Automated Composition of Nondeterministic Stateful
Services

Giuseppe De Giacomo and Fabio Patrizi

Dipartimento di Informatica e Sistemistica
SAPIENZA - Universita di Roma
Via Ariosto 25 - 00185 Roma, Italy
{degi aconp, patrizi }@is. uniromal.it

Abstract. This paper addresses the automated composition of nondeistic
available services modeled as transition systems. Nomdigtism stems natu-
rally when the results of client-service interactions a#rive foreseen, and calls
for specific orchestration strategies able to deal withiglacontrollability. We
show how to build a set of orchestrators, by resorting to #amérof the sim-
ulation relation’s formal notion, by exploiting recent uéts on LTL formulas’
synthesis and by reducing our technique to the search fdetysgame winning
strategy. The resulting technique is sound, complete atichapw.r.t. computa-
tional complexity, and generates all possible solutiorenat.

1 Introduction

Web services are modular applications that can be descnihddished, located, in-
voked and composed over a variety of networks (includingititvernet): any piece of
code and any application component deployed on a systemecamapped and trans-
formed into a network-available service, by using standaidL-based) languages
and protocols (e.g., WSDL, SOAP, etc.)- see e.g., [1]. Thmnise of Web services
is to enable the composition of new distributed applicatisalutions: when available
services cannot satisfy a desired specification, they, @r garts, can be composed
and orchestrated in order to realize the specification.i@@pomposition involves two
different phases [13]: theomposition synthesisvhere the specification of an orches-
trator, which coordinates the available services to fudfitarget service specification,
is synthesized, and theomposition deploymernite., the actual implementation of the
orchestrator specification in a given technology (such a&LBP. Here, we focus on
the former.

Most of the research on composition synthesis, e.g., [2hd& consideredtomic
services, essentially abstracting away from their dyndraiavior (a.k.goossible con-
versation¥. Notable exceptions are, e.g., [17,7,21,5, 14, 20, 10]revistateful ser-
vices, and their dynamic behavior, are considered exiliéitsurvey on composition
synthesis approaches can be found in [13].

Yhttp://docs. oasi s- open. or g/ wsbpel / 2. 0/ wsbpel - v2. 0. pdf

In this paper, we follow the general approach first proposd8];, called, in [13],
“Roman Model”, and recently further investigated in the tesi of agent behavior com-
position, in Al [9, 25, 24]. We address the automatic comgmsiof nondeterministic,
partially controllable, available services, modeled asgition systems that capture the
possible conversations that services can have with cligviten the result of interac-
tions cannot be foreseen, nondeterminism naturally stBorsnstance, think of a ser-
vice for buying tickets: the service cannot know in advanbetiver seats are available
for a selected performance. In other words, service behavartially controllable: a
property an orchestrator needs to cope with. We assumerttatgirators can observe
available services'’ states, and hence take advantagesdftbinoosing how to continue
a certain task. This assumption is quite natural in thisextrft as transition systems
represent available services’ “public” behavior.

Our composition technique is based on the formal notionéitation relation [18].

It follows the lines drawn in [6, 24], in the presence of naedminism, which calls for
a specific simulation relation’s variant, that considelable services’ partial control-
lability. The variant presented here can be proven equivédethe one in [24].

Our main contribution is relating the service compositioalppem to the literature
on synthesis of reactive systems (cf., e.g., [22]). In paldir, we show that the problem
can be solved by exploiting safety-games and propose areimgitation based on
the systenmLv. This is a major step toward practical implementation ofieeg for
orchestrator synthesis. Notably, the proposed technigu®mly is sound, complete,
and optimal w.r.t. computational complexity, but also, ipracise formal sense (see
later), produces all (infinite) possible solutions at once.

In Section 2, we introduce the formal setting; in Section 8, develop our tech-
nique; in Section 4, we show how the technique can explo@tgafames; in Section 5,
we propose an implementation based on the systemand, finally, in Section 6 we
draw some conclusions.

2 The framework

The framework adopted here is based on [5, 9, 24], and is someéferred to as the
"Roman Model” [13].

Data box. We assume to have an accessible shared system, daltacdox which
allows client services to store and retrieve shared datad&¥eribe it as a nondeter-
ministic transition system, whe(states represent an abstract finite description of the
data content, an(ii) transitions represent the execution of operation, inclgdiata in-
sertion/deletion or retrieval. Nondeterministic traiwgis model those operations whose
outcome is a-priori unknown.

A data boxis a tupleDB = (O, D, dy, p) where:

2 The reader should observe that also the standard proposBL\VE® has a similar point of
view: the same operation can have multiple output messdbe®(t nessage and var-
iousout fault nmessages), and the client observes how the service behaved only after
receiving a specific output message.

