14], smodels [18], cmodels [15] or assat [16].

The availability of such declarative languages has been, of course, a major
step ahead towards the ripening of the constaint programming paradigm: by giv-
ing greater emphasis to the problem modelling task, the modeller is in principle
relieved from the responsibility of dealing with many procedural, algorithmic,
and technological aspects. All such issues are ideally left to the system.

On the other hand, with these languages, it is now the quality of the problem
model that plays a fundamental role in solvers’ efficiency: it is in fact very well-
known that the most simple, intuitive, and straightforward formulations for a
given problem rarely are the most efficient ones, and several techniques have
been proposed in the literature in order to reformulate the original model into
an equivalent one that is more efficiently evaluable by the solver at hand. Such
techniques include symmetry-breaking (cf., e.g., [9, 20, 12, 17]), abstraction
of constraints (cf., e.g., []), addition of implied constraints and of auxiliary
variables (cf., e.g., []), and use of global constraints (cf., e.g., []).

The afore-mentioned techniques have been often dealt with in the literature
on a per problem basis, and only little work has been performed in order to
understand how much they are expected to perform on a new problem, when
using a given solving technology. Arguably, this knowledge, coupled with theo-
retical studies that generalize and standardize such reformulation techniques, is
fundamental in order to build declarative constraint programming systems that
automatically tweak the user’s models in order to boost their performances.
This is mandatory in order to provide the users with the possibility of writing
simple and declarative constraint models for their problems, without dramati-
cally loosing in efficiency, and is ultimately an obliged step in order to spread
the use of the constraint programming paradigm towards non-specialists.

Such evolution is actually not new: a similar process has been experienced
during the past decades in the development of languages and systems for query-
ing databases: without the existence of effective tools for query preprocessing
and optimization (cf., e.g., [?]), the relational model and modern query lan-
guages like SQL would improbably spread through real applications.

With such a long-term goal in mind, in previous work [3, 17, 2, 1] we showed how
problem models can be regarded as logical formulae, how several of the afore-
mentioned techniques for model reformulation may be generalized and highly
standardized, and how automated tools can be practically used in order to check
their applicability for the problem at hand. This led to the possibility, by the

2e.g. Ilog cplex, cf. http://www.ilog.com/products/cplex.
3cf. http://www.ilog.com/products/solver.
4cf. http://www.dashoptimization.com.

2

solving engine, to effectively perform specification-level analysis of the user’s
model, and automatize several reformulation tasks.

In this paper we consider four well-known systems for constraint solving, and
perform an extensive experimentation in order to answer the following main
questions:

1. How do such systems perform when used in a purely declarative way?

2. Which are the effects of problem reformulation and other modelling as-
pects in their overall efficiency?

The last question poses, in turn, two more issues:

2.a. Which are the most promising reformulation techniques for any given solv-
ing technology?

2.b. How do the systems perform when two or more “good” reformulation
techniques are used together?

The systems we consider are one commercial state-of-the-art solver, i.e., Ilog opl
and three ASP solvers, namely dlv, smodels, and cmodels. The latter two
have the interesting property of sharing the specification language with several
other solvers through the common parser lparse5. Importantly, while dlv and
smodels use proprietary solving engines, cmodels compiles ASP specifications,
when given together with an instance, into an instance of the Propositional
Satisfiability problem (SAT), for which many efficient solvers are today available.

At the higher level, such systems exhibit interesting differences, including
availability (opl and ASP solvers are, respectively, payware and freeware sys-
tems, the latter often being open source), algorithm used by the solver (resp.
backtracking- and fixpoint-based), expressiveness of the modelling language
(e.g., availability of arrays of finite domain variables vs. boolean matrices), com-
pactness of constraint representation (e.g., availability of global constraints).

In order to answer the questions stated above, we present a reproducible and
extensible experimental methodology. In particular, we consider a third-party
problem library, i.e. the CSPLib6, and uniform rules for modelling and instance
selection. As for the reformulation techniques subject of our experiments, we
consider symmetry breaking, the use of global constraints, and that of auxiliary
variables and predicates. Moreover, we try to assess how negatively numbers
and arithmetics influence performances.

In this way, we aim to evaluate the marginal impact that each issue has on
the performance of the different solvers. The significance of the experiments is
achieved by considering a large set of problems and a high number of instances.
As a side-effect, we also aim to advance the state of knowledge on the good
practices in modelling for some important classes of solvers.

5cf. http://www.tcs.hut.fi/Software/smodels.
6cf. http://www.csplib.org.

3

Comparison among different solvers for CP has already been addressed in the
literature: in particular, we recall [11] and [25] where solver is compared to
other CP languages such as, e.g., oz [23], claire7, and various Prolog-based
systems. Moreover, some benchmark suites have been proposed, cf., e.g., the
COCONUT one [22]. Also on the ASP side, which has been the subject of much
research in the recent years, benchmark suites have been built in order to facil-
itate the task of evaluating improvements of their latest implementations, the
most well-known being ASPARAGUS8 and ASPLib9. However, less research has
been done in comparing solvers based on different formalisms and technologies,
and in evaluating the relative impact of different features and modelling tech-
niques. In particular, very few papers compare ASP solvers to state-of-the-art
systems for CP. To this end, we cite [10], where two ASP solvers are compared
to a CLP(FD) Prolog library on six problems: Graph coloring, Hamiltonian
path, Protein folding, Schur numbers, Blocks world, and Knapsack, and [19],
where ASP and Abductive Logic Programming systems, as well as a first-order
finite model finder, are compared in terms of modelling languages and relative
performances on three problems: Graph coloring, N-queens, and a scheduling
problem.

Outline. The outline of the paper is as follows: in Section 2 we present and
discuss the adopted experimental methodology, while in Section 3 we describe
the experimental framework, i.e., the selected problems, their various formula-
tions, and how we chose their instances. Then, in Section 4 we present and
analyze the results of our experiments. Finally, Section 5 concludes the paper.

2 Methodology

In this section we present the methodology adopted in order to achieve the
goals mentioned in Section 1. For each problem, we define a number of different
formulations: a base specification, obtained by a straightforward and intuitive
“translation” of the CSPLib problem description into the target language, and
several reformulated ones, obtained by using different techniques proposed in
the literature: (i) symmetry-breaking, (ii) addition of global constraints and
(iii) addition of auxiliary predicates. Moreover, in order to establish whether
merging different reformulations, which are proven to improve performances
when used alone, speeds-up even more the computation, we considered addi-
tional specifications for the same problems, obtained by combining the afore-
mentioned techniques, and exploring the existence of synergies among them.
Finally, an evaluation of the impact of numbers and arithmetic constraints in
all the languages involved in the experimentation has been performed on two
problems.

7cf. http://claire3.free.fr.
8cf. http://asparagus.cs.uni-potsdam.de.
9cf. http://dit.unitn.it/∼wasp.

4

The goals declared in Section 1 drive us to follow a purely declarative ap-
proach during modelling: hence, all the specifications have been solved without
performing any kind of tuning of the search parameters and without specify-
ing any procedural aspects (like, e.g., ad hoc search procedures in opl). Thus,
the experimentation relies on the default behavior of the different solvers (i.e.,
grounding techniques, branching heuristics, etc.).

In fact, we remind that our purpose is not to solve a particular problem in
the most efficient way as possible, but to understand what performances the
various systems may offer to the modeller in a transparent way, i.e., without
requiring him to take into account any details about the underlying technologies,
and which is the effectiveness and the marginal impact of various high-level and
strongly standardized reformulation techniques on solvers’ performances.

