
Software Impacts 16 (2023) 100505

F
a

b

c

d

w
c
m
a
s
l
i
p
h

B

m

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

A tool for declarative Trace Alignment via automated planning
Giuseppe De Giacomo a,b, Francesco Fuggitti b,c,∗, Fabrizio Maria Maggi d, Andrea Marrella b,
abio Patrizi b

University of Oxford, Oxford, UK
Sapienza University, Rome, Italy
York University, Toronto, Canada
Free University of Bozen-Bolzano, Bolzano, Italy

A R T I C L E I N F O

Keywords:
Declarative Trace Alignment
Business process management
Linear-time temporal logics on finite traces
Automated planning

A B S T R A C T

We present a tool, called TraceAligner, for solving Trace Alignment by first compiling into Planning and
then solving it with any available cost-optimal planner. TraceAligner can produce different variants of the
output Planning instance, each offering different degrees of readability and solution efficiency. The Planning
instance is expressed in PDDL, the Planning Domain Definition Language. The tool can be easily extended and
coupled with any planner taking PDDL as input language. A thorough experimental analysis has shown that
the approach dramatically outperforms existing ad-hoc tools, thus making TraceAligner the best-performing
tool for Trace Alignment with declarative specifications.

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2023-27
Permanent link to Reproducible Capsule https://codeocean.com/capsule/3375070/tree/v1
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Java, Python
Compilation requirements, operating environments & dependencies Compilation: Java JDK 1.8, Gradle; Dependencies: Open XES, Lydia
If available Link to developer documentation/manual –
Support email for questions fuggitti@diag.uniroma1.it

1. Context and motivation

Business Process Management (BPM) is the research area concerned
ith discovering, modeling, analyzing, and managing business pro-

esses (BPs) to measure their productivity and improve their perfor-
ance [1]. Usually, BPs are high-level processes involving automated

nd human-based activities such that, when executed, generate finite
equences of activities (or events) called traces, typically collected in a
og (i.e., a set of traces). When activities require manual intervention,
t is not uncommon for log traces to be inconsistent with the expected
rocess behavior. For instance, an insurance claim process where a
uman operator is responsible for collecting all the documents related

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author at: Sapienza University, Rome, Italy.
E-mail addresses: degiacomo@diag.uniroma1.it (G. De Giacomo), fuggitti@diag.uniroma1.it (F. Fuggitti), maggi@inf.unibz.it (F.M. Maggi),

arrella@diag.uniroma1.it (A. Marrella), patrizi@diag.uniroma1.it (F. Patrizi).

to the claim, checking the information they contain, and, if correct,
starting the claim process is highly error-prone. Therefore, identifying
and analyzing such traces to prevent errors is of paramount importance,
and this is the main objective of what in BPM is known as Trace Align-
ment [2,3]. Existing works from Process Mining have witnessed that
trace alignment is a highly-relevant problem with practical relevance to
uncover common and frequent deviation patterns in several Computer
Science domains.

An instance of trace alignment includes a log trace, a BP model,
or specification, and a cost for each modification (insertion or deletion
of activities) applicable to the input trace. A BP model defines the
(possibly partial) execution order of the activities of interest and can be
https://doi.org/10.1016/j.simpa.2023.100505
Received 23 January 2023; Received in revised form 14 March 2023; Accepted 18 April 2023

2665-9638/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2023.100505
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2023.100505&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-27
https://codeocean.com/capsule/3375070/tree/v1
mailto:fuggitti@diag.uniroma1.it
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:degiacomo@diag.uniroma1.it
mailto:fuggitti@diag.uniroma1.it
mailto:maggi@inf.unibz.it
mailto:marrella@diag.uniroma1.it
mailto:patrizi@diag.uniroma1.it
https://doi.org/10.1016/j.simpa.2023.100505
http://creativecommons.org/licenses/by/4.0/


G. De Giacomo, F. Fuggitti, F.M. Maggi et al. Software Impacts 16 (2023) 100505

I
a
p
t
a
t
a
c
l

a
n
a
d
s
t
p
t

Fig. 1. The TraceAligner architecture.

specified either procedurally or declaratively. Here, we focus on declara-
tive specifications expressed using formal languages such as Linear-time
Temporal and Dynamic Logics on finite traces, i.e., ltl𝑓 or ldl𝑓 [4].
n such a setting, trace alignment is the problem of checking whether
n actual trace related to a BP execution conforms to the expected
rocess behavior and, if not, finding a minimal set of changes that aligns
he trace to the process. Changes mainly consist in adding or deleting
ctivities at some points of the trace, when necessary. To solve the
race alignment problem, existing approaches, e.g., [5,6], are based on
d-hoc implementations of the well-known A∗ search algorithm, which
ompromise scalability as the input complexity increases, namely with
arge specifications and long traces.

