
Automated Composition of Nondeterministic Stateful
Services

Giuseppe De Giacomo and Fabio Patrizi

Dipartimento di Informatica e Sistemistica
SAPIENZA - Università di Roma

Via Ariosto 25 - 00185 Roma, Italy
{degiacomo,patrizi}@dis.uniroma1.it

Abstract. This paper addresses the automated composition of nondeterministic
available services modeled as transition systems. Nondeterminism stems natu-
rally when the results of client-service interactions cannot be foreseen, and calls
for specific orchestration strategies able to deal with partial controllability. We
show how to build a set of orchestrators, by resorting to a variant of the sim-
ulation relation’s formal notion, by exploiting recent results on LTL formulas’
synthesis and by reducing our technique to the search for a safety game winning
strategy. The resulting technique is sound, complete and optimal w.r.t. computa-
tional complexity, and generates all possible solutions atonce.

1 Introduction

Web services are modular applications that can be described, published, located, in-
voked and composed over a variety of networks (including theInternet): any piece of
code and any application component deployed on a system can be wrapped and trans-
formed into a network-available service, by using standard(XML-based) languages
and protocols (e.g., WSDL, SOAP, etc.)- see e.g., [1]. The promise of Web services
is to enable the composition of new distributed applications/solutions: when available
services cannot satisfy a desired specification, they, or their parts, can be composed
and orchestrated in order to realize the specification. Service composition involves two
different phases [13]: thecomposition synthesis, where the specification of an orches-
trator, which coordinates the available services to fulfilla target service specification,
is synthesized, and thecomposition deployment, i.e., the actual implementation of the
orchestrator specification in a given technology (such as BPEL) 1. Here, we focus on
the former.

Most of the research on composition synthesis, e.g., [27, 8], has consideredatomic
services, essentially abstracting away from their dynamicbehavior (a.k.a.possible con-
versations). Notable exceptions are, e.g., [17, 7, 21, 5, 14, 20, 10] where stateful ser-
vices, and their dynamic behavior, are considered explicitly. A survey on composition
synthesis approaches can be found in [13].

1 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

In this paper, we follow the general approach first proposed in [5], called, in [13],
“Roman Model”, and recently further investigated in the context of agent behavior com-
position, in AI [9, 25, 24]. We address the automatic composition of nondeterministic,
partially controllable, available services, modeled as transition systems that capture the
possible conversations that services can have with clients. When the result of interac-
tions cannot be foreseen, nondeterminism naturally stems.For instance, think of a ser-
vice for buying tickets: the service cannot know in advance whether seats are available
for a selected performance. In other words, service behavior is partially controllable: a
property an orchestrator needs to cope with. We assume that orchestrators can observe
available services’ states, and hence take advantage of this in choosing how to continue
a certain task. This assumption is quite natural in this context 2, as transition systems
represent available services’ “public” behavior.

Our composition technique is based on the formal notion of simulation relation [18].
It follows the lines drawn in [6, 24], in the presence of nondeterminism, which calls for
a specific simulation relation’s variant, that considers available services’ partial control-
lability. The variant presented here can be proven equivalent to the one in [24].

Our main contribution is relating the service composition problem to the literature
on synthesis of reactive systems (cf., e.g., [22]). In particular, we show that the problem
can be solved by exploiting safety-games and propose an implementation based on
the systemTLV . This is a major step toward practical implementation of engines for
orchestrator synthesis. Notably, the proposed technique not only is sound, complete,
and optimal w.r.t. computational complexity, but also, in aprecise formal sense (see
later), produces all (infinite) possible solutions at once.

In Section 2, we introduce the formal setting; in Section 3, we develop our tech-
nique; in Section 4, we show how the technique can exploit safety games; in Section 5,
we propose an implementation based on the systemTLV and, finally, in Section 6 we
draw some conclusions.

2 The framework

The framework adopted here is based on [5, 9, 24], and is sometime referred to as the
”Roman Model” [13].

Data box. We assume to have an accessible shared system, calleddata box, which
allows client services to store and retrieve shared data. Wedescribe it as a nondeter-
ministic transition system, where(i) states represent an abstract finite description of the
data content, and(ii) transitions represent the execution of operation, including data in-
sertion/deletion or retrieval. Nondeterministic transitions model those operations whose
outcome is a-priori unknown.

A data boxis a tupleDB = 〈O, D, d0, ρ〉 where:

2 The reader should observe that also the standard proposal WSDL 2.0 has a similar point of
view: the same operation can have multiple output messages (theout message and var-
ious outfault messages), and the client observes how the service behaved only after
receiving a specific output message.

• O is the finite set of shared operations, i.e., thewholeset of operations clients can
perform, each of which may or may not affect data box’ state;

• D is the finite set of data box’ states;
• d0 ∈ D is the initial state;
• ρ ⊆ D ×O ×D is the transition relation among states:〈d, o, d′〉 ∈ ρ, or d

o
−→ d′

in DB, denotes that execution of operationo in stated may lead the data box to a
successor stated′.

Available Services. An available service, at each step, offers to its clients a choice
of operations, based upon its own and data box’ state; the client chooses one of them,
and the service executes it, resulting in a new state of the service and a new state of the
data box. The available service can take into account data box’ influence on available
services by puttingguardson transitions –i.e., conditions on current state of the databox,
which restricts the set of transitions that can actually take place.