In order to achieve such objectives, the modelling task has been performed
in a way as systematic as possible, by requiring the specifications of the various
solvers to be similar to each other. The criteria followed during the modelling
task are discussed in Section 3.2. As for the instances, in this paper we opted
for problems which input data is made of few integer parameters (with two
exceptions, which are discussed in Section 3.1).

Due to the high number of problems and instances solved, the necessity of
having a synthetic measure of the various solvers performance arises. Hence, for
each problem we fix all the input parameters but one (such choices are discussed
in Section 3.1), and in our results we report, for each problem and solver, the
largest instance (denoted by the value given to the selected parameter) that is
solvable in a given time limit (one hour) by each reformulation.10

3 The experimental framework

3.1 Problems selection

In this research we consider the CSPLib problem library for our experiments.
CSPLib is a collection of 45 problems and is widely known in the CP community.
Problems are classified into 7 areas: Scheduling, Design, Configuration and
diagnosis, Bin packing and partitioning, Frequency assignment, Combinatorial
mathematics, Games and puzzles, and Bioinformatics.

For our experiments we chose 10 problems from CSPLib, that cover all the
7 areas of the collection. Since many problems in CSPLib are described only in
natural language, without any formal characterization, this work also provides,
as a side-effect, their formal specifications in the modelling languages adopted
by several solvers.

In what follows we give a description of the chosen problems, as well as their
identification numbers in CSPLib, the applications areas they belongs to, and
the parameters chosen to define their instances.

10As discussed in Section 4, in order to neutralize some noise in the solvers’ behavior, the
definition of largest solvable instance has to be slightly emended.

5

Ramsey problem (#017: Bin pack. and partitioning, Comb. math.). This
problem amounts to color the edges of a complete graph with n nodes using
the minimum number of colors, in order to avoid monochromatic triangles.
Instances of the problem are given by the number of graph nodes, n.

Social golfer (#010: Sched., Bin pack. and part., Games & puzzles). In a golf
club there are 32 social golfers who play once a week in 8 groups of 4. The
problem amounts to find a schedule for as many as possible weeks, such that
no two golfers play in the same group more than once. Here we consider a
decisional version of the problem: given a positive integer w, the goal is to find
a schedule for w weeks. Problem instances are thus denoted by the number of
weeks w.

Golomb rulers (#006: Frequency assign., Comb. math.). Given a positive
integer m, this problem amounts to put m marks on a ruler, in such a way
that the m(m − 1)/2 distances among them are all different. The objective is
to find the length of the shortest ruler that admits the positioning of m marks.
Instances are denoted by values given to m.

Car sequencing (#001: Scheduling). A number of cars are to be produced;
they are not identical, because different options are available as variants on the
basic model. The assembly line has different stations which install the various
options (air-conditioning, sun-roof, etc.). Such stations have been designed to
handle at most a certain percentage of the cars passing along the assembly line.
Furthermore, the cars requiring a certain option must not be bunched together,
otherwise the station will not be able to cope with them. Consequently, the
cars must be arranged in a sequence so that the capacity of each station is
never exceeded.

Selection of instances for this problem differs from the previous cases, since
they cannot be directly encoded by a single parameter. We considered some
benchmarks suggested in the CSPLib, namely “4/72”, “6/76” and “10/93”.
However, since they were too hard for our solvers, we proceeded as follows, in
order to generate a new set of (smaller) instances: from any original benchmark
(with n classes), we generated a set of instances by reducing the number of
classes to all possible smaller values, and consequently resizing station capacities
in order to avoid an undesirable overconstraining that would make instances
unfeasible. Thus, instances derived from the same benchmark could be ordered
according to the value for the (reduced) number of classes, which could then be
regarded as a measure for their size.

Water buckets (#018: Design, conf. and diagnosis, Bin pack. and part.,
Games & puzzles). We consider a generalization of the CSPLib specification,
which is as follows: Given an 8 pint bucket of water, and two empty buckets
which can contain 5 and 3 pints respectively, the problem requires to divide

6

the water into two by pouring water between buckets (that is, to end up with
4 pints in the 8 pint bucket, and 4 pints in the 5 pint bucket) in the smallest
number of transfers.

The generalization consists in making the specification parametric wrt the
start and goal configurations, which are now inputs of the problem. We also
designed 11 instances (each one denoted by a start and a goal configuration)
from that considered in the original problem description, which have been proved
to be non-trivial by preliminary experiments. Since such instances could not
be denoted by a single parameter, solvers’ performance for this problem and
the different specifications have been compared by considering the overall time
needed to solve them.

Maximum density still Life (#032: Games & puzzles). This problem arises
from the Game of Life, invented by John Horton Conway in the 1960s [?]. Life Citazione?

is played on a squared board, considered to extend to infinity in all directions.
Each square of the board is a cell, which at any time during the game is either
alive or dead. A cell has eight neighbours. The configuration of live and dead
cells at time t leads to a new configuration at time t + 1 according to the rules
of the game:

• if a cell has exactly three living neighbours at time t, it is alive at time
t + 1

• if a cell has exactly two living neighbours at time t it is in the same state
at time t + 1 as it was at time t

• otherwise, the cell is dead at time t + 1.

A stable pattern, or still-life, is not changed by these rules. Hence, every cell
that has exactly three live neighbours is alive, and every cell that has fewer than
two or more than three live neighbours is dead. (An empty board is a still-life,
for instance.)

Given a positive integer n, the problem amounts to find the densest possible
still-life pattern, i.e. the pattern with the largest number of live cells, that can
be fitted into an n×n section of the board, with all the rest of the board dead.
Instances are encoded by n, the size of the board.

Word design for DNA computing on surfaces (#033: Bioinformatics).
This problem amounts to find as large a set S of strings (words) of length 8

over the alphabet W = {A,C,G, T} with the following properties:

• Each word in S has 4 symbols from {C,G};

• Each pair of distinct words in S differ in at least 4 positions; and

• Each pair of words x and y in S (where x and y may be identical) are
such that R(x) and C(y) differ in at least 4 positions, where:

7

– R(x) is the reverse of the input string x;

– C(y) is the Watson-Crick complement of y, i.e. the word obtained by
y by replacing each A by a T and vice versa and each C by a G and
vice versa.

Here we consider a decisional version of the problem: given a positive integer
c, the goal is to find, if possible, a set of words S with the above properties, and
such that |S| = c.

Magic squares (#019: Comb. math., Games & puzzles). An order n magic
square is a n by n matrix containing the numbers 1 to n2, with each row, column
and main diagonal equal the same sum. Given a positive integer n, the problem
amounts to find a n order magic square. Instances are encoded by n, the matrix
order.

Langford’s numbers (#024: Comb. math., Games & puzzles). This is a gen-
eralization of the specification given in the CSPLib (which fixes the forthcoming
value n to 4). Given two sets of the numbers from 1 to n, the problem amounts
to arrange the 2n numbers in the two sets into a single sequence in which the
two 1’s appear one number apart, the two 2’s appear two numbers apart, the
two 3’s appear three numbers apart, . . . , and the two n’s appear n numbers
apart. Instances are encoded by n.

All-interval series (#007: Frequency assign., Comb. math.). Given the twelve
standard pitch-classes (c, c#, d, ...), represented by numbers 0,1,...,11, this
problem amounts to find a series in which each pitch-class occurs exactly once
and in which the musical intervals between neighbouring notes cover the full
set of intervals from the minor second (1 semitone) to the major seventh (11
semitones). That is, for each of the intervals, there is a pair of neigbhouring
pitch-classes in the series, between which this interval appears.