O is the finite set of shared operations, i.e., twleset of operations clients can
perform, each of which may or may not affect data box’ state;

D is the finite set of data box’ states;

dy € D is the initial state;

p € D x O x D is the transition relation among statés; o, d’) € p, ord - d’

in DB, denotes that execution of operatioin stated may lead the data box to a
successor staté.

Available Services An available service, at each step, offers to its clientb@ice
of operations, based upon its own and data box’ state; teatathooses one of them,
and the service executes it, resulting in a new state of thviceeand a new state of the
data box. The available service can take into account dataifftuence on available
services by puttinguardson transitions —i.e., conditions on current state of thalolax,
which restricts the set of transitions that can actually talace.

Formally, anavailable serviceover a data boDB = (O, D, dy, p) is a tupleS =
(0,8, 50,8%,G, o), where:

O is the same set of operations ag’in
S is the finite set of service’s states;
sp € S'is the initial state;

Sf C Sis the set offinal states, i.e., those where the execution can be legally
stopped (if desired);

e G is a set of boolean functions: D — {true, false} calledguards
e 0 C S x G x 0O x Sisthe service's transition relation.

When (s, g,0,s') € p, we say thatransitions <% ' isin S. Given a states € S,

if there exists a transition 2% s’ in S (for someg ands’) and the data box is in a
stated such thay(d) = true then operatiom is said to beexecutablén s. A transition
s 2% ¢ in S denotes that’ is a possible successor statespfivhen operatiom is
executed irs, providedyg(d) = true, d being current data box state.

Available services are, in generabndeterministicthat is, they allow many tran-
sitions to take place under execution of a same operatigrwlsen choosing the oper-
ation to execute next, the client of the service cannot beiceof which choices will
be available later on, this depending on which transitianalty takes place. In other
words, nondeterministic behaviors are opbtially controllable

We say that a servicg over a data boDB is deterministidff there is noDB state
d € D for which there exist, i, two distinct transitions 2% s’ ands 2% s” such
thats’ # s” andgi(d) = g2(d) = true. Notice that given a deterministic service’s
state and a legal operation in that state,th&uenext service state is always known.
That is, deterministic services are inddallly controllableby selecting operations.

Community and Target Service A communityC={S,...,S,, DB} is a set con-
taining (i) a data boxDB and(ii) n nondeterministic available services ow@B. In
our framework, we also define the so-calladget service which is thedeterministic
service one aims at building by propedgmposingvailable services. A target service
has the same form as any other service defined B¥&rwith the only requirement of
being deterministic.

Trace and History. GivenS = (0, S, so, ST, G, 0) overdataboDB = (O, D, dy, p),
atracefor S on DB is a possibly infinite sequence, alternating configurataom op-
erations, of the form{s®, d®) 2= (s!,d') 2= ---, such tha(i) (s°,d") = (sg,do),
i . . Cgoitl .
and (i) for all j > 0, if (s7,d7) 25 (sit1, @1}, thens’ 25 &+l in S with
g(d’) = true for someg, andd’ 7% @+ in DB.
Similarly, letC = {8, ..., S,, DB} be acommunity, wher§; = (O, S;, si0, ST, Gy, 0)

(i=1,...,n)andDB as above. Aommunity tracéor C is a possibly infinite sequence

LN 2 k2 .
oftheform(s?,...,s%, d%) =5 (sl,... sk d') %5 ... suchthati) (s0,...,s2,d°) =
-) o R e Tas I) _
(510, - - - 8n0, do), and(ii) forall j > 0,if (s7,... s7,d) " =5 (ST . sit1 @ity

. J+1 . . .

thens?,., 77 s/} in Sy with g(d7) = true for someg, sJ ™ = s/ fori # k/+1,
anddi 255 @i+1 in DB.

We call (communityhistoryevery finite prefix of a (community) trace ending with
a configuration. Given a historly, we denote byiast(h) the last configuration, and
by length(h) the number of alternations between configurations and tpasain h.
Notice that the history of length 0 is simply the initial canfration of a trace (which is
the same for every trace).

Orchestrator. The orchestratoris a component able to activate, stop and resume
each of the available services, and select one to perforxesutable operation. The
orchestrator hakull observabilityon available service states, that is, it can keep track
(at runtime) of the current state of each available sertieeC = {S;,...,S,, DB} be

a community and{ be the set of its community service histories. @mchestratorfor

a communityC is a functionP : H x O — {1,...,n,u} that, given a history. € H

and an operation € O, selects an available service, i.e., returns its index, hhv
delegate. Special value: is introduced for technical convenience, to make funcfion
total.