The theoretical solution, first presented in [7], solves the trace
lignment problem by reducing it to deterministic cost-optimal plan-
ing [8]. A cost-optimal planning problem combines a domain with
n initial state and a goal (usually compactly represented with the
e-facto standard Planning Domain Definition Language – PDDL for
hort) and consists in looking for a cost-optimal sequence of actions
hat transforms the initial state into a desired goal state. For this
roblem, many automated planning techniques have been devised over
he years, and many implemented solvers (often referred to as planners)

are available today. Although planning is theoretically intractable in
the worst-case, current approaches can typically solve large problem
instances fast, regardless of their worst-case guarantees. We can thus
exploit the efficiency, versatility, and customization of state-of-the-art
automated planners to solve trace alignment problems effectively.

Based on this, we have devised a tool, called TraceAligner, which
implements the theoretical solution and solves the target problem
using any off-the-shelf cost-optimal planner available, such as Fast-
Downward [9] or SymbA*-2 [10]. The tool is validated in an exper-
imental analysis, whose results show that our approach dramatically
outperforms the existing ad-hoc techniques included in the competitor
toolkit ProM (https://promtools.org).

2. Software description

TraceAligner is a Java tool that takes as input both a BP log
collected using either the XML format or the XES format and a set
of ltl𝑓 /ldl𝑓 declarative models, and produces a set of cost-optimal
planning instances expressed in PDDL. Every planning problem instance
corresponds to a specific log trace, while a cost-optimal solution to such
instance corresponds to an optimal alignment of the input log trace,
wrt to the input set of specifications. Once TraceAligner has generated
the problem instances corresponding to the log traces, one can use
any off-the-shelf cost-optimal planner, such as Fast-Downward [9]
or SymbA*-2 [10] to solve the task and retrieve a proper alignment
solution. TraceAligner comes as a Java library but also exposes a
convenient command-line interface for direct interaction.

2.1. Architecture

The main feature of TraceAligner is a method that generates PDDL
domains and PDDL problems. This method relies on two components,

Parser. The parsing component, as the name suggests, handles the
parsing of input log traces (XES or XML format) and input model spec-
ifications represented as Deterministic Finite-state Automata (DFA).
Input model specifications are given in ltl𝑓 /ldl𝑓 formulas and are
internally translated to DFAs through a call to the Lydia tool [11],
which implements the state-of-the-art compositional approach to trans-
late ltl𝑓 /ldl𝑓 formulas into minimal DFAs. Although we already cover
a good amount of commonly used input formats for both log traces and
formal languages1, the implementation is designed to ease the addition
of new input formats, such as the Pure-Past ltl [13,14], which has
recently been advocated for planning [14–16].

Encoder. The encoding component is perhaps the most important com-
ponent of the package. In general, given the theoretical reduction of
trace alignment to cost-optimal planning, there exist several different
encoding schemata in PDDL. In fact, for a given planning problem,
many possible semantically-equivalent formulations are possible, with
each one featuring a different, possibly dramatic, impact on the solution
performance. TraceAligner implements two classes of encoding vari-
ants, along with some possible optimizations. In the first class, there
is a high-level general encoding and three variants. The Conjunctive
variant has conjunctive formulas to encode planning goal states; in
the Share variant, the number of fluents modeling automata states is
reduced; and the ConjShare combines the two. On the other hand, the
second class includes a low-level encoding that can be considered as the
instantiated (or grounded) version of the General encoding. While the
encodings of the first class have the advantage of increased readability
and understandability at the expense of a slight performance loss, those
in the second class gain performance and scalability at the expense
of readability. Finally, TraceAligner tool has been developed with a
special focus on extensibility. As shown in Fig. 1, TraceAligner can be
augmented on any and all of its components, maintaining exactly the
same main API to generate PDDL domain and PDDL problems.