Formally, anavailable serviceover a data boxDB = 〈O, D, d0, ρ〉 is a tupleS =
〈O, S, s0, S

f , G, ̺〉, where:

• O is the same set of operations as inO;
• S is the finite set of service’s states;
• s0 ∈ S is the initial state;
• Sf ⊆ S is the set offinal states, i.e., those where the execution can be legally

stopped (if desired);
• G is a set of boolean functionsg : D → {true, false} calledguards;
• ̺ ⊆ S ×G×O × S is the service’s transition relation.

When〈s, g, o, s′〉 ∈ ̺, we say thattransition s
g,o
−→ s′ is in S. Given a states ∈ S,

if there exists a transitions
g,o
−→ s′ in S (for someg ands′) and the data box is in a

stated such thatg(d) = true then operationo is said to beexecutablein s. A transition
s

g,o
−→ s′ in S denotes thats′ is a possible successor state ofs, when operationo is

executed ins, providedg(d) = true, d being current data box state.
Available services are, in general,nondeterministic, that is, they allow many tran-

sitions to take place under execution of a same operation. So, when choosing the oper-
ation to execute next, the client of the service cannot be certain of which choices will
be available later on, this depending on which transition actually takes place. In other
words, nondeterministic behaviors are onlypartially controllable.

We say that a serviceS over a data boxDB is deterministiciff there is noDB state
d ∈ D for which there exist, inS, two distinct transitionss

g1,o
−→ s′ ands

g2,o
−→ s′′ such

that s′ 6= s′′ andg1(d) = g2(d) = true. Notice that given a deterministic service’s
state and a legal operation in that state, theuniquenext service state is always known.
That is, deterministic services are indeedfully controllableby selecting operations.

Community and Target Service. A communityC={S1, . . . ,Sn,DB} is a set con-
taining (i) a data boxDB and (ii) n nondeterministic available services overDB. In
our framework, we also define the so-calledtarget service, which is thedeterministic
service one aims at building by properlycomposingavailable services. A target service
has the same form as any other service defined overDB, with the only requirement of
being deterministic.

Trace and History. GivenS = 〈O, S, s0, S
f , G, ̺〉 over data boxDB = 〈O, D, d0, ρ〉,

a trace for S onDB is a possibly infinite sequence, alternating configurationsand op-

erations, of the form〈s0, d0〉
o1

−→ 〈s1, d1〉
o2

−→ · · · , such that(i) 〈s0, d0〉 = 〈s0, d0〉,

and (ii) for all j > 0, if 〈sj , dj〉
oj+1

−→ 〈sj+1, dj+1〉 , thensj
g,oj+1

−→ sj+1 in S with

g(dj) = true for someg, anddj
oj+1

−→ dj+1 in DB.
Similarly, letC = {S1, . . . ,Sn,DB} be a community, whereSi = 〈O, Si, si0, S

f
i , Gi, ̺i〉

(i = 1, . . . , n) andDB as above. Acommunity tracefor C is a possibly infinite sequence

of the form〈s01, . . . , s
0
n, d

0〉
o1,k1

−→ 〈s11, . . . , s
1
n, d

1〉
o2,k2

−→ · · · , such that(i) 〈s01, . . . , s
0
n, d

0〉 =

〈s10, . . . , sn0, d0〉, and(ii) for all j > 0, if 〈sj1, . . . , s
j
n, d

j〉
oj+1,kj+1

−→ 〈sj+1
1 , . . . , sj+1

n , dj+1〉,

thensj
kj+1

g,oj+1

−→ s
j+1
kj+1 in Skj+1 with g(dj) = true for someg, sj+1

i = s
j
i for i 6= kj+1,

anddj
oj+1

−→ dj+1 in DB.
We call (community)historyevery finite prefix of a (community) trace ending with

a configuration. Given a historyh, we denote bylast(h) the last configuration, and
by length(h) the number of alternations between configurations and operations inh.
Notice that the history of length 0 is simply the initial configuration of a trace (which is
the same for every trace).

Orchestrator. The orchestratoris a component able to activate, stop and resume
each of the available services, and select one to perform an executable operation. The
orchestrator hasfull observabilityon available service states, that is, it can keep track
(at runtime) of the current state of each available service.Let C = {S1, . . . ,Sn,DB} be
a community andH be the set of its community service histories. Anorchestratorfor
a communityC is a functionP : H × O → {1, . . . , n, u} that, given a historyh ∈ H
and an operationo ∈ O, selects an available service, i.e., returns its index, to which
delegateo. Special valueu is introduced for technical convenience, to make functionP

total.

Definition 1. Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service over
DB, where,Si = 〈Si, si0, S

f
i , Gi, ̺i〉 (i = t, 1 . . . , n) andDB = 〈O, D, d0, ρ〉. Let

P : H×O → {1, . . . , n, u} be an orchestrator forC. Given a traceτ = 〈s0, d0〉
o1

−→

〈s1, d1〉
o2

−→ · · · ofSt onDB, we say that the orchestratorP realizes the traceτ if and
only if:

– for all community service historiesh ∈ Hτ , P (h, olength(h)+1) 6= u andHℓ
τ 6= ∅

(see below), whereHτ =
⋃

ℓ H
ℓ
τ is a set of community service histories, inductively

defined as follows:
• H0

τ = {〈s10, . . . , sn0, d0〉};
• Hj+1

τ is the set of community histories of lengthj + 1 having the formh′ =

h
oj+1,kj+1

−→ 〈sj+1
1 , . . . , sj+1

n , dj+1〉 such that:

• h ∈ Hj
τ , with last(h) = 〈sj1, . . . , s

j
n, d

j〉;
• oj+1 anddj+1 are the operation and the data box state in history of length
j + 1 obtained fromτ .