Definition 1. LetC = (&4, ..., Sy, DB) be a community and; a target service over
DB, where,S; = (S;,i0, 5], Gi,0) (i = t,1...,n) andDB = (O, D, dy, p). Let
P:H x O —{1,...,n,u} be an orchestrator fo€. Given a tracer = (s°, d°)

(s, db) o of S: onDB, we say that the orchestratd? realizes the trace if and
only if:

— for all community service historigs € H.., P(h, olm9th(M+1) £ y andH! # 0
(see below), whergt, = [J, H! is a set of community service histories, inductively
defined as follows:

L4 qu— = {<5107 <580, dO)}y
e 7 *1is the set of community histories of length- 1 having the formh’ =
oIt gt : .
TR T st @ity such that:
o h € M, with last(h) = (s],...,s),d);
e o’Tlandd’*! are the operation and the data box state in history of length
j + 1 obtained fromr.

e P(h,0"t1)=F, that is, the orchestrator states that operati@it! in the
trace T after community historjt should be executed by available service
Sk
. J+1 . .
o 57 77 5171 in S, with g(d7) = true for somey, that is, the available
serviceSy, can evolve according to the histohy.
o sJT' =l foreachi # k
— if a configuration(s!, d’) of is such thats! € S/, then every configuration
(s%,... 55, d’) = last(h), with h € H, is such thak! € S/, fori = 1,...,n.
Definition 2. An orchestratorP for C is a composition of the target servicg on data
box DB iff it realizes all tracesf S; on DB.

Intuitively, the orchestrator realizes a target servid®ifall target service traces over
the data box, at every step, it returns the index of an aJailsdrvice that can actually
perform the requested operation. Observe that since hl@asarvices and data box are
nondeterministic, the orchestrator must be always ablexd¢glge the next operation,
no matter how the activated service and the data box happearotee after each step.
Finally, note that the orchestrator can observe availadfeices’ and data box’ states
(in fact, the whole community service history so far), inertb decide which available
service to select next. This makes orchestrators akin toearneed form of conditional
plans [11].

The Composition Problem This work addresses the following problengiven a
communityC = {8z, ..., S,, DB} and a deterministitargetserviceS; overDB, syn-
thesize an orchestrator f@r which is a composition af; on data boxD5.

3 Composition via Simulation

Following [6, 24], we present a composition technique basethe formal notion of
simulation[18, 12]. Since the devilish nondeterminism of both data aod available
services prevents the possibility to use the off-the shetfom of simulation, a more
general variant is needed, calldi-simulation

Definition 3. LetC = (&4, ..., Sy, DB) be a community and; a target service over
DB, where,S; = (S;,i0,57,Gy,0:) (i = t,1...,n) andDB = (O, D, dy, p). An
ND-simulation relatiorof S; by C is a relationR C S; x S1 x ... x S, x D such that
(St,81,- -+, 8n,d) € Rimplies:

1. ifs, € S/ thens; € S/, fori=1,...,n;

2. for eacho € O, there exists & € {1,...,n} such that for all(s;, d) — (s}, d")
such thats, 2% sy in 8¢ with g(d) = true andd -2, d in DB, then both the
followings hold:

(a) there exists a transitiosy, LN s}, in S with g(d) = true;
(b) forall s, 2% s, in Sy, with g(d) = true we have thats,, s,..., sk, ..., sn,d") €
R.

An ND-simulation is essentially a simulation betwegrand the asynchronous product
of the servicess; in C. With respect to the usual notion of simulation relation,veed

to deal with data bo©B in C that acts as a parameter, and, more importantly, we need
to take into account available services’ nondeterminismthis end, we require that

(i) for each target service’s transition an available serkican be selected to perform

S; labeling operation angli) all possible successor stat¢snder selected service and
current operation) are still included in the ND-simulatretation.

A states; is ND-simulated by(s, ..., s,,d) (Or {(s1,. .., $n,d) ND-simulatess;),
denoteds; < (s1,...,sn,d), iff there exists an ND-simulatioR of S; by C such that
(st,51,-.-,8n,d) € R. Observe that this is a coinductive definition. As a reshi, t
relation= is itself an ND-simulation, and is in fact th@gest ND-simulation relation

Next result shows that checking for the existence of a coitippgan be reduced
to checking whether there exists an ND-simulation relabietween the target service
and the community, containing their respective initiatesta

Theorem 1. LetC = (S1,...,S,, DB) be a community and; a target service over
DB as above. An orchestratd? for C that is a composition of target servicg over
DB exists if and only ikg < (s10, .- ., Sn0,do)-

Theorem 1 provides a straightforward method to check foettigtence of a composi-
tion, namely:

1. compute the largest ND-simulation relatigin

2. check whethets;o, s10, - - -, Sno, do) € =.

From the computational point of view, the largest ND-sintioka relation< be-
tweenS,; andC can be computed in polynomial time wrt the sizeSfandC. Since
the number of states i@l is exponential in the number of available serviegs< can
be computed in exponential time. More precisely, it is polyal wrt the size ofS;,
DB and each servic§;, but exponential in the number of available servige3hus,
observing that the problem is EXPTIME-hard [19], we get théd technigue is optimal
wrt worst-case complexity.