We consider a generalization of this problem in which the set of numbers is
the range from 0 to n− 1, for any given positive n. In particular, given such n,
the problem amounts to find a vector s = (s1, ..., sn) that is a permutation of
{0, 1, ..., n− 1} and such that the interval vector v = (|s2 − s1|, |s3 − s2|, ...|sn −
sn−1|) is a permutation of {1, 2, ..., n− 1}.

Instances are encoded by the integer n.

Table 1 summarizes the set of problems considered in this paper, as well as the
parameters used to encode their respective instances.

Some comments on the choices made above are in order. First of all, since
the performance typically depends on the instances being positive or negative
(i.e., satisfiable or unsatisfiable), we considered 4 optimization problems. As a
matter of fact, for proving that a solution is optimal, solvers have to solve both
positive and negative instances.

8

Id Problem name Instances defined by
017 Ramsey # of graph nodes
010 Social golfer (decisional version) Schedule length
006 Golomb rulers # of marks
001 Car sequencing Benchmark instances
018 Water buckets Benchmark instances
032 Maximum density still life Board size
033 Word design (decisional version) # of words
019 Magic squares matrix order
024 Langford’s numbers # of values
007 All-interval series # of integers

Table 1: The set of problems considered in the experiments, together with their
CSPLib identification number and the unique parameter used to encode their
instances. We observe that instances for two problems could not naturally be
encoded by a single parameter: in these cases, benchmarks available (or derived
from those available) on CSPLib were used.

Actually, two more problems, namely Social golfer and Word design, are
presented as optimization problems in the CSPLib. However, since none of our
solvers were able to achieve their optimal solutions,11 in our experiments we
considered their decisional versions.

The choice of the problems had also to take into account that one of the
solvers, cmodels, is unable to natively deal with optimization problems. In
order to let the experimentation being significant for such solver, we proceeded
to solve the 4 optimization problems with cmodels by iteratively solving in-
stances of their decisional versions in a dichotomic fashion, in order to find the
best value of the objective function (this issue is discussed in detail in Section 4).
Of course, the performance obtained by cmodels in this way may be considered
as a lower bound of that which can be obtained by extending the system in order
to natively tackle optimization problems. However, experimental results show
that even in this case, this solver is competitive with respect to (and sometimes
even faster than) the others.

As for the choice of the instances, those of two problems, namely Car se-
quencing and Water buckets, could not be naturally encoded by a single param-
eter. Hence, they have been derived from benchmarks taken from the CSPLib.

Finally, some problems, namely Water buckets and Magic squares have been
used also to evaluate the impact of numbers and arithmetic constraints in prob-
lem models. In fact, it is well known that such issues may greatly degrade
solvers’ performance, and that this behavior strongly depends on the under-
lying solving algorithm. In order to understand how negatively numbers and
arithmetic constraints affect the behavior of the various solvers, we built new

11We observe that, as for Social golfer, the longest schedule is still unknown in the literature,
being of 9 or 10 weeks.

9

sets of instances, equivalent to the original ones, that however force the underly-
ing algorithms to deal with larger numbers. By measuring and comparing how
much their performances degrade, we are able to evaluate the robustness of the
various technologies with respect to such issues.

3.2 Models selection

As claimed in Section 2, in order to build an extensible experimental framework,
we followed the approach of being as uniform and systematic as possible during
the modelling phase, by requiring the specifications of the various solvers to
be similar to each other. Hence, even if not always identical because of the
intrinsic differences among the languages that could not be overcome, all of the
models share the same ideas behind the search space and constraints definitions,
independently of the language. Below, we discuss the general criteria followed
during the modelling phase, and the different formulations considered for each
problem. Encodings of all problems for all solvers are available at http://
www.dis.uniroma1.it/∼?????????. We refer the reader to this web-page for
a detailed understanding of the different modelling techniques described in the
remainder of the paper.

3.2.1 General modelling criteria

The first obvious difference between opl and the ASP solvers concerns the search
space declaration. The former relies on the notion of function from a finite do-
main to a finite codomain, while the latter ones have just relations, which must
be restricted to functions through specific constraints. Domains of relations can
be implicit in dlv, since the system infers them by contextual information. For
each language, we used the most natural declaration construct, i.e, functions for
opl, and untyped relations for dlv. Secondly, since the domain itself can play a
major role in efficiency, sometimes it has been inferred through some a posteri-
ori consideration. This is especially the case for domains of objective values in
optimization problems. As an example, in Golomb rulers the maximum position
for marks (hence the rule length to be minimized) is upper-bounded by 2m (m
being the number of marks), but choosing such a large number can advantage
opl, which has powerful arc-consistency algorithms for domain reduction. As
a consequence, we used the upper bound 3L/2 for all solvers, L being the max-
imum mark value for the optimum of the specific instance. Such practice has
been carried out systematically for each minimization problem (3 out of 4), by
fixing the upper bound for the value of the objective function to 3L/2, with L
being the optimum (computed by preliminary experiments). As for the unique
maximization problem considered (Still life), as discussed in Section 4 (cf. also
the problem description given in Section 3.1), this problem does not applies.

10

3.2.2 Base specifications

The first formulation considered for each problem is the so called base specifi-
cation. This has been obtained by a straightforward translation of the CSPLib
problem description into the target language, by taking into account the general
criteria discussed above, and, arguably, is the most natural and declarative.

Of course, in general, different formulations may exist for a given problem
that could alternatively be considered as its base specifications, since they are
equally “natural” and “straighforward”. An example is given by Water bucket,
where elements of the search space (i.e., plans) could either be modelled as se-
quences of buckets configurations (e.g., for 3 buckets, we can explicitly maintain,
for each time-point, the amount of water in each of them), or as sequences of
actions that encode transitions from one configuration to another. To give the
intuition, consider an instance with 3 buckets having capacity, respectively, 8,
5, 3, and which initial state being 〈8, 0, 0〉 (i.e., the first bucket is full, while
the other two are empty). The following sequence of states is a (partial) plan
consistent with the problem constraints, hence a point of the search space:

〈〈8, 0, 0〉, 〈3, 5, 0〉, 〈3, 2, 2〉, . . .〉,

meaning that at time-point 0 the buckets are in the initial configuration, at
time-point 1, bucket 1 contains 3 units of water, bucket 2 contains 5, and so on.
This plan could equivalently be encoded by representing transitions that link
each state to the next one, i.e.:

〈1 → 2, 2 → 3, . . .〉,

meaning that the configuration at time-point 1 is obtained by moving water
from bucket 1 to bucket 2, that at time-point 2 is in turn achieved by further
moving water from bucket 2 to bucket 3, and so on.

As a general rule, in all these cases, we performed preliminary experiments
in order to understand which formulation led to the best performances, and
regarded that one as the base specification.

3.2.3 Reformulation by symmetry-breaking

It is well known in the literature [?] that the symmetries exhibited by a prob-
lem can be one of the major sources of inefficiency for many classes of solvers.
Hence, the first kind of reformulation considered aims at evaluating the impact
of performing symmetry-breaking.

Given the high abstraction level of the languages, an immediately usable
form of reformulation is through the addition of new constraints (cf., e.g., [9,
20, 12]), usually called symmetry-breaking constraints.