• P (h, oj+1)=k, that is, the orchestrator states that operationoj+1 in the
traceτ after community historyh should be executed by available service
Sk;

• s
j
k

g,oj+1

−→ s
j+1
k in Sk with g(dj) = true for someg, that is, the available

serviceSk can evolve according to the historyh′.
• s

j+1
i = s

j
i for eachi 6= k

– if a configuration〈sℓt , d
ℓ〉 of τ is such thatsℓt ∈ Sf

t , then every configuration
〈sℓ1, . . . , s

ℓ
n, d

ℓ〉 = last(h), with h ∈ Hℓ
τ , is such thatsℓi ∈ Sf

i , for i = 1, . . . , n.

Definition 2. An orchestratorP for C is a composition of the target serviceSt on data
boxDB iff it realizes all tracesof St onDB.

Intuitively, the orchestrator realizes a target service iffor all target service traces over
the data box, at every step, it returns the index of an available service that can actually
perform the requested operation. Observe that since available services and data box are
nondeterministic, the orchestrator must be always able to execute the next operation,
no matter how the activated service and the data box happen toevolve after each step.
Finally, note that the orchestrator can observe available services’ and data box’ states
(in fact, the whole community service history so far), in order to decide which available
service to select next. This makes orchestrators akin to an advanced form of conditional
plans [11].

The Composition Problem. This work addresses the following problem:given a
communityC = {S1, . . . , Sn,DB} and a deterministictargetserviceSt overDB, syn-
thesize an orchestrator forC which is a composition ofSt on data boxDB.

3 Composition via Simulation

Following [6, 24], we present a composition technique basedon the formal notion of
simulation[18, 12]. Since the devilish nondeterminism of both data boxand available
services prevents the possibility to use the off-the shelf notion of simulation, a more
general variant is needed, calledND-simulation.

Definition 3. Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service over
DB, where,Si = 〈Si, si0, S

f
i , Gi, ̺i〉 (i = t, 1 . . . , n) andDB = 〈O, D, d0, ρ〉. An

ND-simulation relationof St byC is a relationR ⊆ St × S1 × . . .× Sn ×D such that
〈st, s1, . . . , sn, d〉 ∈ R implies:

1. if st ∈ S
f
t thensi ∈ S

f
i , for i = 1, . . . , n;

2. for eacho ∈ O, there exists ak ∈ {1, . . . , n} such that for all〈st, d〉
o

−→ 〈s′t, d
′〉

such thatst
g,o
−→ s′t in St with g(d) = true andd

o
−→ d′ in DB , then both the

followings hold:

(a) there exists a transitionsk
g,o
−→ s′k in Sk with g(d) = true;

(b) for all sk
g,o
−→ s′k in Sk with g(d) = true we have that〈s′t, s1, . . . , s

′
k, . . . , sn, d

′〉 ∈
R.

An ND-simulation is essentially a simulation betweenSt and the asynchronous product
of the servicesSi in C. With respect to the usual notion of simulation relation, weneed
to deal with data boxDB in C that acts as a parameter, and, more importantly, we need
to take into account available services’ nondeterminism. To this end, we require that
(i) for each target service’s transition an available servicek can be selected to perform
St labeling operation and(ii) all possible successor states(under selected service and
current operation) are still included in the ND-simulationrelation.

A statest is ND-simulated by〈s1, . . . , sn, d〉 (or 〈s1, . . . , sn, d〉 ND-simulatesst),
denotedst � 〈s1, . . . , sn, d〉, iff there exists an ND-simulationR of St by C such that
〈st, s1, . . . , sn, d〉 ∈ R. Observe that this is a coinductive definition. As a result, the
relation� is itself an ND-simulation, and is in fact thelargest ND-simulation relation.

Next result shows that checking for the existence of a composition can be reduced
to checking whether there exists an ND-simulation relationbetween the target service
and the community, containing their respective initial states.

Theorem 1. Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service over
DB as above. An orchestratorP for C that is a composition of target serviceSt over
DB exists if and only ifst0 � 〈s10, . . . , sn0, d0〉.

Theorem 1 provides a straightforward method to check for theexistence of a composi-
tion, namely:
1. compute the largest ND-simulation relation�;
2. check whether〈st0, s10, . . . , sn0, d0〉 ∈ �.

From the computational point of view, the largest ND-simulation relation� be-
tweenSt andC can be computed in polynomial time wrt the size ofSt andC. Since
the number of states inC is exponential in the number of available servicesn, � can
be computed in exponential time. More precisely, it is polynomial wrt the size ofSt,
DB and each serviceSi, but exponential in the number of available servicesn. Thus,
observing that the problem is EXPTIME-hard [19], we get thatthis technique is optimal
wrt worst-case complexity.