Once we have computed the ND-simulatisginthesizingn orchestrator becomes
an easy task. As a matter of fact, there is a well-defined piureethat, given an ND-
simulation, builds a finite state program that returns, ahg#oint, the set of available
behaviors capable of performing a target-conformant djmera/We call such a program
orchestrator generatqror simplyPG. Formally:

Definition 4. LetC = (Sy,...,S,, DB) be a community and; a target service over
DB as above. The orchestrator generator (R&{§ for S; is atuple PG= (O, {1,...,n}, X, 9, w),
where:

1. O s the finite set of operations;

2. {1,...,n} is the set of available behavior indexes;

3. Y = {(st,81,.--,8n,d) | 8¢+ = (s1,...,8n,d)} is the set of states of PG,
formed by the tuples belonging to the largest ND-simulatédation;

4. 0 C XY x0OxA{1,...,n} x Xis thetransition relationwhere(s, o0, k, o’) € 9,

oro 2% o' isin PG, if and only if all of the followings hold:
® 0 ={(5,51,...,5k-..,5n,d)yande’ = (si,s1,...,85,...,5n,d)
o 5 2% s} in Sy with g(d) = true;

o there exists a transitios, 2% s} in S with g(d) = true;
o foralltransitionssy, 2% s/ in Sy, with g(d) = true we have(s}, s1,..., s/, ..., s,,d") €
2
5. w: X x O~ 2{L--7} is theoutput functionwhere:

e w(o,0)={k|3Jo' sto 2K o'in PG}.

Intuitively, PGis a finite state transducer that, given an operati@@dompliant with
the target service), outputs, throughthe set ofall available services able to perform
o next, according to the largest ND-simulatign Observe that computirgG from the
relation= is easy, since it involves checking flacal conditions only.

If there exists a composition &; by C, thens:y < (s10, - - ., Sno, do) andPG does
include staterg = (sq0, s10, - - - ; Sno, do)- In such case, all the actual orchestrators that
are compositions af; by C can be obtained by just picking up, at each step, one among
the services returned hy. Being, in fact, generated from a given structure (R9),
they are calledyenerated orchestrator®rior to provide their formal definition, some
preliminary notions are needed.

141
A trace for PGstarting fromo? is a finite or infinite sequence of the fora K
1 0j+17kj+1

2 7.2
ot 2K ... such that; ~ — o041 isin PG, for all j. A history for PGstarting
from states? is a prefix of a trace starting from staté. By using histories, one can in-
troducePG-orchestratorswhich are function®GPcyoose : Hpex O — {1,...,n,u}
whereHpg is the set ofPG histories starting from any state i and defined as fol-
lows: PGPchoose(hpe,0) = CHOOSHw(last(hpg),0)), for all hpg € Hpgs, Where
CHOOSESstands for a choice function that chooses one element arhosg teturned
by w(last(hpg), 0)).

We can now relate BG to compaositions, through the following characterizing-the
orem.

Theorem 2. If PG includes the statey = (s1o,. .., Sno,do) then every orchestrator
generated by PG is a composition of the target ser$idey the communit¢. Moreover,
every orchestrator that is a composition of the target s@, by the communitg can
be generated by PG (which, indeed, includgs

Notably, while each specific composition may be an infinitgestpprogrampPG,
which includes them all, is always finite. We conclude thdiseowith an interesting
observation. Let us consider the generated orchestPatdt;;,, with CHoosEresolved
atrun-time PGP j;; (andPGfor the matter) can be computed-the-flyby storing only
the ND-simulationx. Indeed, at each point, the only information we need for & n
choice isw(o, 0) wheres € X' = <. Now, in order to compute (o, o) we only need to
know <.

4 Simulation and Safety Games

In this Section, we show how a service composition problestaimce can be encoded
into a game structure and how searching for a compositiogussalent to searching
for a winning strategy for the corresponding game (cf. [22}). The main motivation

behind this approach is the increasing availability ofwsafe systems, such asv [23],
Lily [15], Anzu [16] or MOCHA [2], which provide(i) efficient procedures for strategy
computation andii) convenient languages for representing the problem instana
modular, intuitive and straightforward way.

4.1 Safety-Game structures

We specialize thgame structureproposed in [22] to deal with synthesis problems for
invariant properties. Throughout the rest of the paper, sseime to deal with infinite-
run TSs, possibly obtained by introducing fake loops, atoenary inLTL verifica-
tion/synthesis.

Starting from [22], we define safety-game structuf@r O-game structure ao-GS,
for short) as a tupl& = (V, X,), O, p., ps, Op), where:

-V = {v1,...,v,} is a finite set ofstatevariables, ranging ovefinite domains
Vi,..., V,, respectivelyV = Vi, ...V, represents the set of all possible valua-
tions of variables iV. We assume that = {X, '}, i.e.,V is partitioned into sets
X and), the former referred tas set of environment variablagd the latter aset
of system variabled et X (resp.Y’) be the set of all possible valuations for vari-
ables in¥ ()). Then,x € X (y € Y) is calledenvironment statésystem staje A
game states € V is a complete assignment of values to variables. Withowst dds
generality, we assume that= (z,y) € X x Y.