Symmetry-breaking is dealt with in a systematic way, by adding to the
base specifications general, uniform, and standardized schemes for symmetry-
breaking presented in [17]. Such schemes are briefly recalled in what follows
(examples below are given in the simple case where all permutations of values
are symmetries; generalizations exist):

11

• Selective assignment (SA): A subset of the variables are assigned to
precise domain values. As an example, in the Social golfer problem, in
order to break the permutation symmetries among groups, we can fix the
group assignment for the first and partially for the second week.

• Selective ordering (SO): Values assigned to a subset of the variables
are forced to be ordered. As an example, in the Golomb rulers problem,
in order to break the symmetry that “reverses” the ruler, we can force the
distance between the first two marks to be less than the difference between
the last two.

• Lowest-index ordering (LI): Linear orders are fixed among domain
values and variables, and assignments of variables (x1, . . . , xn) are required
to be such that, for any pair of values (d, d′), if d < d′ then min{i|xi =
d} < min{i|xi = d′}. An example is given by the Ramsey problem: once
orders are fixed over colors, e.g. red < green < blue, and over edges, we
can force the assignments to be such that the least index of red colored
edges is lower than the least index of green colored ones, and analogously
for green and blue edges.

• Size-based ordering (SB): After fixing a linear order on values, as-
signments are forced to be such that |{x ∈ V |x = d}| ≤ |{x ∈ V |x = d′}|,
for any pair of values d ≤ d′, V being the set of variables. As an example,
in the Ramsey problem we could require the number of blue colored edges
to be greater than or equal to that of green ones, in turn forcing the latter
to be greater than or equal to the number of red colored edges. Gener-
alizations of this schema do exist, depending on the way the partition of
the variables set into size-ordered sets is defined.

• Lexicographic ordering (LX): This schema is widely applied in case
of search spaces defined by matrices, where all permutations of rows (or
columns) are symmetries. It consists in forcing the assignments to be such
that all rows (resp. columns) are lexicographically ordered.

• Double-lex (lex2) ordering (L2): This is a generalization of the pre-
vious schema, applicable where the matrix has both rows and columns
symmetries. It consists in forcing assignments to be such that both rows
and columns are lexicographically ordered (cf., e.g., [12]). An example is
Social golfer, in which the search space can be defined as a 2D matrix
that assigns a group to every combination player/week. Such a matrix
has all rows and columns symmetries (we can swap the schedules of any
two players, and the group assignments of any two weeks).

Above schemes for symmetry-breaking can be qualitatively classified in terms
of “how much” they reduce the search space (i.e., their effectiveness), and in
terms of “how complex” is their evaluation. In particular they can be partially
ordered as follows: SA < SO < LI < LX < L2, and LI < SB, where s1 < s2

12

Figure 1: Classification among symmetry-breaking schemes as a partial ordered
set. Higher schemes are more effective, but usually require more complex con-
straints.

means that schema s2 better reduces the search space. However, s2 typically
requires more complex constraints than s1. Figure 1 shows such a classification
as a partial order set.

Furthermore, in many cases, more than a single schema is applicable for
breaking the symmetries of a given specification. Since previous studies [21]
showed that this technique is effective when simple formulae are added, it is
interesting to know –for each class of solvers– what is the amount of symmetry
breaking that can be added to the model, and still improving performances. In
what follows, we give a partial answer to this question.

3.2.4 Reformulation by exploiting global constraints

Global constraints (GC) encapsulate, and are logically equivalent to a set of
other constraints. Despite this equivalence, global constraints come with more
powerful filtering algorithms, and a specification exhibiting them is likely to be
much more efficiently evaluable.

One of the most well-known global constraints supported by constraint
solvers is alldifferent(x1,...,xn) that forces the labeling algorithm to as-
sign different values to all its input variables. Of course, such a constraint can
be replaced by a set of binary inequalities xi 6= xj (for all i 6= j), but such a
substitution will result in poorer propagation, hence in less efficiency.

Several global constraints are supported by opl, e.g., alldifferent and
distribute. The latter is a generalization of alldifferent, forcing the algo-
rithm to assign a set of values to a set of variables in such a way that any value
occurs a given number of times among the variables.

According to the problems structure, alldifferent has been applied to
Golomb Rulers, Magic squares, and All-interval, and distribute to Social
golfer, Car sequencing, Word design, and Langford Problem. As for Ram-
sey, Water bucket, and Maximum density still life, none of such reformulations
applies.

On the other hand, ASP solvers do not offer global constraints, hence no
comparison can be made on this issue.

13

3.2.5 Reformulation by adding auxiliary predicates

A predicate in the search space is called auxiliary if its extensions functionally
depend on those of the other ones. The use of auxiliary guessed predicates is
very common in declarative programming, especially when the user needs to
store partial results, to maintain intermediate states, or wants to make the so-
called redundant modelling (cf., e.g., [8]), by maintaining multiple views of the
search space, synchronized by channelling constraints.

As an example, consider the specification of Social Golfer, where the search
space is a total function assigning a group to each player/week pair. We could
add to the search space an auxiliary guessed predicate meet(·, ·, ·) and suitable
channelling constraints that, for each pair of players p1, p2 (p1 6= p2), and each
week w, force the triple 〈p1, p2, w〉 to belong to meet iff players p1 and p2

are expected to play in the same group on week w, according to the guessed
scheduling.

It can be observed that any extension of the guessed scheduling uniquely
defines an extension for the meet predicate. The main advantage of using such
predicate is in the simplification of some of the constraints: as an example, the
meet-at-most-once constraint can be much more compactly expressed in terms
of the meet predicate.

In general, although the use of auxiliary predicates increases the size of the
search space, this often results in a simplification of complex constraints and in
a reduction of the number of their variables, and thus may lead, as we show in
Section 4, to appreciable time savings.

We consider equivalent specifications, obtained by using auxiliary predicates,
for all of the selected problems. However, the bottom-up evaluation algorithms
of dlv, smodels, and cmodels may significantly advantage ASP solvers over
opl on such specifications, since auxiliary predicates are usually defined in rule-
heads. To this end, when adding auxiliary predicates to opl specifications, we
also added simple and high-level modelled search procedures instructing the
labelling algorithm to delay branches on auxiliary variables, while maintaining
the default behavior on the others, as explained in previous work [2].

3.2.6 Reformulation by combining different techniques

In many cases, more than one single reformulation strategy improves perfor-
mances on a given problem. Hence, the question arises whether synergies exist
among them, and what techniques are likely to work well together, for each
solver.

To this end, for each problem we consider some additional formulations: the
first one has been obtained, according to the aforementioned uniformity crite-
ria, by merging the two reformulations (among symmetry-breaking, addition
of global constraints and of auxiliary predicates) that, for each solver, resulted
to be the most efficient. Finally, in order to understand whether there exist
better, undiscovered synergies, we relaxed the uniformity hypothesis, and con-
sidered some of the other possible combinations of reformulation strategies, with

14

the goal to further boost performances.

3.2.7 Example: the Golomb rulers problem

In order to show how we applied our methodology to modelling and reformu-
lation, we show the different formulations we designed for the Golomb rulers
problem (cf. Section 3.1) in the various languages.

Base specifications.
opl

int+ n_marks = ...;

int+ maxval = ...; // Fixed to 3L/2 (L = opt. length(m))

var int+ ruler[1..n_marks] in 0..maxval; // search space decl.

minimize ruler[m] // obj. func.

subject to {

ruler[1] = 0; // c1

forall (i in 1..,n_marks-1) { ruler[i] < ruler[i+1]; }; // c2

forall(i,j,k,l in 1..n_marks :

(i < j) & (k < l) & (i <> k \/ j <> l)) { // c3

(ruler[j] - ruler[i]) <> (ruler[l] - ruler[k]);

};

};

dlv

ruler(P,M) v fail(P,M) :- marks(M), positions(P). % search space decl.

