SAT as an Effective Solving Technology for
Constraint Problems

Marco Cadoli, Toni Mancini, and Fabio Patrizi

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
{cadoli, tmancini, patrizi}@dis.uniromal.it

Abstract. In this paper we investigate the use of SAT technology
for solving constraint problems. In particular, we solve many instances
of several common benchmark problems for CP with different SAT
solvers, by exploiting the declarative modelling language NPSPEC, and
SPEC2SAT, an application that allows us to compile NPSPEC specifica-
tions into SAT instances. Furthermore, we start investigating whether
some reformulation techniques already used in CP are effective when us-
ing SAT as solving engine. We present encouraging experimental results
in this direction, showing that this approach can be appealing.

1 Introduction

Several benchmark problems have been proposed in the literature for test-
ing the performance of Constraint Programming tools e.g., OR-Library
(www.ms.ic.ac.uk/info.html) or CSPLib (www.csplib.org), spanning several
areas, from combinatorics, to planning, scheduling, or problems on graphs. There
is also a great variety in the kind of solvers that are used for Constraint Program-
ming: those based on backtracking (cf., e.g., [I5]), mathematical programming
(cf., e.g., [5]), answer sets and stable model semantics (cf., e.g., [8]), which are
typically complete, or those that rely on local-search techniques (cf., e.g., [10])
which are intrinsically incomplete.

In this paper we focus on a different kind of tools, i.e., solvers for Proposi-
tional Satisfiability (SAT), showing how they can be transparently and effectively
used for solving constraint problems. The intuition behind the usage of a SAT
solver, is that every CSP can be reduced in polynomial time to an instance of
SAT, since the complexity of solving a CSP is in NP, and SAT is one of the
prototypical NP-complete problems. Actually, the latter aspect led to a great
interest and to a huge amount of research in the field of SAT solving (cf., e.g.,
the proceedings of the last SAT conferences), leading to the current availability
of very efficient solvers that can deal with very large formulae. State-of-the-art
SAT solvers include complete ones, such as ZCHAFF [I1], and incomplete ones,
such as WALKSAT [14], and BG-WALKSAT [16]. For an up-to-date list, we refer the
reader to the URLs www.satlib.org and www.satlive.org

F. Esposito et al. (Eds.): ISMIS 2006, LNAI 4203, pp. 540-549] 2006.
© Springer-Verlag Berlin Heidelberg 2006

www.ms.ic.ac.uk/info.html
www.csplib.org
www.satlib.org
www.satlive.org

SAT as an Effective Solving Technology for Constraint Problems 541

The availability of fast solvers for SAT drew a great interest in the CP re-
search community, and many papers show how to translate (compile) into SAT
instances of various problems (cf., e.g., [7U6]). However, the complexity of the
translation task is a major obstacle, since the compilation strongly depends on
the constraints of the problem to be solved. Nowadays, this task is typically
made by problem-dependent programs hence, in practice, preventing SAT to be
one of the actual solving technologies for Constraint Programming. The avail-
ability of specification languages and systems that compile problem instances
into SAT formulae, e.g., the language NPSPEC and the SPEC2SAT system [3],
is an important step ahead, providing the user with the possibility of easily
building specifications for new constraint problems in a purely declarative way,
maintaining a strong independence on the instances.

In this paper, we present some experiments showing that SAT technology can
be effectively employed for solving CSPs, by using NPSPEC on several common
benchmark problems for CP, experiencing different SAT solvers. The problems
we focus on are a significant subset of those present in the benchmark repository
CSPLib, very well-known in the CP research community. Problems in CSPLib
are usually described only in natural language, and no formal specification is
given for most of them. Hence, as a side-effect, our work also proposes declarative
specifications (in the language NPSPEC) for such problems.

In general, given a specification of a problem, several techniques have been
proposed to reformulate it, in order to improve the solver efficiency, while main-
taining equivalence (or at least, the possibility to efficiently reconstruct valid
solutions to the original problem from solutions to the reformulated one). We
experienced the application, at the symbolic level of the specification, of two of
them, and present some experimental results.

