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SOMMARIO/ABSTRACT

In this paper we make a preliminary investigatation on
the use of SAT technology for solving constraint prob-
lems. In particular, we solve many instances of several
common benchmark problems for CP with different SAT
solvers, by exploiting the declarative modelling language
NPSPEC, and SPEC2SAT, an application that allows to
compile NPSPEC specifications into SAT instances. Fur-
thermore, we start investigating whether some reformula-
tion techniques already used in CP are effective when using
SAT as solving engine. We present preliminary but encour-
aging experimental results in this direction, showing that
this approach can be appealing.

1 Introduction

Several benchmark problems have been proposed in the
literature for testing the performance of Constraint Pro-
gramming tools (cf., e.g., [21, 15]), spanning several areas,
from combinatorics, to planning, scheduling, or problems
on graphs.

There is also a great variety in the kind of solvers that are
used for Constraint Programming: those based on back-
tracking (cf., e.g., [28]), mathematical programming (cf.,
e.g., [13]), answer sets and stable model semantics (cf.,
e.g., [10, 20]), which are typically complete, or those that
rely on local-search techniques (cf., e.g., [18, 29]) which
are intrinsically incomplete. In this paper we focus on a
different kind of tools, i.e., solvers for Propositional Satis-
fiability (SAT), showing how they can be transparently and
effectively used for solving constraint problems.

The intuition behind the usage of a SAT solver, is that
every CSP can be reduced in polynomial time to an in-
stance of SAT, since the complexity of solving a CSP is
in NP, and SAT is one of the prototypical NP-complete
problems. Actually, the latter aspect has led to a great
interest and to a huge amount of research in the field of
SAT solving (cf., e.g., the proceedings of the last SAT

conferences), leading to the current availability of very
efficient solvers that can deal with very large formulae.
State-of-the-art SAT solvers include complete ones, such
as ZCHAFF [19], and incomplete ones, such asWALK -
SAT [25], andBG-WALKSAT [30]. For an up-to-date list,
we refer the reader to the URLswww.satlib.org and
www.satlive.org .

The availability of fast solvers for SAT has led a great
interest in the CP research community, and many papers
show how to translate (compile) into SAT instances of var-
ious problems, like, e.g., scheduling, planning, or com-
binatorial ones (cf., e.g., [8, 17, 11, 16]). However, the
complexity of the translation task is a major obstacle, since
the compilation strongly depends on the constraints of the
problem to be solved. Nowadays, this task is typically
made by problem-dependent programs hence, in practice,
preventing SAT to be one of the actual solving technolo-
gies for Constraint Programming.

The availability of specification languages that compile
problem instances into SAT formulae, e.g., the language
NPSPECand the SPEC2SAT system [2, 7], is an important
step ahead, providing the user with the possibility of eas-
ily building specifications for new constraint problems in a
purely declarative way, maintaining a strong independence
from the instances.

In this paper, we present some preliminary experiments
showing that SAT technology can beeffectivelyused for
solving CSPs, by using NPSPEC on several common
benchmark problems for CP, experiencing different SAT
solvers. The problems we focus on are a significant subset
of those present in the benchmark repository CSPLib [15],
very well-known in the CP research community. Problems
in CSPLib are usually described only in natural language,
and no formal specification is given for most of them.
Hence, as a side-effect, our work also proposes declarative
specifications (in the language NPSPEC) for such prob-
lems. For the future, we plan to strengthen our evalua-
tion by adding more problems from CSPLib, run the same
problems using other systems, including OPL [28] smod-



els [20], and dlv [10], and possibly adopting more SAT
solvers.

In general, given a specification of a problem, several
techniques have been proposed to reformulate it, in or-
der to improve the solver efficiency, while maintaining
equivalence (or at least, the possibility to efficiently recon-
struct valid solutions to the original problem from solutions
to the reformulated one). Such techniques include, e.g.,
adding new constraints to the model, such as symmetry-
breaking ones, or the somewhat opposite strategy of ig-
noring some of the constraints that are guaranteed to be
reinforced in a later stage (the so calledsafe-delay con-
straints [4]). We started experiencing the application of
the above techniques while performing our experiments,
and present some results. It is worth noting that these tech-
niques are applied at the symbolic level of the specifica-
tion, and hence independently on the instance. This pos-
sibility further increases the level of declarativeness ofthe
modelling stage, which is fundamental in order to effec-
tively take advantage of SAT technology.