3. Impact

The STRIPS encoding part of TraceAligner has been largely em-
ployed in [7], which reports on results of experiments conducted with
several planners fed with combinations of real-life and synthetic event
logs and processes. A clever PDDL encodings generation combined with
the latest in automated planning techniques (i.e., planners and heuris-
tics) makes the TraceAligner system the best-performing alignment
tool available in the BPM research area when dealing with declarative
specifications. In particular, results in [7] show that, when process
models and event-log traces are of considerable size, the approach

1 Note that, in the BPM area, BP declarative models are usually expressed
using DECLARE patterns [12]. Here, instead, we allow ltl𝑓 and ldl𝑓 , which
are strictly more expressive formalisms.
the Parser and the Encoder, as illustrated in Fig. 1.

2

https://promtools.org


G. De Giacomo, F. Fuggitti, F.M. Maggi et al. Software Impacts 16 (2023) 100505

t
f
b
e
a
t
d
e
s
e
b
c
s

a
n
a
i
t
t
f
F
i
P
t
i
b
2

D

c
i

A

G
(
t

implemented by TraceAligner outperforms the existing approach based
on ad-hoc implementations of the A* algorithm, presented in [6], by
several orders of magnitude.

From its inception in [7], the TraceAligner tool has contributed
o opening up new research questions and bringing new perspectives
or related research areas. In fact, there have been increasing synergies
etween AI and BPM witnessed by the continuous publication of sev-
ral related works, e.g., [17–19]. Moreover, the theoretical elegance
nd the impressive performance have raised new research questions
hat are worth exploring. From a theoretical perspective on planning,
eveloping process-aware planning heuristics could bring about sev-
ral insights into the problem and significantly improve the planning
earch. On the other hand, the trace alignment problem can also be
mployed to identify and fix potential deviations in an AI agent’s
ehavior. Indeed, traces can model agents’ executions, and specifi-
ations can model properties that agent executions are expected to
atisfy.

In general, the development of TraceAligner has raised awareness
bout viewing trace alignment as an interesting application of plan-
ing, thus demonstrating the power and generality of planning once
gain. It is worth noticing that parts of the reduction and encodings
mplemented in the work are applicable to any problem that includes
emporal constraints expressible as finite-state automata. Additionally,
he experimental study carried out has provided useful guidelines for ef-
icient representations of such constraints as part of a planning domain.
or instance, novel techniques that may benefit from these guidelines
nclude applications to workflow construction in the context of Robotic
rocess Automation [20]. Finally, a number of initiatives are starting
o be undertaken by both the AI and the BPM communities. Examples
nclude tutorials, such as [21] at the BPM conference, the ‘‘AI4BPM’’
ridge workshop at AAAI 2023, and the ‘‘PMAI’’ workshop at IJCAI
023.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work has been partially supported by the EU ERC Advanced
rant WhiteMech (No. 834228), the EU ICT-48 2020 project TAILOR

No. 952215), the PRIN project RIPER, Italy (No. 20203FFYLK), and
he PNRR MUR project FAIR, Italy (No. PE0000013).

References

[1] M. Dumas, M. La Rosa, J. Mendling, H.A. Reijers, et al., Fundamentals of Business
Process Management, vol. 2, Springer, 2018.

[2] A. Adriansyah, N. Sidorova, B.F. van Dongen, Cost-Based Fitness in Conformance
Checking, in: ACSD 2011, IEEE, 2011.

[3] J. Carmona, B.F. van Dongen, A. Solti, M. Weidlich, Conformance Checking -
Relating Processes and Models, Springer, 2018.

[4] G. De Giacomo, M.Y. Vardi, Linear Temporal Logic and Linear Dynamic Logic
on Finite Traces, in: 23th Int. Conf. on AI (IJCAI’13), 2013.

[5] M. de Leoni, F.M. Maggi, W.M.P. van der Aalst, Aligning Event Logs and
Declarative Process Models for Conformance Checking, in: 10th Int. Conf. on
Business Process Management (BPM 2012), 2012.

[6] M. de Leoni, F.M. Maggi, W. van der Aalst, An alignment-based framework to
check the conformance of declarative process models and to preprocess event-log
data, Inf. Syst. 47 (2015) 258–277.