The paper is organized as follows: in Section [2] we briefly illustrate the lan-
guage NPSPEC and the SPEC2SAT program that, given a NPSPEC specification
and an instance, compiles it into a SAT instance. In Section [B] we present the
chosen benchmark problems, while in Section @l we present and comment our
experimental results. Finally, Section [{] draws further discussions and concludes
the paper.

2 The NPSpec Language and Spec2Sat

NPSPEC and SPEC2SAT have been extensively described in [3]. Hence, in what
follows, we just recall the syntax and the informal semantics of the modelling
language, and the general architecture of the compiler. The Home Page of the
NPSPEC project (www.dis.uniromal.it/~cadoli/research/projects/NP-SPEC/))
contains all the specifications proposed in this paper, as well as the program
itself.

The NPSPEC language. An NPSPEC program consists of a DATABASE section
and a SPECIFICATION section. The former includes the definition of the problem
instance, in terms of extensional relations, and integer intervals and constants.
The latter section instead, consists of the problem specification, that is divided

www.dis.uniroma1.it/~cadoli/research/projects/NP-SPEC/

542 M. Cadoli, T. Mancini, and F. Patrizi

into two parts: the declaration of a search space, and the definition of constraints
that a point in the search space has to satisfy in order to be a solution to the
problem instance. The declaration of the constraints is given by a stratified
DATALOG program, which can include the six predefined relational operators
and negative literals.

The full syntax of NPSPEC is given in [3], hence here we just recall it with
an example. In particular, we show an NPSPEC program for the Social golfer
NP-complete problem (problem nr. 10 in CSPLib), that, given a set of N PLAYERS
players that want to play golf once a week, amounts to find an arrangement for
all of them into a number N GROUPS of groups of size GROUP SIZE for N WEEKS weeks,
in such a way that no two players play more than once in the same group. The
following relationship must hold among three of the afore-mentioned quantities:
N PLAYERS = N GROUPS * GROUP SIZE.

DATABASE
N_WEEKS = 3; N_GROUPS = 3; GROUP_SIZE = 3;
N_PLAYERS = N_GROUPS * GROUP_SIZE;

SPECIFICATION
IntFunc({1..N_PLAYERS}><{1..N_WEEKS}, play, 1..N_GROUPS). // S1
fail <-- play(P1,W1,G1), play(P2,W1,G1), P1 != P2, // 82

play(P1,W2,G2), play(P2,W2,G2), Wi != W2.
fail <-- COUNT(play(*,W,G),X), X != GROUP_SIZE. // 83

The following comments are in order:

— The input instance is defined in the DATABASE section, which is generally
provided in a separate file (this part may also define finite relations).

— In the search space declaration (metarule $1) the user declares the predicate
symbol play to be a “guessed” one, implicitly of arity 3. All other predicate
symbols are, by default, not guessed. Being guessed means that we admit all
extensions for the predicate, subject to the other constraints.

— play is declared to be an integer function from the finite
domain {1..N PLAYERS} x {1..N WEEKS} to {i..N GROUPS}. As
an example, {(1,1,1),(2,1,1),(3,1,1), (4,1,2),(5,1,2),(6,1,2),
(7,1,3),(8,1,3),(9,1,3),...} is a valid extension as long as it defines
exactly one group for any player in any week.

— Comments can be inserted using the symbol “//”.

— Rules 82 and S3 are the constraints that schedulings must obey in order to
be valid solutions: a scheduling fails, i.e., it is not valid, if there exist two
players P1 and P2 that play twice in the same group (rule S2), or if there
exist a group G which is not of size GROUP SIZE in a week W (rule s3).

Solving this program with NPSPEC produces an extension for the guessed pred-
icates that satisfies all the constraints, if it exists.