The paper is organized as follows: in Section 2 we
briefly illustrate the language NPSPECand the SPEC2SAT

program that, given a NPSPEC specification and an in-
stance, compiles it into a SAT instance. In Section 3 we
present the chosen benchmark problems, while in Sec-
tion 4 we present and comment our experimental results.
Finally, Section 5 concludes the paper.

2 The NPSPEC language and SPEC2SAT

NPSPEC and SPEC2SAT have been extensively described
in [7]. Hence, in what follows, we just recall the syntax
and the informal semantics of the modelling language, and
the general architecture of the compiler.

The Home Page of the NPSPEC project
(www.dis.uniroma1.it/˜cadoli/research/
projects/NP-SPEC/ ) contains all the specifications
proposed in this paper, as well as the program itself.

2.1 The NPSPEC language

An NPSPECprogram consists of aDATABASEsection and
aSPECIFICATION section. The former includes the def-
inition of the problem instance, in terms of extensional re-
lations, and integer intervals and constants. The latter sec-
tion instead, consists of the problem specification, that is
divided into two parts: the declaration of asearch space,
and the definition of constraints that a point in the search
space has to satisfy in order to be a solution to the problem
instance. The declaration of the constraints is given by a
stratifiedDATALOG program [1], which can include the six
predefined relational operators and negative literals.

The full syntax of NPSPEC is given in [7], hence here
we just recall it with an example. In particular, we show an
NPSPEC program for theHamiltonian pathNP-complete
problem [14, Prob. GT39, p. 199], i.e., the problem where

the input is a graph and the question is whether a traversal
exists that touches each node exactly once.

DATABASE
n = 6; // no. of nodes
edge = {(1,2),(3,1),(2,3),(6,2),(5,6),(4,5),

(3,5),(1,4),(4,1)};

SPECIFICATION
Permutation({1..n},path). // H1
fail <-- path(X,P), path(Y,P+1),

NOT edge(X,Y). // H2

The following comments are in order:

• The input graph is defined in theDATABASEsection,
which is generally provided in a separate file.

• In the search space declaration (metaruleH1) the user
declares the predicate symbolpath to be a “guessed”
one, implicitly of arity 2. All other predicate symbols
are, by default, not guessed. Being guessed means
that we admit all extensions for the predicate, subject
to the other constraints.

• path is declared to be a permutation of the fi-
nite domain{1..n }. This means that its extension
must represent a permutation of order 6. As an ex-
ample,{(1, 5), (2, 3), (3, 6), (4, 2), (5, 1), (6, 4)} is a
valid extension.

• Comments can be inserted using the symbol “// ”.

• Rule H2 is the constraint that permutations must
obey in order to be Hamiltonian paths: a permuta-
tion fail s, i.e., it is not valid, if two nodesX and
Y which are adjacent in the permutation are not con-
nected by an edge.X andY are adjacent because they
hold placesP and P+1 of the permutation, respec-
tively.

Running this program on the NPSPEC compiler produces
the following output:

path: (1, 1) (2, 5) (3, 6) (4, 2) (5, 3) (6, 4)

which means “1 is the first node in the path, 4 is the second
node in the path, . . . , 3 is the sixth node in the path”, and
is indeed an Hamiltonian path.

The search space declaration, which corresponds to the
definition of the domain of the guessed predicates, is, in
general, a sequence of declarations of the form:

1. Subset(<domain>, <pred_id>).

2. Permutation(<domain>, <pred_id>).

3. Partition(<domain>, <pred_id>, n).

4. IntFunc(<domain>, <pred_id>, min..max).



We do not formally give further details of the NPSPECsyn-
tax, but, in the following sections, we present and comment
several other examples. We just remark that the declarative
style of programming in NPSPEC is very similar to that
of DATALOG, and it is therefore easy to extend programs
for incorporating further constraints. As an example, the
program for the Hamiltonian path can be extended to the
Hamiltonian cycle problem [14, Prob. GT37, p. 199] by
adding the following rule

fail <-- path(X,n), path(Y,1), NOT edge(X,Y). // H3

Moreover, undirected graphs can be handled by including a
further literalNOT edge(Y,X) in the body of both rules
H2 andH3.

Concerning syntax, we remark that NPSPECoffers also
useful SQL-style aggregates, such asSUM, COUNT, MIN,
andMAX. Several examples of Section 3 use such opera-
tors.