:- positions(P), not #count{ M : ruler(P,M)}=1.

ruler(1,0). % c1

:- ruler(X,Y), ruler(X1,Y1), X1>X, Y>=Y1. % c2

:- #count{X1,X2 : ruler(X1,Y1), ruler(X2,Y2), X2>X1,

Y2=D+Y1} > 1, marks(D). % c3

:~ ruler(P,M), n_marks(P). [M:1] % obj. func.

smodels and cmodels (lparse)

1 {ruler(P,M): marks(M)} 1 :- pos(P). % search space decl.

compute {ruler(1,0)}. % c1

:- ruler(X,Y), ruler(X1,Y1), gt(X1,X), not gt(Y1,Y). % c2

:- ruler(X,Y), ruler(X1,Y1), ruler(X2,Y2), % c3

ruler(X3,Y3), gt(X1,X), gt(X3,X2),

or(neq(X,X2),neq(X1,X3)), eq(Y1-Y,Y3-Y2).

minimize[ruler(n_marks,Y): marks(Y)]. % obj func.

15

Reformulation by symmetry-breaking: Selective ordering
opl

// ...Base specification plus:

((ruler[2] - ruler[1]) < (ruler[n_marks] - ruler[n_marks - 1])); // SO

dlv

% ...Base specification plus:

:- ruler(1,Y), ruler(2,Y1), ruler(M,Y3), ruler(N,Y2), % SO

Y1=D1+Y, Y3=D2+Y2, D2<D1, M=N+1, n_marks(M).

smodels and cmodels (lparse)

% ...Base specification plus:

:- ruler(1,Y), ruler(2,Y1), ruler(n_marks-1,Y2), % SO

ruler(n_marks,Y3), lt(Y1-Y,Y3-Y2).

Reformulation by adding global constraints: all-different
opl

// ...Base specification, with c3 replaced by:

alldifferent(

all (i,j in 1..n_marks: i <> j) (ruler[j] - ruler[i])); % c3 (GC)

dlv, smodels, and cmodels: not applicable.

Reformulation by adding auxiliary predicates

opl

int+ n_marks = ...;

int+ maxval = ...;

int+ numOfDifferences = (n_marks*(n_marks-1)/2);

range diffValues 1..maxval;

var int+ ruler[1..n_marks] in 0..maxval; // search space decl.

var diffValues distance[1..numOfDifferences]; // aux. pred. decl.

minimize ruler[n_marks] // obj. func.

subject to {

ruler[1] = 0; // c1

forall (i in 1..n_marks-1) { // c2

ruler[i] < ruler[i+1];

16

};

forall(m1,m2 in 1..n_marks: m2 > m1){ // chann. constr.

distance[((n_marks*(n_marks-1)/2) -

((n_marks-m1+1)*(n_marks-m1)/2) + (m2-m1))] =

ruler[m2] - ruler[m1]

};

forall(i,j in 1..numOfDifferences : i > j) { // c3 (Aux)

distance[i] <> distance[j];

};

};

// Delay branches on aux. predicate

search{

generate(ruler);

generate(distance);

};

dlv

ruler(P,M) v fail(P,M) :- marks(M), positions(P). % search space decl.

:- positions(P), not #count{ M : ruler(P,M)}=1.

ruler(1,0). % c1

:- ruler(X,Y), ruler(X1,Y1), X1>X, Y>=Y1. % c2

diff(X1,X2,D) :- ruler(X1,Y1), ruler(X2,Y2), % aux. pred. decl. and chann. constr.

X2>X1, Y2=D+Y1.

:- #count{X1,X2: diff(X1,X2,D)}>1, marks(D), D>0. % c3 (Aux)

:~ ruler(P,M), n_marks(P). [M:1] % obj. func.

smodels and cmodels (lparse)

1 {ruler(P,M): marks(M)} 1 :- pos(P). % search space decl.

compute {ruler(1,0)}. % c1

:- ruler(X,Y), ruler(X1,Y1), gt(X1,X), not gt(Y1,Y). % c2

diff(X1,X2,D) :- ruler(X1,Y1), ruler(X2,Y2), % aux. pred. decl. and chann. constr.

gt(X2,X1), D=Y2-Y1.

:- 2{diff(A,B,D): positions(A;B): gt(B,A)}, marks(D). % c3 (Aux)

minimize[ruler(n_marks,Y): marks(Y)]. % obj func.

A combined reformulation We give the opl specification obtained combin-
ing symmetry-breaking (SO), addition of global constraints (all-different), and
addition of the auxiliary predicate:

17

int+ n_marks = ...;

int+ maxval = ...;

int+ numOfDifferences = (n_marks*(n_marks-1)/2);

range diffValues 1..maxval;

var int+ ruler[1..n_marks] in 0..maxval; // search space decl.

var diffValues distance[1..numOfDifferences]; // aux. pred. decl.

minimize ruler[n_marks] // obj. func.

subject to {

ruler[1] = 0; // c1

forall (i in 1..n_marks-1) { // c2

ruler[i] < ruler[i+1];

};

forall(m1,m2 in 1..n_marks: m2 > m1){ // chann. constr.

distance[((n_marks*(n_marks-1)/2) -

((n_marks-m1+1)*(n_marks-m1)/2) + (m2-m1))] =

ruler[m2] - ruler[m1]

};

alldifferent(distance); // c3 (Aux+GC)

((ruler[2] - ruler[1]) < // SO

(ruler[n_marks] - ruler[n_marks - 1]));

};

// Delay branches on aux. predicate

search{

generate(ruler);

generate(distance);

};

4 Experimental results

In this section we present and analyze the results of our experimentation. Our
experiments have been performed by using the following solvers:

• Ilog solver v. 5.3, invoked through oplstudio 3.61,

• dlv v. 2005-02-23,

• smodels v. 2.28, by using lparse 1.0.17 for grounding,

• cmodels v. 3.55, by using lparse 1.0.17 for grounding,

on a 2 CPU Intel Xeon 2.4 Ghz computer, with a 2.5 GB RAM and Linux v.
2.4.18-64GB-SMP.

As discussed in Sections 2 and 3.2, for every problem, we wrote several
specifications (a base plus several reformulated ones), in the different languages,
having care to be as uniform and systematic as possible during the modelling
phase. We then ran the different specifications for each solver on the same set

18

of instances, which selection has been performed as discussed in Section 3.1. All
runs had a timeout of 1 hour.

Results are shown in Tables 2 and 3 for, respectively, optimization and deci-
sion problems. In particular, for each problem and solver, we report the largest
instance the various systems were able to solve (in the given time-limit) for the
base specifications and the various reformulations.

However, during our experiments, we experienced that, for a given speci-
fication, sometimes solvers were unable to solve instance denoted by value k
of the parameter in the time-limit, but were able to solve the one denoted by
k + 1. This “noisy” (or “non-monotone”) behavior is very well-known in the
literature. To ensure fairness, and to avoid the effects of such a noisy behavior,
in the results we intend for largest instance the one denoted by value k of the
parameter that satisfies the following two conditions: (i) It is solvable in the
time-limit by the given solver with the given specification; (ii) Neither instance
k + 1 nor instance k + 2 are solvable in the time-limit by the same solver with
the same specification.