— Oisaformularepresenting the initial states of the game.dthhoolean combination
of expressiongv, = ¥y), wherev, € V andv, € Vi, (k € {1,...,n}) (partial
assignments are allowed). For such formulae, given a &atg) € V, we write
(z,y) = O if states satisfies the assignments specifiedthy

— pe(X,Y,X’) is the environment transition relatiomvhich relates a current (un-
primed) game state to a possible next (primed) environnatg.s

— ps(X, Y, X',)" is thesystem transition relatignvhich relates a game state plus
a next environment state to a next system state.

— Oy is a formula representing the invariant property to be guaed, where> has
the same form a§.

We assume variables iki (respectively)) are ordered, so that valuationsih(Y’) can
be conveniently represented as tuptes- (z1,...,z,) (y = (y1,-..,Ym))- In unary
tuples, we omit angle brackets when no ambiguity arises.

A game statéx’, y’) is asuccessoof (x, y) iff p.(x,y,2’) andp,(x,y, ', y').
A play of G is a maximal sequence of statgs: (xg,yo){x1,y1) - satisfying(i)
(xo, yo) = ©, and(ii) for eachj > 0, (z;41,y,+1) IS asuccessor dfc;, y;). Given a
O-GSG, in a given statéx, y) of a game play, the environment chooses an assignment
2’ € X such thap.(x,y,2’) holds and the system chooses assignngért Y such
thatps(x,y, ', y’) holds.

A play is said to bevinning for the systerif it is infinite and satisfies the winning
conditiond¢. Otherwise, it isvinning for the environmen# strategyfor the system is
a partial functionf : (X x Y)™ x X — Y such that for every : (xo, yo) - - (Tn, Yn)
and for everyr’ € X such thap.(x,, yn, '), ps(@n, yn, ', f(A,x’)) holds. A play

n : {xo,yo)(x1,y1) - IS said to becompliantwith a strategyf iff for all ¢ > 0,
f{xo,yo) - - (xi, Ys), ®it1) = Yit1. A Strategyf is winning for the system from a
given state(z, y) iff all plays starting from(z, y) and compliant withf are so. When
such a strategy exist$z, y) is said to be avinning statefor the system. AO-GS is
said to bewinning for the systerif all initial states are so. Otherwise, it is said to be
winning for the environment

Our objective is to encode a composition problem inta-&S and, then, exploit
tools available for the latter to compute the orchestragoregatorPG (cf. Section 3).
Essentially, as it will be clear soon, one can extract theimakND-simulation relation
—and, from this, directly compute theG—, from the maximal set of states that are
winningfor the system. Let us show how sueinning setcan be computed in general
on ad-GS. The core of the algorithm is the following operator [8f.22]):

Definition 5. LetG = (V, X,), 0, p., ps, Op) be ad-GS as above. Given a sBtC
V of game stateér, y), the set of P’s controllable predecessass

m(P) = {{z,y) e V[V pe(x,y,x') —
3y .ps(x,y,x',y') Az, y') € P}

Intuitively, 7(P) is the set of states from which the system can force the plagach
a state inP, no matter how the environment evolves. Based on this, Algorl com-
putes the set of all system’s winning states 6f-&SG = (V, X, Y, O, pe, ps, D), as
Theorem 3 shows.

Algorithm 1 WIN - Computes system’s maximal set of winning statesiir@S
LW:={(z,y) €V |(zy) ¢}
2: repeat
3 W=w;

4 W =wnn(W),

5

6

s until (W =W)
creturn W

Theorem 3. LetG = (V, X,), 0, p., ps, Op) be abd-GS as above and’ be obtained
as in Algorithm 1. Given a stater, y) € V, a system’s winning strategystarting from
(x,y) exists iff(x,y) € W.

In fact, one can define a system’s winning strat¢@ico, yo), . - -, (i, ¥:),) = vy,
by picking up, for each: such thap.(x;, y;, =) holds, any(x,y) € W.

4.2 From Composition to Safety Games

In order to encode the composition problem as-&S, we need first to individuate
which place each abstract component, e.g., target, alaiavices, data box, occu-
pies in the game representation. Conceptually, our goaliigfine an automaton capa-
ble of selecting, at each step, one among all the availalpléces, in a way such that

the community is always able to satisfy target service retpueso, the orchestrator,
i.e., the object of the synthesis, plays as system and, quaesdy, the other entities,
properly combined, form the environment. In addition, adaag to our purposes, the
winning condition requires to satisfy two propertié¥:if the target service is in a final
state, all community services are in a final state as {igllthe service selected by the
orchestrator is able to perform the action currently retreeBy the target service.