Once we have computed the ND-simulation,synthesizingan orchestrator becomes
an easy task. As a matter of fact, there is a well-defined procedure that, given an ND-
simulation, builds a finite state program that returns, at each point, the set of available
behaviors capable of performing a target-conformant operation. We call such a program
orchestrator generator, or simplyPG. Formally:

Definition 4. Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service over
DB as above. The orchestrator generator (PG)ofC forSt is a tuple PG= 〈O, {1, . . . , n}, Σ, ∂, ω〉,
where:

1. O is the finite set of operations;
2. {1, . . . , n} is the set of available behavior indexes;
3. Σ = {〈st, s1, . . . , sn, d〉 | st � 〈s1, . . . , sn, d〉} is the set of states of PG,
formed by the tuples belonging to the largest ND-simulationrelation;
4. ∂ ⊆ Σ ×O× {1, . . . , n} ×Σ is thetransition relation, where〈σ, o, k, σ′〉 ∈ ∂,

or σ
o,k
−→ σ′ is in PG, if and only if all of the followings hold:

• σ = 〈st, s1, . . . , sk, . . . , sn, d〉 andσ′ = 〈s′t, s1, . . . , s
′
k, . . . , sn, d

′〉

• st
g,o
−→ s′t in St with g(d) = true;

• there exists a transitionsk
g,o
−→ s′k in Sk with g(d) = true;

• for all transitionssk
g,o
−→ s′′k in Sk with g(d) = true we have〈s′t, s1, . . . , s

′′
k , . . . , sn, d

′〉 ∈
Σ;

5. ω : Σ ×O 7→ 2{1,...,n} is theoutput function, where:

• ω(σ, o) = {k | ∃ σ′ s.t.σ
o,k
−→ σ′ in PG}.

Intuitively, PG is a finite state transducer that, given an operationo (compliant with
the target service), outputs, throughω, the set ofall available services able to perform
o next, according to the largest ND-simulation�. Observe that computingPG from the
relation� is easy, since it involves checking forlocal conditions only.

If there exists a composition ofSt by C, thenst0 � 〈s10, . . . , sn0, d0〉 andPG does
include stateσ0 = 〈st0, s10, . . . , sn0, d0〉. In such case, all the actual orchestrators that
are compositions ofSt byC can be obtained by just picking up, at each step, one among
the services returned byω. Being, in fact, generated from a given structure (i.e.,PG),
they are calledgenerated orchestrators. Prior to provide their formal definition, some
preliminary notions are needed.

A trace for PGstarting fromσ0 is a finite or infinite sequence of the formσ0 o1,k1

−→

σ1 o2,k2

−→ · · · , such thatσj
oj+1,kj+1

−→ σj+1 is in PG, for all j. A history for PGstarting
from stateσ0 is a prefix of a trace starting from stateσ0. By using histories, one can in-
troducePG-orchestrators, which are functionsPGPCHOOSE : HPG×O → {1, . . . , n, u}
whereHPG is the set ofPG histories starting from any state inΣ and defined as fol-
lows: PGPCHOOSE(hPG, o) = CHOOSE(ω(last(hPG), o)), for all hPG ∈ HPG, where
CHOOSEstands for a choice function that chooses one element among those returned
by ω(last(hPG), o)).

We can now relate aPG to compositions, through the following characterizing the-
orem.

Theorem 2. If PG includes the stateσ0 = 〈s10, . . . , sn0, d0〉 then every orchestrator
generated by PG is a composition of the target serviceSt by the communityC. Moreover,
every orchestrator that is a composition of the target serviceSt by the communityC can
be generated by PG (which, indeed, includesσ0).

Notably, while each specific composition may be an infinite state program,PG,
which includes them all, is always finite. We conclude the section with an interesting
observation. Let us consider the generated orchestratorPGP jit, with CHOOSEresolved
at run-time.PGP jit (andPG for the matter) can be computedon-the-flyby storing only
the ND-simulation�. Indeed, at each point, the only information we need for the next
choice isω(σ, o) whereσ ∈ Σ = �. Now, in order to computeω(σ, o) we only need to
know�.

4 Simulation and Safety Games

In this Section, we show how a service composition problem instance can be encoded
into a game structure and how searching for a composition is equivalent to searching
for a winning strategy for the corresponding game (cf. [3, 4,22]). The main motivation

behind this approach is the increasing availability of software systems, such asTLV [23],
Lily [15], Anzu [16] or MOCHA [2], which provide(i) efficient procedures for strategy
computation and(ii) convenient languages for representing the problem instance in a
modular, intuitive and straightforward way.

4.1 Safety-Game structures

We specialize thegame structuresproposed in [22] to deal with synthesis problems for
invariant properties. Throughout the rest of the paper, we assume to deal with infinite-
run TSs, possibly obtained by introducing fake loops, as customary in LTL verifica-
tion/synthesis.