We also remind that one solver, namely cmodels, cannot natively deal with
optimization problems. Nonetheless, cmodels has been run also to solve the
instances of the 4 optimization problems: its entries in Table 2 have been ob-
tained by iteratively invoking the solver several times, by adding each time new
constraints to the specifications that limit the values of the objective function
evaluated on the solutions found, by following the approach of performing a
binary search of the optimum objective value. Of course, such results represent
lower bounds of the solver’s performance. Nonetheless they show that, even in
this case, cmodels is competitive with respect to the other solvers, thus con-
firming that SAT should be undoubtedly regarded as one of the most promising
and effective technology for constraint problems to date (such evidence has also
been discussed in related work [5]). Figure 2 shows the algorithm used to solve
minimization problems (3 out of 4) with cmodels. As for the unique maximiza-
tion problem, i.e., Still life, we observe that a dual approach could be straight-
forwardly used, since maximizing the number of live cells does not increase the
size of the search space (the total number of variables remains unchanged).

As discussed in Section 3.1, the size of the instances for few problems could
not be easily represented by a single parameter. In such cases, in order to
give a synthetic yet meaningful measure of the performances of the various
solvers, we proceeded as follows: as for Car sequencing, we report, for each set
of instances generated from CSPLib benchmarks “4/72”, “6/76” and “10/93”
(cf. the discussion about instance selection for this problems in Section 3.1),
the largest one solved, i.e., the one with the largest number of classes , and, as
for Water buckets, the overall time needed to solve the whole set of instances
(instances that could not be solved contributed with 3,600 seconds to the overall
time).

Finally, as for Langford’s Number, it is known that positive instances are
only those with n = 4k or n = 4k − 1 (k ∈ N). To this end, in Table 3 we

19

function solveMinimizationProblem(spec, instance) : solution or "unsat" {

return findMin(spec, instance, lowerBound..upperBound);

// Value for upperBound has been chosen as described in Section 3.2.1.

// Value for lowerBound is usually 0.

}

function findMin(spec, instance, objValueRange) : solution or "unsat" {

let sol = solveDecisionProblem(spec U "objValue in objValueRange", instance);

if(sol == "unsat") return "unsat";

let obj = objective value of "sol";

let middle = objValueRange.min + floor((obj - objValueRange.min)/2);

let solLeft = findMin(spec, instance, objValueRange.min..middle-1);

if (solLeft != "unsat") return solLeft;

else {

let solRight = findMin(spec, instance, middle..obj-1);

if (solRight != "unsat") return solRight;

else return sol;

}

}

Figure 2: Binary search algorithm used to solve minimization problems with
cmodels.

separately report the largest size of the positive and negative instances solved.

From these results, the following observations about the relative performances
of the various solvers, and the marginal impact of the different reformulation
techniques can be made.

20

Table 2: Experimental results for optimization problems. Entries denote the
size of the largest instances solved by opl, dlv, smodels, and cmodels in 1
hour, using the base specification and their reformulations.

Problem Spec opl dlv smodels cmodels

Ramsey
(nb. of nodes)

Base 16 9 9 16
LI 13 16 10 16−

SB 16− 9+ 8 13

SA 16− 9+ 9+ 16+

Aux 16 9+ 9∗ 16∗

Aux+SB 16− 8 − −
Aux+LI 13 16 − −

Golomb rulers
(nb. of marks)

Base 10 9 6 6
SO 10+ 9− 6 6−

Aux 11 9 8 9
GC(alldiff) 11 − − −

Aux+SO 11 9− 8 9
Aux+GC(alldiff) 11 − − −

Aux+GC(alldiff)+SO 12 − − −
Water buckets

(total time [sec])
Base 487.27 2056.85 27229.09 637.57

Aux 233.23 323.26 257.88 39.83

Still life
(board size)

Base 8 7 8 8
SO 8 7 8+ 8

SB 8 7 8− 7

Aux 8− 6 8− 7
Aux+SO 8− 7 8− 8−

Aux+SB 8− 7 8− 7
∗ The use of auxiliary predicates seems to be unavoidable when modelling the Ramsey problem
in smodels and cmodels. For this reason, the Base and Aux specifications coincide.

The symbols and layout issues that denote some entries have the following meaning:

“+” (resp. “−”): altough there is no variation in the size of the largest instance solved by
the same solver with respect to the base specification, computation times are signifi-
cantly lower (resp. higher);

Bold entries: denote the best specification for each solver, in terms of computation time
to solve the largest instance;

Boxed entries: denote the best results, among all solvers, in terms of computation time to
solve the largest instances.

21

Table 3: Experimental results for decision problems. The meaning of values in
the entries is the same of those in Table 2.

Problem Spec opl dlv smodels cmodels

Social golfer
(nb. of weeks)

Base 5 6 6 6
SA 5 6+ 6+ 6
LX 5 6 1 6
L2 5 6 0 6−

Aux 5+ 6 6+ 6+

GC(distr) 3 − − −
Aux+SA 5+ 6+ 6+ 6+

Aux+GC(distr) 6 − − −
Car Sequencing
(nb. of classes)

(bench. 4/72, 6/76, 10/93)

Base (10, 6, 12) (13, 9 ,12) (13 , 9 ,12) (13, 9, 15)

SO (10, 6, 12) (13, 9, 12) (13, 9, 12) (13, 9, 15+)

Aux (10+,6,12) (13, 9, 12) (13, 9, 12) (13+,9+, 14)
GC(distr) (10+, 6, 12) (−,−,−) (−,−,−) (−,−,−)
Aux+SO (10+, 6, 12) (13, 9, 12) (13, 9, 12) (13+, 9+, 15−)

Aux+GC(distr) (10+, 6, 12) (−,−,−) (−,−,−) (−,−,−)
Aux+SO+GC(distr) (10+, 6, 12) (−,−,−) (−,−,−) (−,−,−)

Word Design DNA
(nb. of words)

Base 86 9 8 47
SO 86 9− 13 45
SB 56 5 5 18

LX 87 4 14 43

Aux 86 11 11 46
GC(distr) 86 − − −

Aux+GC(distr) 86 − − −
Aux+LX 87 5 11 44
Aux+SO 86− 9− 31 46
Aux+SB 56 5 11 27

Magic squares
(square size)

Base 4 3 2 2
LI 4+ 3+ 2+ 2
SA 4− 3+ 2+ 2
SO 4− 3 2+ 2

Aux 4+ 3+ 3 2

GC(alldiff) 4 − − −
Aux+GC(alldiff) 4+ − − −

Aux+GC(alldiff)+LI 4+ − − −
Aux+LI 4+ 3+ 3 2
Aux+SA 4+ 3+ 3 2

Langford number
(nb. of values)

(sat inst, unsat inst.)

Base (12, 9) (19, 10) (24, 10) (32, 10)
SO (12, 6) (19, 10+) (24, 10+) (32−, 10)

GC(distr) (12+, 6) − − −
Aux (16, 10) (36, 10+) (28, 10+) (99 , 10+)

Aux+SO (16, 10) (36,10+) (27, 10+) (88, 10+)

Aux+GC(alldiff) (16, 10) − − −
Aux+GC(alldiff)+GC(distr) (16,10) − − −

Aux+GC(alldiff)+GC(distr)+SO (16, 10) − − −
All-interval series
(nb. of integers)

Base 15 13 11 16
SO 15 12 10 17

Aux 15+ 17 14 19
GC(alldiff) 16 − − −

Aux+SO 15− 13− 13 20

Aux+SO+GC(alldiff) 6774 − − −

22

Relative performances of the various solvers (base specifications).
When considering the base specifications only, it can be observed that there
is no a single solver winning on all problems: although opl (the only commer-
cial system considered) seems unbeatable on Word Design, and to be able to
solve larger instances of other problems (e.g., Golomb rulers and Magic squares)
with respect to the other systems, ASP solvers prove to be competitive on sev-
eral others, and in some cases they are much more efficient. Good examples are
Ramsey, Car sequencing, Langford’s number, and All-interval.