[7] G. De Giacomo, F. Maggi, A. Marrella, F. Patrizi, On the Disruptive Effectiveness
of Automated Planning for LTLf -Based Trace Alignment, in: AAAI, AAAI Press,
2017, pp. 3555–3561.

[8] H. Geffner, B. Bonet, A Concise Introduction to Models and Methods for
Automated Planning, Synth.Lect. on AI and ML 8 (1) (2013).

[9] M. Helmert, The Fast Downward Planning System, J. Artif. Intell. Res.(JAIR) 26
(2006) 191–246.

[10] A. Torralba, V. Alcazar, D. Borrajo, P. Kissmann, S. Edelkamp, Symba: A
symbolic bidirectional a planner, in: International Planning Competition, 2014,
pp. 105–108.

[11] G. De Giacomo, M. Favorito, Compositional Approach to Translate LTLf/LDLf
into Deterministic Finite Automata, in: ICAPS, AAAI Press, 2021, pp. 122–130.

[12] W. van der Aalst, M. Pesic, H. Schonenberg, Declarative Workflows: Balancing
Between Flexibility and Support, Computer Science - R&D 23 (2) (2009) 99–113.

[13] O. Lichtenstein, A. Pnueli, L.D. Zuck, The Glory of the Past, in: Logic of Programs,
in: LNCS, 193, Springer, 1985, pp. 196–218.

[14] G. De Giacomo, A. Di Stasio, F. Fuggitti, S. Rubin, Pure-Past Linear Temporal
and Dynamic Logic on Finite Traces, in: IJCAI, ijcai.org, 2020, pp. 4959–4965.

[15] G. De Giacomo, M. Favorito, F. Fuggitti, Planning for Temporally Extended
Goals in Pure-Past Linear Temporal Logic: A Polynomial Reduction to Standard
Planning, CoRR abs/2204.09960 (2022).

[16] L. Bonassi, G. De Giacomo, M. Favorito, F. Fuggitti, A. Gerevini, E. Scala,
Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic,
in: ICAPS, 2023.

[17] A. Polyvyanyy, Z. Su, N. Lipovetzky, S. Sardiña, Goal Recognition Using Off-
The-Shelf Process Mining Techniques, in: AAMAS, International Foundation for
Autonomous Agents and Multiagent Systems, 2020, pp. 1072–1080.

[18] G. De Giacomo, A. Murano, F. Patrizi, G. Perelli, Timed Trace Alignment with
Metric Temporal Logic over Finite Traces, in: KR, 2021, pp. 227–236.

[19] F. Chiariello, F. Maggi, F. Patrizi, ASP-Based Declarative Process Mining, in:
AAAI, AAAI Press, 2022, pp. 5539–5547.

[20] T. Chakraborti, Y. Rizk, V. Isahagian, B. Aksar, F. Fuggitti, From Natural
Language to Workflows: Towards Emergent Intelligence in Robotic Process
Automation, in: BPM (Blockchain and RPA Forum), in: Lecture Notes in Business
Information Processing, 459, Springer, 2022, pp. 123–137.

[21] A. Marrella, T. Chakraborti, Applications of Automated Planning for Business
Process Management, in: BPM, in: Lecture Notes in Computer Science, 12875,
Springer, 2021, pp. 30–36.
3

http://refhub.elsevier.com/S2665-9638(23)00042-8/sb1
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb1
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb1
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb2
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb2
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb2
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb3
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb3
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb3
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb4
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb4
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb4
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb5
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb5
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb5
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb5
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb5
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb6
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb6
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb6
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb6
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb6
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb7
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb7
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb7
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb7
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb7
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb8
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb8
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb8
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb9
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb9
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb9
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb10
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb10
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb10
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb10
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb10
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb11
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb11
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb11
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb12
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb12
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb12
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb13
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb13
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb13
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb14
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb14
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb14
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb15
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb15
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb15
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb15
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb15
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb16
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb16
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb16
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb16
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb16
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb17
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb17
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb17
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb17
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb17
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb18
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb18
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb18
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb19
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb19
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb19
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb20
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb21
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb21
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb21
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb21
http://refhub.elsevier.com/S2665-9638(23)00042-8/sb21

	A tool for declarative Trace Alignment via automated planning
	Context and Motivation
	Software Description
	Architecture

	Impact
	Declaration of Competing Interest
	Acknowledgments
	References