Starting from [22], we define asafety-game structure(or2-game structure or2-GS,
for short) as a tupleG = 〈V ,X ,Y, Θ, ρe, ρs,2ϕ〉, where:

– V = {v1, . . . , vn} is a finite set ofstatevariables, ranging overfinite domains
V1, . . . , Vn, respectively.V = V1, . . . , Vn represents the set of all possible valua-
tions of variables inV . We assume thatV = {X ,Y}, i.e.,V is partitioned into sets
X andY, the former referred toas set of environment variablesand the latter asset
of system variables. Let X (resp.Y) be the set of all possible valuations for vari-
ables inX (Y). Then,x ∈ X (y ∈ Y) is calledenvironment state(system state). A
game states ∈ V is a complete assignment of values to variables. Without loss of
generality, we assume thats = 〈x,y〉 ∈ X × Y .

– Θ is a formula representing the initial states of the game. It is a boolean combination
of expressions(vk = v̄k), wherevk ∈ V and v̄k ∈ Vk (k ∈ {1, . . . , n}) (partial
assignments are allowed). For such formulae, given a state〈x,y〉 ∈ V , we write
〈x,y〉 |= Θ if states satisfies the assignments specified byΘ.

– ρe(X ,Y,X ′) is the environment transition relationwhich relates a current (un-
primed) game state to a possible next (primed) environment state.

– ρs(X ,Y,X ′,Y ′) is thesystem transition relation, which relates a game state plus
a next environment state to a next system state.

– 2ϕ is a formula representing the invariant property to be guaranteed, whereϕ has
the same form asΘ.

We assume variables inX (respectivelyY) are ordered, so that valuations inX (Y) can
be conveniently represented as tuplesx = 〈x1, . . . , xn〉 (y = 〈y1, . . . , ym〉). In unary
tuples, we omit angle brackets when no ambiguity arises.

A game state〈x′,y′〉 is asuccessorof 〈x,y〉 iff ρe(x,y,x
′) andρs(x,y,x′,y′).

A play of G is a maximal sequence of statesη : 〈x0,y0〉〈x1,y1〉 · · · satisfying(i)
〈x0,y0〉 |= Θ, and(ii) for eachj ≥ 0, 〈xj+1,yj+1〉 is a successor of〈xj ,yj〉. Given a
2-GSG, in a given state〈x,y〉 of a game play, the environment chooses an assignment
x
′ ∈ X such thatρe(x,y,x′) holds and the system chooses assignmenty

′ ∈ Y such
thatρs(x,y,x′,y′) holds.

A play is said to bewinning for the systemif it is infinite and satisfies the winning
condition2ϕ. Otherwise, it iswinning for the environment. A strategyfor the system is
a partial functionf : (X×Y)+×X → Y such that for everyλ : 〈x0,y0〉 · · · 〈xn,yn〉
and for everyx′ ∈ X such thatρe(xn,yn,x

′), ρs(xn,yn,x
′, f(λ,x′)) holds. A play

η : 〈x0,y0〉〈x1,y1〉 · · · is said to becompliantwith a strategyf iff for all i ≥ 0,
f(〈x0,y0〉 · · · 〈xi,yi〉,xi+1) = yi+1. A strategyf is winning for the system from a
given state〈x,y〉 iff all plays starting from〈x,y〉 and compliant withf are so. When
such a strategy exists,〈x,y〉 is said to be awinning statefor the system. A2-GS is
said to bewinning for the systemif all initial states are so. Otherwise, it is said to be
winning for the environment.

Our objective is to encode a composition problem into a2-GS and, then, exploit
tools available for the latter to compute the orchestrator generatorPG (cf. Section 3).
Essentially, as it will be clear soon, one can extract the maximal ND-simulation relation
–and, from this, directly compute thePG–, from the maximal set of states that are
winningfor the system. Let us show how suchwinning setcan be computed in general
on a2-GS. The core of the algorithm is the following operator (cf.[3, 22]):

Definition 5. LetG = 〈V ,X ,Y, Θ, ρe, ρs,2ϕ〉 be a2-GS as above. Given a setP ⊆
V of game states〈x,y〉, the set ofP ’s controllable predecessorsis

π(P)
.
= {〈x,y〉 ∈ V | ∀ x

′.ρe(x,y,x
′) →

∃ y
′.ρs(x,y,x

′,y′) ∧ 〈x′,y′〉 ∈ P}

Intuitively, π(P) is the set of states from which the system can force the play toreach
a state inP , no matter how the environment evolves. Based on this, Algorithm 1 com-
putes the set of all system’s winning states of a2-GSG = 〈V ,X ,Y, Θ, ρe, ρs,2ϕ〉, as
Theorem 3 shows.

Algorithm 1 WIN – Computes system’s maximal set of winning states in a2-GS
1: W := {〈x, y〉 ∈ V | 〈x,y〉 |= ϕ}
2: repeat
3: W ′ := W ;
4: W := W ∩ π(W);
5: until (W ′ = W)
6: return W

Theorem 3. LetG = 〈V ,X ,Y, Θ, ρe, ρs,2ϕ〉 be a2-GS as above andW be obtained
as in Algorithm 1. Given a state〈x,y〉 ∈ V , a system’s winning strategyf starting from
〈x,y〉 exists iff〈x,y〉 ∈ W .

In fact, one can define a system’s winning strategyf(〈x0,y0〉, . . . , 〈xi,yi〉,x) = y,
by picking up, for eachx such thatρe(xi,yi,x) holds, any〈x,y〉 ∈ W .