Among the ASP solvers, dlv seems to be more efficient than smodels on the
average (as it emerges also from related work [10]); however, there are problems,
like Still life and Langford’s Number, where smodels wins when compared to
dlv.

Finally, the notable performances of cmodels deserve special attention: this
solver is in fact almost always the best among the ASP ones, and is in many cases
better than opl (in many other cases remaining competitive). This shows that
SAT technology can provide a promising and effective technology for solving
constraint problems, confirming the thesis in [5], where another SAT compiler,
Spec2SAT [6], is used to solve a number of combinatorial problems, specified
in the modelling language NP-Spec.

Impact of symmetry-breaking. From the experiments, it can be observed
that symmetry-breaking may be beneficial on all solvers, although the complex-
ity of the adopted symmetry-breaking constraints (cf. Figure 1) needs to be
carefully chosen. As an example, dlv performs much better on the Ramsey
problem with LI symmetry-breaking constraints, but such performance is not
maintained when the more complex SB schema is adopted. A similar behavior
can be observed on smodels.

As for Social golfer, Table 3 does not show significant performance improve-
ments when symmetry-breaking is applied, with the ASP solvers (especially
smodels) being significantly slowed down when adopting the most complex
schemas (LX and L2). However, it is worth noting that, on smaller negative
(non-benchmark) instances, impressive speed-ups have been obtained for all
systems, especially when using SA. As for LX, we also observe that it can be
applied in two different ways, i.e., forcing either players’ schedulings or weekly
groupings to be lexicographically ordered.12 Values reported in Table 3 are
obtained by lexicographically ordering weekly groupings: as a matter of fact,
ordering players’ schedulings is even less performant on smodels, being compa-
rable for the other solvers. General rules for determining the right “amount” of
symmetry breaking for any given solver on different problems are currently still
unknown, but it seems that the simplest ones like SA or LI (cf. Figure 1) have to
be preferred when using ASP solvers. On the other hand, from the experiments
results that opl may benefit also from the addition of more complex schemas,
like LX (cf., e.g., Word design). This is likely due because of the more robust

12None of the systems provide built-in constructs for expressing lexicographical orderings:
hence, they have been modelled as ordinary constraints.

23

algorithms available in opl for dealing with numbers and arithmetics (cf. also
the forthcoming paragraph on this subject).

Impact of global constraints. Experiments confirm that opl may benefit
from the use of global constraints. As an example, the base specification of
the Golomb rulers problem encodes the constraint that forces the differences
between pairs of marks to be all different by a set of binary inequalities. By
replacing them with an alldifferent constraint, opl was able to solve the
instance with 11 marks in the time-limit, and time required to solve smaller
instances significantly decreases. Also the Social golfer specification can be
restated by using global constraints, in particular the distribute constraint.
However, in this case our results show that opl does not benefit from such
a reformulation, in that it was not able to solve even the 4-weeks instance
(solved in about 11 seconds with the base specification). Global constraints
help opl also on other problems, e.g., All-Interval series (alldifferent) and
Car sequencing (distribute), even if, for the latter problem, the performance
improvements don’t make it able to solve larger instances. Finally, Word Design
seems not to be affected by the introduction of distribute.

Impact of auxiliary predicates. As already mentioned, auxiliary predicates
increase the size of the search space, but in some cases their use may result in
better performance, especially when their introduction leads to great simplifica-
tions of complex constraints. Actually, experiments show that, almost always,
ASP solvers benefit from the use of auxiliary predicates (often not really needed
by opl, which allows to express more elaborate constraints), especially when
they are defined relying on the minimal model semantics of ASP (hence, in rule
heads). Good examples are Golomb rulers, where adding the auxiliary predicate
difference/2 leads to a strong improvement of all solvers except dlv, Water
buckets, Langford number (where positive instances are solved much faster by
all systems considered), All-interval, and the Social golfer problem, where smod-
els is able to solve the 6-weeks instance in 6 seconds when the auxiliary meet/3
predicate is used, while solving the base specification requires 41 minutes (a
similar behavior is observed with the other solvers). Using the meet auxiliary
predicate in Social golfer helps also opl (but only after a simple search proce-
dure that excludes branches on its variables has been added, cf. Section 3.2). In
particular, the 5-weeks instance has been solved in just 8 seconds (with respect
to the 80 seconds of the base specification).

It can be observed that only in very few cases solvers suffer from the addition
of auxiliary predicates (cf., e.g., results of the Still life problem).

Synergic reformulations. Specifications obtained by combining, for each
problem and solver, the most two efficient techniques, in many cases further
boost performances, or at least do not affect them negatively. This is the case
of, e.g., Golomb Rulers, Social Golfer, Car sequencing, Word design (opl and
smodels), Magic squares, Langford number, and All-interval series (cmodels),

24

that often proved to be able to deal with larger instances, or to be able to run
significantly faster. Few exceptions do exist, e.g., Maximum density still life,
where solving times were not significantly influenced. This gives evidence that
combining “good” reformulations is in general a promising strategy to further
boost performance of all solvers.

Tables 2 and 3 also show some of the results obtained by other possible
combinations, without considering any uniformity criteria. It can be observed
that in few cases even better results could be achieved (cf., e.g., opl on Golomb
rulers or All-interval series and the specification with auxliary predicates, global
constraints and symmetry-breaking, or Social golfer and the specification with
auxiliary predicates and global constraints), but in several others, only worse
performances were obtained.

Impact of numbers and arithmetic constraints. As introduced at the
end of Section 3.1, we evaluated the impact of numbers and arithmetics on the
performance of the various solvers on two problems, Water buckets and Magic
squares. In particular, we built new instances, equivalent to the original ones,
but such to force the various solvers to deal with larger numbers, and measured
the degradation of performance obtained by the most efficient specifications. In
detail, we proceeded as follows:

• As for Water buckets, we computed the new instances by doubling both
the buckets capacities and the water contents in the start and goal states;

• As for Magic squares, we changed the domain of values for each cell from
the interval [1, n] (n being the board size) to the set {i ·k | i ∈ [1, n]} with
k being 2 or 3.

We then compared the time needed by the different solvers to solve all in-
stances (for what concerns Water buckets) and the largest instance reported in
Table 3 (for what concerns Magic squares) with the most efficient specification
(that with auxiliary predicates), with the time needed to deal with the instance
obtained by performing the above modifications (to ensure fairness, no timeout
has been enforced in this case).

Results are shown in Table 4. From there, it can be observed that, as
largely expected, the presence of larger numbers and arithmetics constraints
over them is a major obstacle for all solvers. However, from the results it follows
that globally, opl behaves much better than the ASP solvers on these issues,
presumably because of the more powerful arc consistency techniques provided
by this solver. Nonetheless, we must also pinpoint the good performance of dlv
and cmodels with respect to smodels on Magic squares: as for the former
system, this is likely to depend to intrinsic qualities of the proprietary grounder,
while for the latter one (that shares its grounder –lparse– with smodels) this
clearly depends on the higher performances of SAT algorithms already discussed
above.