The search space declaration, which corresponds to the definition
of the domain of the guessed predicates, is, in general, a sequence
of declarations of the form: (i) Subset (<domain>, <pred_id>); (%)
Permutation(<domain>, <pred_id>); (4i7) Partition(<domain>, <pred_id>, n);

SAT as an Effective Solving Technology for Constraint Problems 543

(iv) IntFunc(<domain>, <pred_id>, min..max). We do not formally give fur-
ther details of the NPSPEC syntax, but, in the following sections, we present
and comment several other examples. We just remark that the declarative style
of programming in NPSPEC is very similar to that of DATALOG, and it is there-
fore easy to extend programs for incorporating further constraints. Concerning
syntax, we remark that NPSPEC offers also useful SQL-style aggregates, such as
SUM, COUNT, MIN, and MAX. Several examples of Section [3] use such operators.

The NPSPEC to SAT compiler. SPEC2SAT is an application that allows the
compilation of a NPSPEC specification (when given together with input data)
into a SAT instance. We do not give here the technical details of the compilation
task, that can be found in [3], but just briefly describe the general architecture of
the application. Given two text files, containing the specification S in NPSPEC
and the instance data I, SPEC2SAT compiles S U I into a CNF formula T in
DIMACS format, and builds an object representing a dictionary which makes
a 1-1 correspondence between ground atoms of the Herbrand base of S U I and
propositional variables of the vocabulary. The file in DIMACS format is given as
an input to a SAT solver (the choice of the SAT solver is completely independent
of the application, as long as it accepts the standard DIMACS format as input,
and can be chosen by the user), which delivers either a model of T, if satisfiable,
or the indication that it is unsatisfiable. At this point, the MODEL2SPEC module
performs, using the dictionary, a backward translation of the model (if found)
into the original language of the specification.

3 Benchmark Problems

As mentioned in Section [Il in this paper we show results in solving typical
Constraint Programming benchmark problems using SAT technology, by taking
advantage of SPEC2SAT. In this section, we list the problems used for the exper-
iments, that are a significant subset of those present in the well-known library
CSPLib (www.csplib.org). We chose eight problems which cover five out of
the seven classes of problems offered by the CSPLib. As a side-effect, we obtain
declarative specifications (in the language NPSPEC) for such problems. Due to
lack of space, we describe (apart for Social golfer, presented in Section 2l the
NPSPEC specifications of only few of them. The others (and several more) can
be found on-line.

Golomb rulers (problem nr. 006). A Golomb ruler of length L with m marks
is defined as a set of m integers 0 = a1 < az < ... < a,, = L such that the
m(m—1)/2 differences a; —a;,1 < i < j < m are all distinct. In our formulation,
given L and m, we are interested in finding a Golomb ruler of any length not
greater than L. An NPSPEC specification for this problem is as follows:

IntFunc({1..N_MARKS}, ruler, O..LENGTH). // G1
fail <-- NOT ruler(1,0). // G2
fail <-- ruler(I,V_I), ruler(J,V_J), J > I, V_I >=V_J. // G3

fail <-- ruler(I,V_I), ruler(J,V_J), ruler(K,V_K), ruler(L,V_L), // G4

www.csplib.org

544 M. Cadoli, T. Mancini, and F. Patrizi

I<J, K<L, I!'=K, V.J-V_.I-==V_L - VK.
fail <-- ruler(I,V_I), ruler(J,V_J), ruler(K,V_K), ruler(L,V_L), // G5
I<J,K<L,J!'=sL, V_.J-V_.I-==V_L - V_K.

The search space is defined (metarule G1) as the set of all total integer functions
from {1..N MARKS} to the integer range {0..LENGTH}, hence assigning a position
on the ruler to each mark. Rule G2 forces the first mark to be at the beginning
of the ruler (position 0). Rule G3 forces marks to be in ascending order, i.e., the
second mark is on the right of the first one, the third on the right of the second,
and so on. Rules G4 and G5 force distances between two marks to be all different.