4.2 From Composition to Safety Games

In order to encode the composition problem as a2-GS, we need first to individuate
which place each abstract component, e.g., target, available services, data box, occu-
pies in the game representation. Conceptually, our goal is to refine an automaton capa-
ble of selecting, at each step, one among all the available services, in a way such that

the community is always able to satisfy target service requests. So, the orchestrator,
i.e., the object of the synthesis, plays as system and, consequently, the other entities,
properly combined, form the environment. In addition, according to our purposes, the
winning condition requires to satisfy two properties:(i) if the target service is in a final
state, all community services are in a final state as well;(ii) the service selected by the
orchestrator is able to perform the action currently requested by the target service.

Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service overDB, where,
Si = 〈Si, si0, S

f
i , Gi, ̺i〉 (i = t, 1 . . . , n) andDB = 〈O, D, d0, ρ〉. We derive a2-GS

G = 〈V ,X ,Y, Θ, ρe, ρc,2ϕ〉, as follows:

– V = {st, s1, . . . , sn, d, o, ind}, where:
• si ranges overSi ∪ {init} (i = t, 1, . . . , n);
• d ranges overD ∪ {init};
• o ranges overO ∪ {init};
• ind ranges over{1, . . . , n} ∪ {init};

with an intuitive semantics: each complete valuation ofV represents(i) the current
state of community (variabless1, . . . , sn,), data box (d) and target service (st), (ii)
the operation to be performed next (o) and (iii) the available service selected to
perform it (ind). Special valueinit has been introduced for convenience, so as to
have fixed initial state;

– X = {st, s1, . . . , sn, d, o} is the set of environment variables;
– Y = {ind} is the (singleton) set of system variables;
– Θ = (

∧
i=t,0,...,n(si = init)) ∧ (d = init) ∧ (o = init) ∧ (ind = init);

– ρe(X ,Y,X ′) is defined as follows:
• 〈〈init, . . . , init〉, init, 〈st, s1, . . . , sn, d, o〉〉 ∈ ρe iff si = si0, for i = t, 1, . . . , n,
d = d0, and there exists a transition〈st0, g, o, s′t〉 ∈ ̺t such thatg(d0) = true;

• if si 6= init, with i = t, 1, . . . , n,, d 6= init, o 6= init andind 6= init then
〈〈st, s1, . . . , sn, d, o〉, ind, 〈s′t, s

′
1, . . . , s

′
n, d

′, o′〉〉 ∈ ρe iff the followings hold
in conjunction:
1. there exists a transitionst

g,o
−→ s′t in ̺t with g(d) = true;

2. either there exists a transitionsind
g,o
−→ s′ind in ̺ind with g(d) = true or

s′ind = sind (service wrongly makes no move, and the error violates the
safety conditionϕ, see below);

3. si = s′i, for all i = 1, . . . , n such thati 6= ind;
4. there exists a transitiond

o
−→ d′ in DB;

5. there exists a transitions′t
g′,o′

−→ s′′t in ̺t for somes′′t , with g′(d′) = true;
– 〈〈st, s1, . . . , sn, d, o〉, ind, 〈s

′
t, s

′
1, . . . , s

′
n, d

′, o′〉, ind′〉 ∈ ρs iff ind′ ∈ {1, . . . , n};
– Formulaϕ is defined depending on current state, operation and serviceselection as

ϕ
.
= Θ ∨ (

n∧

i=1

¬faili) ∧ (finalt →
n∧

i=1

finali),

where:
• faili

.
= (ind = i) ∧ (

∧
〈s,g,op,s′〉∈̺i

(g(d) = false ∨ si 6= s ∨ op 6= o)),
encodes the fact that servicei has been selected but, in its current state, no
transition can take place which executes the requested operation;

• finali
.
=

∨
s∈S

f
i

(si = s) encodes the fact that servicei = t, 1, . . . , n is
currently in one of its final states.

We can now show how the so-obtained game structure allows forcomputing an
orchestrator generator. Recall that, in order to define thePG, one needs to build an
ND-simulation (see Definition 4). The following Theorem shows that this can be equiv-
alently done by computing the maximal system’s set of winning states forG.

Theorem 4. Let C = 〈S1, . . . ,Sn,DB〉 be a community andSt a target service over
DB whereSi = 〈O, Si, si0, S

f
i , Gi, ̺i〉 (i = t, 1 . . . , n) andDB = 〈O, D, d0, ρ〉. From

C andSt derive: a2-GSG = 〈V ,X ,Y, Θ, ρe, ρs,2ϕ〉 as shown above. LetW ⊆ V

be the maximal set of system’s winning states forG. Then〈init, . . . , init〉 ∈ W if and
only if st0 � 〈s10, . . . , sn0, d0〉.

Based on this, the following Theorem gives us an actual procedure to build up an or-
chestrator generator and, hence, all possible compositions.