LetC = (Sy,. .., Sy, DB) be a community and; a target service ovépi3, where,
Si = (Si,8i0,5],Gi,0) (i = t,1...,n) andDB = (O, D, dy, p). We derive &3-GS
G=V,X,9,0,pe, pe, Do), as follows:

-V ={s,81,...,8n,d,0,ind}, where:
e s; ranges oveb; U {init} (i =t,1,...,n);
e dranges oveD U {init};
e oranges ove® U {init};
e indrangesovefl,...,n} U {init};
with an intuitive semantics: each complete valuatiolwaépresentsi) the current
state of community (variables, .. ., s,,), data box) and target services(), (ii)

the operation to be performed nexf) @nd (iii) the available service selected to
perform it Gnd). Special valueénit has been introduced for convenience, so as to
have fixed initial state;
- X ={s¢,81,...,8n,d,0} is the set of environment variables;
— Y = {ind} is the (singleton) set of system variables;
= 0 = (Nizi .. n(si =init)) A (d = init) A (o = init) A (ind = init);
— pe(X, Y, X') is defined as follows:
o ((init,...,init),init, (s, 81,...,5n,d,0)) € piff s; = s;0,fOri =¢,1,...,n,
d = dy, and there exists a transitidsy, g, 0, s}) € o, such thay(do) = true;
o if s; £ init,withi = t,1,...,n,, d # init, o # init andind # init then
({(St, 81,y 8n,d,0),ind, (s}, 8], ..., s, d,0)) € pe iff the followings hold
in conjunction:

1. there exists a transition <5 s/ in g, with g(d) = true;

2. either there exists a transitieg,; > i q 1IN ing With g(d) = true or
st = Sind (S€rvice wrongly makes no move, and the error violates the
safety conditionp, see below);

3. s, =g}, foralli =1,...,nsuch that # ind;

4. there exists a transitiah—— d’ in DB;

5. there exists a transitiond 2% s in o, for somes/’, with ¢/(d') = true;
— {{84,81,...,8n,d,0),ind, (s}, sy,...,s . d, o), ind') € p,iff ind’ € {1,...,n};
t) 21 n P

— Formulay is defined depending on current state, operation and sesgieetion as

o =0V ()\ ~fail;) A (final, —) finaly),

=1 i=1

where:
o fail; = (ind = i) A (N5 g op.syeo (9(d) = false V s; # 5V op # o)),
encodes the fact that servi¢éhas been selected but, in its current state, no
transition can take place which executes the requestecibqer

e final; = \/,.4s(si = s) encodes the fact that servie= ¢,1,...,n is
currently in one of its final states.

We can now show how the so-obtained game structure allowsdimputing an
orchestrator generator. Recall that, in order to defineRli& one needs to build an
ND-simulation (see Definition 4). The following Theorem slatthat this can be equiv-
alently done by computing the maximal system'’s set of wigrstates foiG.

Theorem 4. LetC = (S1,...,S,, DB) be a community and; a target service over
DB whereS; = (0, S;, 51,5, Gi, 0) (i = t,1...,n)andDB = (O, D, dy, p). From
C andS; derive: aO-GSG = (V, X, Y, 0, pe, ps, Op) as shown above. L&t C V
be the maximal set of system’s winning states¥olhen(init, . .., init) € W if and
Only if S0 X <5107 .oy SN0y do)

Based on this, the following Theorem gives us an actual ghaeeto build up an or-
chestrator generator and, hence, all possible composition

Theorem 5. LetC = (S1,...,8,,DB), St andG = (V,X,V,0, pe, pe, Op) be
as above (hypothesis of Theorem 4). létbe the system’s winning set faf with
(int, ... ,init) € W. Then the orchestrator generat®G = (O, {1,...,n}, X, 0,w)
of C for S; can be built fromi?/, as follows:

— O is the usual set of operations afd, ..., n} the set of available services’ in-
dexes;

- X C 8 xS x...x 8, x Dissuch that{s;, s1,...,s,,d) € X if and only
if there exists a game statgy, s1,. . ., sn,d,0,ind) € W, for someo € O and
inde{1,...,n};

— 0 C (UxOx{1,...,n}xX)issuchthat(ss, s1,...,5n,d),0,k, (s},8],...,s,,d))
0 if and only if (s, s1,...,8,,d,0,k) € W and there exist’ € O andk’ €
{1,...,n} suchtha(s:, s1,...,8n,d,0,k),(sh,..., s, s5,d,0 k")) € ps;

- w:Ix0 —2lntisdefinedasi((sy, . . ., 8n, 8¢, d),0) = {i € {1,...,n}| (s1,.
wt.