All-interval series (problem nr. 007). Given the twelve standard pitch-classes (c,
c#, d, ...), represented by numbers 0,1,...,11, find a series in which each pitch-
class occurs exactly once and in which the musical intervals between neighboring
notes cover the full set of intervals from the minor second (1 semitone) to the
major seventh (11 semitones). Here, we generalize the problem by replacing the
twelve standard pitch-classes with an arbitrary set pitch of N pitch-classes (all-
interval series problem of size N). An ad-hoc encoding of this problem into SAT
has been made in [6]. In NPSPEC, the All-interval series problem can be specified
as follows:

Permutation(pitch, series). // Al
Permutation(interval, neighbor). // A2
fail <-- series(P,X), series(Q, X+1), NOT neighbor(abs(P-Q), X). // A3

By metarule A1, guessed predicate series assigns a different order number
to every pitch in the series. Metarule A2 guesses a second guessed predicate,
neighbor, to be an ordering of all possible intervals (interval is defined in the
instance file to be the integer range [1, N — 1]): a tuple (intv,idz) in neighbor
means that pitches at positions ¢dz and idx + 1 in the series are divided by
interval intv. The final rule A3 actually forces series to respect this constraint:
for each pair of adjacent pitches P and Q (at positions X and X+1), the interval
dividing them must have order X in the permutation neighbor.

Schur’s lemma (problem nr. 015). The problem is to put N BALLS balls labelled
{1,...,N BALLS} into N BOXES boxes so that for any triple of balls (x,y,2) with
x4y = z, not all are in the same box. An NPSPEC specification for this problem
is as follows:

Partition({1..N_BALLS}, putIn, N_BOXES). // 81
fail <-- putIn(X,Box), putIn(Y,Box), putIn(Z,Box), X + Y == Z. // 82

Metarule S1 declares the search space to be the set of all partitions of the set of
N BALLS balls into N BOXES boxes, while rule $2 expresses the constraint.

The other problems we considered are Ramsey (ur. 017) Magic square (nr. 019),
Langford’s number (nr. 024), and Balanced academic curriculum (BACP, nr.
030).

SAT as an Effective Solving Technology for Constraint Problems 545

4 Experiments

For all problems we chose a non-trivial set of instances — by using, when possible,
publicly available benchmarks (e.g. for BACP) — and compiled them into SAT.
Then, we ran different SAT solvers on those instances, and measured their solving
times. We used two recent SAT solvers, very different in nature: (i) ZCHAFF,
one of the fastest, complete solvers today available and (7) BG-WALKSAT, a
sound but incomplete one, based on local search. BG-WALKSAT is a recent ex-
tension of the well-known WALKSAT, where the search is guided by backbones of
the formula. Furthermore, we investigated whether the application of different
reformulation techniques was suitable for improving solvers’ performances. In
particular, we applied two, in some sense, complementary techniques: adding
symmetry-breaking constraints and neglecting safe-delay constraints.

Symmetry-breaking. The presence of symmetries in CSPs has been widely recog-
nized to be one of the major obstacles for their efficient resolution. To this end,
different approaches have been followed in the literature in order to deal with
them, the best known being that of adding proper —i.e., symmetry-breaking—
constraints to the CSP model (cf., e.g., [I3/4]). Along the lines of [9], we added
symmetry-breaking constraints at the specification level, hence breaking “struc-
tural” symmetries (i.e. those that depend on the problem structure, and not
on the particular instance considered). Such approach has been proved to be
effective for different classes of solvers, on different problems, and comes natural
when using a purely declarative modelling language.

Safe-delay constraints. Given a specification, a safe-delay constraint is a con-
straint whose evaluation can be safely ignored in a first step, hence simplifying
the problem, and efficiently reinforced in a second step, when a solution to the
relaxed problem has been found [2]. The importance of safe-delay constraints is
that their reinforcement can always be done in polynomial time, without further
search. Highlighting and delaying safe-delay constraints can be very effective be-
cause: (i) The set of solutions is enlarged, and this can be beneficial for some
solvers; (i) The instantiation can be more efficient, since fewer constraints have
to be grounded: this of course applies also to the SAT case, where delaying con-
straints reduces the number of generated clauses; (iii) The reinforcement of
delayed constraints is often very efficient, e.g., linear or logarithmic time in the
size of the input (cf. examples below). It is worth noting that also the deletion
of safe-delay constraints is done by reformulating the declarative specification of
the problem, hence independently of the instance.

Right now, all the reformulations have been performed manually. However, in
previous work [2/9]T], we showed how the required forms of reasoning can be in
principle autonomously made by system, since they reduce to check properties
of first-order formulae.