Theorem 5. Let C = 〈S1, . . . ,Sn,DB〉, St and G = 〈V ,X ,Y, Θ, ρe, ρc,2ϕ〉 be
as above (hypothesis of Theorem 4). LetW be the system’s winning set forG with
〈init, . . . , init〉 ∈ W . Then the orchestrator generatorPG = 〈O, {1, . . . , n}, Σ, ∂, ω〉
of C for St can be built fromW , as follows:

– O is the usual set of operations and{1, . . . , n} the set of available services’ in-
dexes;

– Σ ⊆ St × S1 × . . . × Sn × D is such that〈st, s1, . . . , sn, d〉 ∈ Σ if and only
if there exists a game state〈st, s1, . . . , sn, d, o, ind〉 ∈ W , for someo ∈ O and
ind ∈ {1, . . . , n};

– ∂ ⊆ (Σ×O×{1, . . . , n}×Σ) is such that〈〈st, s1, . . . , sn, d〉, o, k, 〈s′t, s
′
1, . . . , s

′
n, d

′〉〉 ∈
∂ if and only if 〈st, s1, . . . , sn, d, o, k〉 ∈ W and there existo′ ∈ O and k′ ∈
{1, . . . , n} such that〈〈st, s1, . . . , sn, d, o, k〉, 〈s′1, . . . , s

′
n, s

′
t, d

′, o′, k′〉〉 ∈ ρs;
– ω : Σ×O → 2{1,...,n} is defined asω(〈s1, . . . , sn, st, d〉, o) = {i ∈ {1, . . . , n} | 〈s1, . . . , sn, st, d, o, i〉 ∈
W}.

The above theorems show how one can exploit tools from systemsynthesis for comput-
ing all compositions of a given target service. In details, starting fromC = 〈S1, . . . ,Sn,DB〉
andSt one can build the corresponding game structureG, then compute the setW
and, if it containsG’s initial state, use such set to generate thePG. In fact, this last
step is not really needed. Indeed, it is not hard to convince oneself that given a cur-
rent state〈st, s1, . . . , sn, d〉 and an operation to be executedo ∈ O, a service selec-
tion ind is ”good” (i.e, the selected service can actually execute the operation and the
whole community can still simulate the target service) if and only if W contains a tuple
〈st, s1, . . . , sn, d, o, ind〉, for someind ∈ {1, . . . , n}. Consequently, at each step, on
the basis of the current statest of the target service, the statess1, . . . , sn of available
services, the stated of data box, and the operationo requested, one can select a tuple
fromW , extract theind component, and use it for next service selection.

Finally, observe that time complexity of Algorithm 1 in polynomial in |V |, that
is the size of input2-GS’ state space. Since in our encoding|V | is polynomial in
|S1|, . . . , |Sn|, |St|, |D| and exponential inn, we get:

Theorem 6. Let C = {S1, . . . ,Sn,DB} be a community andSt a target service over
DB. Checking the existence of compositions by reduction to safety games can be done
in polynomial time wrt|S1|, . . . , |Sn|, |St|, |D| and exponential time inn.

That is, the technique is actually optimal wrt worst-case time complexity, the composi-
tion problem being EXPTIME-hard [19].

5 UsingTLV for computing compositions

Searching for a winning strategy is a problem solvable by several implemented systems
(e.g., [16, 15, 23]). We focus onTLV [23], the basic concepts being valid for all others.

TLV is a software for verification and synthesis ofLTL specifications, based on sym-
bolic manipulation of states, by using Binary Decision Diagrams (BDDs). It takes two
inputs:(i) a synthesis procedure and(ii) anLTL specification, encoded inSMV [23], to
be manipulated by the procedure. In particular, we refer to aTLV-BASIC procedure for
safety games which takes as input anLTL specification that encodes a2-GS and derives
from the system’s maximal winning set, if non empty, a structure representing the PG,
as shown in Theorem 5. For a detailed description ofTLV , TLV-BASIC and SMV, we
refer to [23], here introducing some essentials only.

Our approach consists in deriving, from the composition problem specification, i.e.,
community and target service, theSMV encoding of the respective2-GS, as shown in
Section 4.2, then executeTLV against this input and obtain, if the problem is feasible,
the respective PG.

Figure 1 shows the basic blocks of a sample encoding for a composition problem
with 3 available services. ModuleMain wraps up all other modules and represents the
whole game. It consists of two submodules (here declared assystem), sys andenv,
which encode, respectively, the environment and the systemin the game structure. Goal
formulagood (i.e., the invariant property) is a combination of subformulaeinitial
andfailure of modulessys andenv, directly obtained from the goal formula in
the2-GS representation. Observe thatenv andsys evolve synchronously, the former
choosing the operation and the latter selecting the servicefor its execution. The tran-
sition relation in moduleSys encodes anunconstrained controller, able to output, at
each step, any available service index in the interval[1, n]. The synthesis’ objective is
to restrict such a relation so to obtain a winning strategy.

As for moduleEnv, it contains all basic blocks the2-GS environment consists of.
Observe that its behavior depends on the value of modulesys’ index variable, as
prescribed byMain. According toSMV semantics, modulesdb,target,s1, . . . ,sn
execute synchronously. However, each of them can be encodedso to emulate asyn-
chrony, by looping when not selected. In particular, the encoding is such that, at each
step,db, target and only one amongs1,s2, . . . ,sn move, according to the2-GS
description.Env behavior is as follows. At each step, the available service selected
by the current value ofindex, executes the operation requested bytarget, which
is stored inoperation. All other services loop in their current state. At the same
time,db moves according tooperation, target selects next operation, according
to its specification, andsys selects a new service. Note that, in general, there may
exist states where the selected service cannot perform the requested operation, due to

either operation precondition failure (i.e.,db state) or service’s current state. In such
cases, expressionfailure of selected service becomestrue and, consequently, so
doesenv.failure. Avoiding such situations, by properly constrainingsys transi-
tion relation, is exactly the synthesis procedure aim.