The above theorems show how one can exploit tools from sysyethesis for comput-
ing all compositions of a given target service. In detatlsiting fromC = (S4, ..., S,, DB)
and S; one can build the corresponding game structdreghen compute the sét’
and, if it containgG’s initial state, use such set to generate th@. In fact, this last
step is not really needed. Indeed, it is not hard to convinm@self that given a cur-
rent state(ss, s1, ..., s,,d) and an operation to be executedc O, a service selec-
tion ind is "good” (i.e, the selected service can actually executeoiireration and the
whole community can still simulate the target service) fl amly if 17 contains a tuple
(St,81,- -+, 8n,d,0,ind), for someind € {1,...,n}. Consequently, at each step, on
the basis of the current statg of the target service, the states ..., s,, of available
services, the statg of data box, and the operatierequested, one can select a tuple
from W, extract thend component, and use it for next service selection.

Finally, observe that time complexity of Algorithm 1 in palgmial in|V|, that
is the size of inputd-GS’ state space. Since in our encodifg is polynomial in
[S1l, .-, 1Sn], 1St | D| and exponential im, we get:

S

"7Snast7d705i> €

Theorem 6. LetC = {S4,...,S,, DB} be a community and; a target service over
DB. Checking the existence of compositions by reduction &tysghmes can be done
in polynomial time wr{Sy|,. .., |S,|, |S:, | D| and exponential time in.

That is, the technique is actually optimal wrt worst-caseetcomplexity, the composi-
tion problem being EXPTIME-hard [19].

5 UsingTLv for computing compositions

Searching for a winning strategy is a problem solvable bgsgimplemented systems
(e.g., [16, 15, 23]). We focus orLv [23], the basic concepts being valid for all others.

TLV is a software for verification and synthesisof specifications, based on sym-
bolic manipulation of states, by using Binary Decision D&gs (BDDs). It takes two
inputs: (i) a synthesis procedure aijg anLTL specification, encoded ™MV [23], to
be manipulated by the procedure. In particular, we refertovaBAsic procedure for
safety games which takes as inputan specification that encodesaGS and derives
from the system’s maximal winning set, if non empty, a stuoetrepresenting the PG,
as shown in Theorem 5. For a detailed descriptiomiof, TLV-BASIC and SMv, we
refer to [23], here introducing some essentials only.

Our approach consists in deriving, from the compositiorbfm specification, i.e.,
community and target service, tbe&1v encoding of the respective-GS, as shown in
Section 4.2, then executav against this input and obtain, if the problem is feasible,
the respective PG.

Figure 1 shows the basic blocks of a sample encoding for a ositign problem
with 3 available services. Modulhi n wraps up all other modules and represents the
whole game. It consists of two submodules (here declareg asen), sys andenv,
which encode, respectively, the environment and the systéine game structure. Goal
formulagood (i.e., the invariant property) is a combination of subfolai ni t i al
andf ai | ur e of modulessys andenv, directly obtained from the goal formula in
the -GS representation. Observe tleatv andsys evolve synchronously, the former
choosing the operation and the latter selecting the sefeiciés execution. The tran-
sition relation in moduléSys encodes amnconstrained controllgrable to output, at
each step, any available service index in the inteflial]. The synthesis’ objective is
to restrict such a relation so to obtain a winning strategy.

As for moduleEnv, it contains all basic blocks tHe-GS environment consists of.
Observe that its behavior depends on the value of moslyte i ndex variable, as
prescribed bywai n. According tosmMv semantics, moduledb,t ar get ,s1,...,sn
execute synchronously. However, each of them can be encamlén emulate asyn-
chrony, by looping when not selected. In particular, theogig is such that, at each
step,db, t ar get and only one among1,s2,...,sn move, according to thel-GS
description.Env behavior is as follows. At each step, the available serviadecsed
by the current value of ndex, executes the operation requested lay get , which
is stored inoper at i on. All other services loop in their current state. At the same
time,db moves according toper at i on,t ar get selects next operation, according
to its specification, angdys selects a new service. Note that, in general, there may
exist states where the selected service cannot perfornethested operation, due to

either operation precondition failure (i.elb state) or service’s current state. In such
cases, expressidmai | ur e of selected service becomesue and, consequently, so
doesenv. f ai | ur e. Avoiding such situations, by properly constrainisgs transi-
tion relation, is exactly the synthesis procedure aim.

MODULE Sys
) VAR
MODULE Mai n index : 0..3; --numof services, O used for init
VAR INIT
env: system Env(sys.index); index = 0
sys: system Sys; TRANS
DEFI NE case
good : = index=0 : next (index)!=0;
(sys.initial & env.initial)| i ndex! =0 : next (i ndex)!=0;
I'(env.failure); esac
DEFI NE
initial := (index=0);
MODULE Env(i ndex)
VAR
operation : {start_op, pick, store, pl ay, di spl ay_content, free_nen};

db : Dat abox(operation);

target : Target(operation,db.state);

sl : Servicel(index, operation,db.state);
s2 : Service2(index, operation,db.state);
s3 : Service3(index, operation,db.state);