For the problems presented in Section[3] we considered the following instances:

— Golomb rulers: lengths up to 15, and numbers of marks up to 9;
— All-interval: pitch classes up to 18 (ZCHAFF) and to 40 (BG-WALKSAT);

546 M. Cadoli, T. Mancini, and F. Patrizi

Table 1. Results of the experiments using ZCHAFF (a) and BG-WALKSAT (b)

ZCHAFF
Problem name Instances SAT compil SAT solving Total
nr. solved unsolved time (sec) time (sec) time (sec)
Golomb Ruler 34 34 0 39412.96 2.46 39415.42
with symm breaking 34 34 0 40366.67 2.82 40369.49
with safe delay 34 34 0 26654.29 27.66 26681.95
All-Interval Series 14 13 1 6.29 6600.70 6606.99
with symm breaking 14 10 4 6.55 17265.64 17272.19
Social Golfer 168 110 58 66171.70 212527.78 278699.48
with symm breaking 168 162 6 62774.72 25185.60 87960.32
Schur’s Lemma 164 164 0 2412.57 0.08 2412.65
with safe delay 164 164 0 2510.13 0.12 2510.12
with symm breaking 164 164 0 2537.14 0.08 2537.22
Ramsey problem 85 82 3 155.24 10803.04 10958.28
with safe delay 85 82 3 153.95 10802.61 10956.56
with symm breaking 85 82 3 154.64 10802.49 10957.13
Magic Square 3 3 0 281.16 128.59 409.75
with symm breaking 3 3 0 282.03 38.25 320.28
Langford’s number 43 39 4 1982.14 18109.22 20091.36
with symm breaking 43 39 4 1983.91 17422.39 19406.3
BACP 2 2 0 2041.13 1.11 2042.24
(a)
BG-WALKSAT
Problem name Instances SAT compil SAT solving Total

nr. success ratio time (sec) time (sec) time (sec)

Golomb Ruler 20 100% 15274.17 3528.55 18802.72

with symm breaking 20 100% 16285.75 4632.28 20918.03

with safe delay 20 60% 7617.11 6315.08 13932.19

All-Interval Series 36 17% 171.21 702.98 874.19

with symm breaking 36 14% 172.51 689.2 861.68

Social Golfer 137 43% 16453.92 3633.48 20087.40

with symm breaking 137 46% 17132.50 3792.73 20925.23

Schur’s Lemma 164 100% 2412.57 4.32 2416.89

with safe delay 164 99% 2510.00 4.18 2514.18

with symm breaking 164 100% 2537.14 7.03 2544.17

Ramsey problem 85 94% 155.24 8.47 163.71

with safe delay 85 100% 153.95 7.49 161.44

with symm breaking 85 94% 154.64 8.05 162.69

Magic Square 3 33% 281.16 31.97 313.13

with symm breaking 3 33% 282.03 32.07 314.10

Langford’s number 33 76% 549.76 355.53 905.29
with symm breaking 33 67% 549.74 357.63 907.37

(b)

— Social golfer: up to 36/3/6, or up to 25/6/5 (players/weeks/groups);
Schur’s lemma: up to 50 balls and 10 boxes;

Ramsey problem: up to 19 nodes and 7 colors;

Magic squares: sizes up to 4;

Langford’s number: up to 4 sets and 14 numbers;

BACP: 2 benchmark instances, taken from CSPLib, solved with ZCHAFF.

Results of our experiments are shown in Table [I where (a) and (b) refer to
ZCHAFF and BG-WALKSAT, respectively, and list the overall times for compiling
into SAT and solving the whole set of instances for each problem. Column “Total
time” gives the gross time needed for processing the whole set of instances,
summing up times for compilation and solving. Both stages had a timeout of