25

Water buckets (Aux)
Instance opl dlv smodels cmodels

All 233.23 323.26 257.88 39.83
All (doubled) 10383.04 ???? 43205.64 5965.83

Perf. degradation 44.52x ????x 167.54x 149.78x

Magic squares (Aux)
Instance opl dlv smodels cmodels

Largest solved (cf. Table 3) 0.09 14.29 111.58 0.02
Largest with k = 2 0.18 29.18 1727.81 0.11
Perf. degradation 2.00x 2.04x 15.48x 5.50x

Largest with k = 3 0.17 41.14 6472.53 0.19
Perf. degradation 1.89x 2.87x 58.01x 9.50x

Table 4: Performance degradation due to the impact of numbers and arithmetic
constraints for the various solvers (all times are in seconds, with no timeout
enforced when solving modified instances).

5 Conclusions

In this paper we reported results about an experimental investigation which
aims at comparing the relative efficiency of a commercial backtracking-based
and three academic ASP solvers when used in a purely declarative way, and the
marginal impact that different and complementary reformulation techniques
have on the different solving technologies.

In particular, we modelled 10 problems from the CSPLib into the languages
used by the different solvers, in a way as systematic as possible, and applied var-
ious high-level reformulation techniques like symmetry-breaking, the adoption
of global constraints and the addition of auxiliary predicates, also evaluating
synergies among them.

Results show that there is not a single solver winning on all problems, with
ASP being comparable to opl for many of them. The good overall performance
of the SAT-based ASP solver cmodels clearly emerges from the experiments,
thus confirming that the impressive advancements in SAT solvers should lead
to definitively consider this technology one the most promising approaches to
solve combinatorial problems.

Furthermore, experiments clearly show that reformulating the specification
almost always improves performances, and that high-level general reformulation
schemes (that can hence be performed automatically by the system) can be
worth. However, even if our experiments suggest some good modelling practices,
an exact understanding of which reformulations lead to the best performance
for a given problem and solver remains a challenge.

26

Finally, we also performed an investigation about the impact of numbers
and arithmetic constraints in problem specifications, and highlighted the better
overall behavior of opl with respect to ASP solvers in this context. However,
also about this issue, the efficiency of the SAT approach emerges, with the worse
performance of dlv and smodels with respect to cmodels.

References

[1] M. Cadoli and T. Mancini. Using a theorem prover for reasoning on con-
straint problems. Applied Artificial Intelligence. Special issue on “Best
papers from AI*IA 2005”. To appear.

[2] M. Cadoli and T. Mancini. Exploiting functional dependencies in declara-
tive problem specifications. In Proc. of JELIA 2004, volume 3229 of LNAI,
pages 628–640, Lisbon, Portugal, 2004. Springer.

[3] M. Cadoli and T. Mancini. Automated reformulation of specifications by
safe delay of constraints. Artif. Intell., 170(8–9):779–801, 2006.

[4] M. Cadoli, T. Mancini, D. Micaletto, and F. Patrizi. Evaluating ASP and
commercial solvers on the CSPLib. In Proc. of ECAI 2006, pages 68–72,
Riva del Garda, Trento, Italy, 2006. IOS Press, Amsterdam.

[5] M. Cadoli, T. Mancini, and F. Patrizi. SAT as an effective solving tech-
nology for constraint problems. In Proc. of ISMIS 2006, volume 4203 of
LNCS, pages 540–549, Bari, Italy, 2006. Springer.

[6] M. Cadoli and A. Schaerf. Compiling problem specifications into SAT.
Artif. Intell., 162:89–120, 2005.

[7] E. Castillo, A. J. Conejo, P. Pedregal, R. Garca, and N. Alguacil. Building
and Solving Mathematical Programming Models in Engineering and Sci-
ence. John Wiley & Sons, 2001.

[8] B. M. W. Cheng, K. M. F. Choi, J. H.-M. Lee, and J. C. K. Wu. Increas-
ing constraint propagation by redundant modeling: an experience report.
Constraints, 4(2):167–192, 1999.

[9] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-
breaking predicates for search problems. In Proc. of KR’96, pages 148–159,
Cambridge, MA, USA, 1996. Morgan Kaufmann, Los Altos.

[10] A. Dovier, A. Formisano, and E. Pontelli. A comparison of CLP(FD) and
ASP solutions to NP-complete problems. In Proc. of ICLP 2005, volume
3668 of LNCS, pages 67–82, Sitges, Spain, 2005. Springer.

[11] A. J. Fernández and P. M. Hill. A comparative study of eight constraint
programming languages over the Boolean and Finite Domains. Constraints,
5(3):275–301, 2000.

27

[12] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking row and column symmetries in matrix models. In
Proc. of CP 2002, volume 2470 of LNCS, page 462 ff., Ithaca, NY, USA,
2002. Springer.

[13] R. Fourer, D. M. Gay, and B. W. Kernigham. AMPL: A Modeling Language
for Mathematical Programming. Intl. Thomson Publ., 1993.

[14] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The DLV System for Knowledge Representation and Reasoning. ACM
Trans. on Comp. Logic. To appear.

[15] Y. Lierler and M. Maratea. Cmodels-2: SAT-based Answer Set Solver en-
hanced to non-tight programs. In V. Lifschitz and I. Niemelä, editors, Proc.
of LPNMR 2004, volume 2923 of LNCS, pages 346–350, Fort Lauderdale,
FL, USA, 2004. Springer.

[16] F. Lin and Z. Yuting. ASSAT: Computing answer sets of a logic program
by SAT solvers. Artif. Intell., 157(1–2):115–137, 2004.

[17] T. Mancini and M. Cadoli. Detecting and breaking symmetries by reasoning
on problem specifications. In Proc. of SARA 2005, volume 3607 of LNAI,
pages 165–181, Airth Castle, Scotland, UK, 2005. Springer.

[18] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Math. and Artif. Intell., 25(3,4):241–
273, 1999.

[19] N. Pelov, E. De Mot, and M. Denecker. Logic Programming approaches for
representing and solving Constraint Satisfaction Problems: A comparison.
In M. Parigot and A. Voronkov, editors, Proc. of LPAR 2000, volume 1955
of LNCS, pages 225–239, Reunion Island, FR, 2000. Springer.

[20] J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction
problems. In H. J. Komorowski and Z. W. Ras, editors, Proc. of ISMIS’93,
volume 689 of LNCS, pages 350–361, Trondheim, Norway, 1993. Springer.

[21] A. Ramani, F. A. Aloul, I. L. Markov, and K. A. Sakallak. Breaking
instance-independent symmetries in exact graph coloring. In Proc. of
DATE 2004, pages 324–331, Paris, France, 2004. IEEE Comp. Society
Press.

[22] O. Shcherbina, A. Neumaier, D. Sam-Haroud, X.-H. Vu, and T.-V. Nguyen.
Benchmarking global optimization and constraint satisfaction codes. In
Proc. of COCOS 2002), volume 2861 of LNCS, pages 211–222, Valbonne-
Sophia Antipolis, France, 2003. Springer.

[23] G. Smolka. The Oz programming model. In Computer Science Today:
Recent Trends and Developments, volume 1000 of LNCS, pages 324–343.
Springer, 1995.

28

[24] P. Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, 1999.

[25] M. Wallace, J. Schimpf, K. Shen, and W. Harvey. On benchmarking con-
straint logic programming platforms. response to [11]. Constraints, 9(1):5–
34, 2004.

29