DEFI NE
initial := (db.initial &sl.initial & s2.initial &s3.initial &
target.initial & operation=start_op);
failure := (sl.failure | s2.failure | s3.failure) |

(target.final & !(sl.final & s2.final & s3.final));

Fig. 1. A TLv sample fragment encoding

6 Conclusions

We presented a new technique for composition of partiallytradiable available ser-
vices, which exploits the relationships betwg@nbuilding a simulation relation and
(i) checking invariant properties in temporal-logic-basedeieheckers and synthesis
systems (cf., e.g., [26, 4]). We showed that all compositicen be computed at once,
as solutions to safety games and developed an implemanfatithe synthesis system
TLV (http://www.cs.nyu.edu/acsys/tlv/ and cf., e.g., [R2Another option would be
to exploit ATL-based verifiers, such as Mocha (http://wwsugpenn.edutmocha/),
which can check game-structures for properties such asiamta, and extract winning
strategies for them.

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijai Meaihi. Web Services. Concepts,
Architectures and ApplicationsSpringer, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shade&gr, Sriram K. Rajamani,

and Serdar Tasiran. MOCHA: Modularity in model checking.Phoc. of CAV 1998pages
521-525, 1998.

. Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic algr synthesis for discrete

and timed systems. IHybrid Systems Jlpages 1-20. Springer-Verlag, 1995.

. Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifdkontroller synthesis for timed

automata. INFAC Symposium on System Structure and Conpayes 469—-474. Elsevier,
1998.

. Daniela Berardi, Diego Calvanese, Giuseppe De Giacoraari¥io Lenzerini, and Massimo

Mecella. Automatic Composition of e-Services that Expbeit Behavior. InProc. of
ICSOC 2003pages 43-58, 2003.

. Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo Faib Patrizi. Automatic ser-

vice composition via simulatiorint. J. Found. Comput. S¢il9(2):429-451, 2008.

. Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Gaeation Specification: A New

Approach to Design and Analysis of E-Service CompositiorPrioc. of WWW 20032003.

. J. Cardose and A.P. Sheth. Introduction to semantic weires and web process composi-

tion. In Proc. of SWSWPC 2002004.

. Giuseppe De Giacomo and Sebastian Sardifia. Automatibesis of new behaviors from a

library of available behaviors. IRroc. of IJCAI 2007 pages 1866—1871, 2007.

C.E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automatedpusition of e-services: Looka-
heads. IrProc. of ICSOC 20042004.

Malik Ghallab, Dana Nau, and Paolo Traversoitomated Planning: Theory and Practice
Morgan Kauffman, 2004.

Monika Rauch Henzinger, Thomas A. Henzinger, and Peté¢dpke. Computing simula-
tions on finite and infinite graphs. Proc. of FOCS 1995pages 453-462, 1995.

Richard Hull. Web services composition: A story of megdautomata, and logics. Froc.
of SCC 20052005.

Richard Hull, Michael Benedikt, Vassilis Christophédand Jianwen Su. E-Services: a Look
Behind the Curtain. IfProc. of PODS 2003pages 1-14, 2003.

Barbara Jobstmann and Roderick Bloem. Optimizationisifo synthesis. IrProc. FMCAD
‘06, pages 117-124, 2006.

Barbara Jobstmann, Stefan Galler, Martin Weiglhofed, Roderick Bloem. Anzu: A tool
for property synthesis. IRroc. of CAV 2007pages 258-262, 2007.

Sheila Mcllraith and Tran Cao Son. Adapting Golog forggeanming the semantic web. In
Proc. of KR-022002.

Robin Milner. An algebraic definition of simulation betn programs. IfProc. of 13-
CAIl 1971 pages 481-489, 1971.

Anca Muscholl and Igor Walukiewicz. A lower bound on weldnéces composition. In
Proc. of FoSSaCS 200%pringer, 2007.

Mike P. Papazoglou, Paolo Traverso, Schahram DustddrFaank Leymann. Service-
oriented computing: State of the art and research chaliefigeE Computer40(11):38-45,
2007.

M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Aun&ded Synthesis of Composite
BPEL4WS Web Services. IRroc. of ICWS 20052005.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesigezctive(1) designs. IWMCA|,
pages 364-380, 2006.

A. Pnueli and E. Shahar. The TLV system and its applinati@echnical report, Weizmann
Institute, 1996.

Sebastian Sardifia, Giuseppe De Giacomo, and FabiaiP&ehavior composition in the
presence of failure. IRroceedings of KR'08008.

25. Sebastian Sardifia, Fabio Patrizi, and Giuseppe DefBi@acAutomatic synthesis of a global
behavior from multiple distributed behaviors. Rroc. of AAAI 2007 pages 1063-1069,

2007.
26. M. Vardi and K. Fisler. Bisimulation and model checkintn Proc of. CHARME pages

338-341, 1999.
27. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. AutongaDAML-S Web Services

Composition using SHOP2. roc. of ISWC 20032003.