SAT as an Effective Solving Technology for Constraint Problems 547

1 hour per instance. Finally, column “nr.” contains the number of instances
run (for some problems, we were unable to solve the largest instances with BG-
WALKSAT, obtaining a too-many-clauses error: for this reason, in Table[i(b) the
number of instances is sometimes smaller), column “solved” (“unsolved”) shows
how many instances have been successfully (unsuccessfully) processed within
the timeout, either if sat or unsat (unsolved instances contribute with 3600 secs
to the total time); since BG-WALKSAT is an incomplete solver, column “success
ratio” (in (b)) reports the percentage of instances for which the correct answer is
given. In addition, rows “with safe delay” and “with symmetry breaking” show
the behavior of the two solvers when performing reformulation. In particular, we
reformulated the following problems by safe-delay:

— Golomb rulers: rule G3 can be ignored, enlarging the set of solutions by all
their permutations. However, in this case a simple modification of the other
constraints is required [2]: in particular, the absolute values of distances
between marks have to be different.

— Schur’s lemma: we let balls to be put in more than one box at the same
time. If such a solution exists, a valid solution of the original problem can
be derived by arbitrarily choosing a single box for each ball.

— Ramsey problem: we let multiple colors to be assigned to the same node. If
such a coloring exists, then it suffices to arbitrarily choose an arbitrary color
for each node having multiple ones.

In the last two cases, ignoring safe-delay constraints yields to guess multi-
valued functions for the guessed predicates. This task can be accomplished by
the current implementation of SPEC2SAT by defining a guessed predicate as a
multivalued partition or integer function. We also observe that for all three prob-
lems, the second stage, i.e., recovering a solution to the original problem from
a solution to the simplified one, can be performed very efficiently: in mlogm
for Golomb rulers (by ordering marks), and in linear time for both Ramsey and
Schur’s lemma.

Concerning symmetry-breaking, we broke some of the symmetries in all but
one problems. We proceeded as follows: in Golomb rulers we forced the distance
between the first two marks to be less than that between the last two; in All-
interval and Langford problems we forced, respectively, the first pitch-class and
the first number to be less than the last one. As for Social golfer, we fixed the
scheduling for the first and partially the second week, and assigned the first
player always to the first group. Finally, as for Ramsey, Schur’s lemma and
Magic square, we fixed the choice for the first ball/edge/square, respectively.

Some comments on the results in Table[I are in order. First of all, both SAT
solvers behave well in many cases, being able to solve instances of reasonable
size. However, it is not the case that one solver is always better than the other:
ZCHAFF seems much faster than BG-WALKSAT in solving Golomb rulers or BACP
instances (BG-WALKSAT was not able to run on instances of the latter problem,
due to their large size), while the latter performs better on All-intervals series,
Ramsey, and Social golfer, even if its success ratio is not always very high.
Interestingly, applying the two reformulation techniques sometimes greatly helps

548 M. Cadoli, T. Mancini, and F. Patrizi

ZCHAFF. As an example, by ignoring safe-delay constraints on Golomb Rulers,
the overall compilation time falls down of about 13000 seconds, while the solving
time increases only of about 25 seconds. A similar behavior happens also when
solving this problem with BG-WALKSAT.

ZCHAFF is also positively affected by symmetry-breaking. As for Magic square
and Social golfer, the speed-up is impressive. It is interesting to observe that
the compilation times do not grow significantly, since the symmetry-breaking
constraints we chose are quite simple. On the other hand, Schur’s Lemma and
Ramsey do not show any improvement. Intuitively, this is due to the lack of un-
satisfiable instances in the considered set. In fact, it is well known that symmetry-
breaking produces its best effects on unsatisfiable instances, avoiding the search
engine to explore the whole search space before terminating with a negative an-
swer. Unfortunately, for Schur’s lemma and Ramsey, no negative instances have
been found that could be handled within the timeout. Another interesting aspect
is that the local search solver BG-WALKSAT does not take benefit from symmetry-
breaking, hence confirming the intuition that a reduction of the solution density
is an obstacle for local search [12]9].