MODULE Main
VAR
env: system Env(sys.index);
sys: system Sys;

DEFINE
good :=

(sys.initial & env.initial)|
!(env.failure);

MODULE Sys
VAR
index : 0..3; --num of services, 0 used for init

INIT
index = 0

TRANS
case

index=0 : next(index)!=0;
index!=0 : next(index)!=0;

esac
DEFINE
initial := (index=0);

MODULE Env(index)
VAR
operation : {start_op,pick,store,play,display_content,free_mem};
db : Databox(operation);
target : Target(operation,db.state);
s1 : Service1(index,operation,db.state);
s2 : Service2(index,operation,db.state);
s3 : Service3(index,operation,db.state);

DEFINE
initial := (db.initial & s1.initial & s2.initial & s3.initial &

target.initial & operation=start_op);
failure := (s1.failure | s2.failure | s3.failure) |

(target.final & !(s1.final & s2.final & s3.final));

Fig. 1.A TLV sample fragment encoding

6 Conclusions

We presented a new technique for composition of partially controllable available ser-
vices, which exploits the relationships between(i) building a simulation relation and
(ii) checking invariant properties in temporal-logic-based model checkers and synthesis
systems (cf., e.g., [26, 4]). We showed that all compositions can be computed at once,
as solutions to safety games and developed an implementation for the synthesis system
TLV (http://www.cs.nyu.edu/acsys/tlv/ and cf., e.g., [22]). Another option would be
to exploit ATL-based verifiers, such as Mocha (http://www.cis.upenn.edu/∼mocha/),
which can check game-structures for properties such as invariants, and extract winning
strategies for them.

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijai Machiraju. Web Services. Concepts,
Architectures and Applications. Springer, 2004.

2. Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani,
and Serdar Tasiran. MOCHA: Modularity in model checking. InProc. of CAV 1998, pages
521–525, 1998.

3. Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for discrete
and timed systems. InHybrid Systems II, pages 1–20. Springer-Verlag, 1995.

4. Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. InIFAC Symposium on System Structure and Control, pages 469–474. Elsevier,
1998.

5. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Massimo
Mecella. Automatic Composition of e-Services that Export their Behavior. InProc. of
ICSOC 2003, pages 43–58, 2003.

6. Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, andFabio Patrizi. Automatic ser-
vice composition via simulation.Int. J. Found. Comput. Sci., 19(2):429–451, 2008.

7. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation Specification: A New
Approach to Design and Analysis of E-Service Composition. In Proc. of WWW 2003, 2003.

8. J. Cardose and A.P. Sheth. Introduction to semantic web services and web process composi-
tion. In Proc. of SWSWPC 2004, 2004.

9. Giuseppe De Giacomo and Sebastian Sardiña. Automatic synthesis of new behaviors from a
library of available behaviors. InProc. of IJCAI 2007, pages 1866–1871, 2007.

10. C.E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated composition of e-services: Looka-
heads. InProc. of ICSOC 2004, 2004.

11. Malik Ghallab, Dana Nau, and Paolo Traverso.Automated Planning: Theory and Practice.
Morgan Kauffman, 2004.

12. Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing simula-
tions on finite and infinite graphs. InProc. of FOCS 1995, pages 453–462, 1995.

13. Richard Hull. Web services composition: A story of models, automata, and logics. InProc.
of SCC 2005, 2005.

14. Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwen Su. E-Services: a Look
Behind the Curtain. InProc. of PODS 2003, pages 1–14, 2003.

15. Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. InProc. FMCAD
’06, pages 117–124, 2006.

16. Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu: A tool
for property synthesis. InProc. of CAV 2007, pages 258–262, 2007.

17. Sheila McIlraith and Tran Cao Son. Adapting Golog for programming the semantic web. In
Proc. of KR-02, 2002.

18. Robin Milner. An algebraic definition of simulation between programs. InProc. of IJ-
CAI 1971, pages 481–489, 1971.

19. Anca Muscholl and Igor Walukiewicz. A lower bound on web services composition. In
Proc. of FoSSaCS 2007. Springer, 2007.

20. Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. IEEE Computer, 40(11):38–45,
2007.

21. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite
BPEL4WS Web Services. InProc. of ICWS 2005, 2005.

22. Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis ofreactive(1) designs. InVMCAI,
pages 364–380, 2006.

23. A. Pnueli and E. Shahar. The TLV system and its applications. Technical report, Weizmann
Institute, 1996.

24. Sebastian Sardiña, Giuseppe De Giacomo, and Fabio Patrizi. Behavior composition in the
presence of failure. InProceedings of KR’08, 2008.

25. Sebastian Sardiña, Fabio Patrizi, and Giuseppe De Giacomo. Automatic synthesis of a global
behavior from multiple distributed behaviors. InProc. of AAAI 2007, pages 1063–1069,
2007.

26. M. Vardi and K. Fisler. Bisimulation and model checking.In Proc of. CHARME, pages
338–341, 1999.

27. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services
Composition using SHOP2. InProc. of ISWC 2003, 2003.