5 Discussion and Conclusions

In this paper, we discussed how the availability of specification languages for con-
straint problems that automatically compile instances into SAT, can make SAT
solving technology an effective tool for Constraint Programing. We experienced
NPSPEC and SPEC2SAT on several well-known benchmark problems for CP,
and demonstrated how they can be easily formulated in NPSPEC, and solved by
exploiting state-of-the-art SAT solvers. Additionally, we showed how applying re-
formulation techniques such as ignoring safe-delay or adding symmetry-breaking
constraints to the specifications can be very effective in improving solvers’ perfor-
mances. Experiments also show that the most critical point when using SAT as
an engine for solving constraint problems is the compilation task, which can be,
in some cases, very expensive (cf. Table [T). However, often this is compensated
by the much higher (and continuously improving) efficiency of SAT solvers wrt,
e.g., CP ones. In particular, experiments that have been carried out involving
the state-of-the-art CP solver opL [I5] (a detailed discussion will appear in the
full paper) show that:

— For some problems, e.g., Golomb rulers, Schur’s lemma, Magic square, CP
is much faster (e.g., as for Schur’s lemma, the overall time needed by OPL is
52 seconds, against 2412 seconds needed by SPEC2SAT+zCHAFF). However,
in these cases, the real bottleneck is actually the compilation step (e.g., the
actual time needed by ZCHAFF to solve all instances of such problem is only
0.08 seconds).

— For others, e.g., All-Interval, Langford’s number, and Ramsey, the time
needed by OPL is higher than that needed by SPEC2SAT+ZCHAFF (8328 vs.
6606, 22100 vs. 20091, 18030 vs. 10958 secs, respectively). Interestingly, the
opPL models for the first two problems exhibit global constraints (all-different

SAT as an Effective Solving Technology for Constraint Problems 549

and distribute, respectively), that are one of the most important features of
CP solvers wrt SAT, and that may greatly improve their performance.

In our opinion, such behavior suggests that SAT can undoubtably be considered
a respectable candidate for competing with CP on combinatorial problems, and
that research on more efficient techniques for compiling into SAT is a real chal-
lenge. The existence of reformulation techniques, like safe-delay, that can have
a positive impact on compilation times, and recent results in related fields like
Answer Set Programming suggest promising lines of research.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

M. Cadoli and T. Mancini. Using a theorem prover for reasoning on constraint
problems. In Proc. of AI*IA 2005, v. 3673 of LNAI, pp. 38-49, 2005.

M. Cadoli and T. Mancini. Automated reformulation of specifications by safe delay
of constraints. Artif. Intell., 2006. To appear.

. M. Cadoli and A. Schaerf. Compiling problem specifications into SAT. Artif.

Intell., 162:89-120, 2005.

. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking

predicates for search problems. In Proc. of KR’96, pp. 148-159, 1996. Morgan
Kaufmann.

. R. Fourer, D. M. Gay, and B. W. Kernigham. AMPL: A Modeling Language for

Mathematical Programming. Intl. Thomson Publ., 1993.

. H. H. Hoos. Stochastic Local Search - Methods, Models, Applications. PhD thesis,

TU Darmstadt, 1998.

. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and

stochastic search. In Proc. of AAAI’96, pp. 1194-1201, 1996. AAAI Press/The
MIT Press.

. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

The DLV System for Knowledge Representation and Reasoning. ACM Trans. on
Comp. Logic. To appear.

. T. Mancini and M. Cadoli. Detecting and breaking symmetries by reasoning on

problem specifications. In Proc. of SARA 2005, v. 3607 of LNAI, pp. 165-181,
2005. Springer.

L. Michel and P. Van Hentenryck. Localizer. Constraints, 5(1):43-84, 2000.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In Proc. of DAC 2001, pp. 530-535, 2001. ACM
Press.

S. D. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Proc.
of CPAIOR 2005, v. 3524 of LNCS, pp. 273-287, 2005. Springer.

J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems.
In Proc. of ISMIS’93, v. 689 of LNCS, pp. 350-361, 1993. Springer.

B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satisfiability
testing. In Proc. of DIMACS Challenge on Cliques, Coloring, and Sat., 1993.

P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

W. Zhang, A. Rangan, and M. Looks. Backbone guided local search for maximum
satisfiability. In Proc. of IJCAI 2003, pp. 1179-1186, 2003. Morgan Kaufmann.

	Introduction
	The NPSpec Language and Spec2Sat
	Benchmark Problems
	Experiments
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