2.2 The NPSPEC to SAT compiler

SPEC2SAT is an application that allows the compilation of
a NPSPEC specification (when given together with input
data) into a SAT instance. We do not give here the techni-
cal details of the compilation task, that can be found in [7],
but just briefly describe the general architecture of the ap-
plication, shown in Figure 1.

The module PARSER receives text files containing the
specificationS in NPSPECand the instance dataI, parses
them, and builds its internal representation. The module
SPEC2SAT compilesS ∪ I into a CNF formulaT in DI-
MACS format, and builds an object representing a dictio-
nary which makes a 1-1 correspondence between ground
atoms of the Herbrand base ofS ∪ I and propositional
variables of the vocabulary. The file in DIMACS format
is given as an input to a SAT solver (the choice of the SAT
solver is completely independent from the application, as
long as it accepts the standard DIMACS format as input,
and can be chosen by the user), which delivers either a
model ofT , if satisfiable, or the indication that it is un-
satisfiable. At this point, the MODEL2SPEC module per-
forms, using the dictionary, a backward translation of the
model (if found) into the original language of the specifica-
tion. Appropriate interfaces for different SAT solvers and
the MODEL2SPEC module have, of course, been written,
in order to translate the (proprietary) format for the output,
into MODEL2SPEC.

3 Benchmark problems

As mentioned in Section 1, in this paper we show our
preliminary experiments in solving typical Constraint Pro-
gramming benchmark problems using SAT technology, by
taking advantage of NPSPEC. In this section, we list
the problems used for our experiments, that are a signif-
icant subset of those present in the well-known library

CSPLib [15]. For the experiments of this paper we chose
seven problems which cover five out of the seven classes of
problems offered by the CSPLib. More specifications can
be found on-line. As a side-effect, we obtain declarative
specifications (in the language NPSPEC) for such prob-
lems. The number in parentheses close to each problem
is its identification number in the library:

Golomb ruler (problem nr. 006). A Golomb ruler of
lengthL with m marks is defined as a set ofm integers
0 = a1 < a2 < ... < am = L such that them(m − 1)/2
differencesaj − ai, 1 ≤ i < j ≤ m are all distinct. In our
formulation, givenL andm, we are interested in finding a
Golomb ruler of any lengthnot greater thanL.

An NPSPECspecification for this problem is as follows:

IntFunc({1..N_MARKS}, ruler, 0..LENGTH). // G1

fail <-- NOT ruler(1,0). // G2
fail <-- ruler(I,V_I), ruler(J,V_J), J > I, // G3

V_I >= V_J.
fail <-- ruler(I,V_I), ruler(J,V_J), ruler(K,V_K), // G4

ruler(L,V_L), I < J, K < L,
I != K, V_J - V_I == V_L - V_K.

fail <-- ruler(I,V_I), ruler(J,V_J), ruler(K,V_K), // G5
ruler(L,V_L), I < J, K < L,
J != L, V_J - V_I == V_L - V_K.

The search space is defined (metaruleG1) as the set of all
total integer functions from{1..N MARKS} to the integer
range{0..LENGTH }, hence assigning a position on the
ruler to each mark. RuleG2 forces the first mark to be
at the beginning of the ruler (position 0). RuleG3 forces
marks to be in ascending order, i.e., the second mark is on
the right of the first one, the third on the right of the second,
and so on. RulesG4 andG5 force distances between two
marks to be all different.

All-interval series (problem nr. 007). Given the twelve
standard pitch-classes (c, c#, d, ...), represented by num-
bers 0,1,...,11, find a series in which each pitch-class oc-
curs exactly once and in which the musical intervals be-
tween neighboring notes cover the full set of intervals from
the minor second (1 semitone) to the major seventh (11
semitones). Here, we generalize the problem by replac-
ing the twelve standard pitch-classes with an arbitrary set
pitch of N pitch-classes (all-interval series problem of
sizeN ).

An ad-hoc encoding of this problem into SAT has been
made in [16]. In NPSPEC, the All-interval series problem
can be specified as follows:

Permutation(pitch, series). // A1
Permutation(interval, neighbor). // A2

fail <-- series(P,X), series(Q, X + 1), // A3
NOT neighbor(abs(P - Q), X).

By metaruleA1, guessed predicateseries assigns a dif-
ferent order number to every pitch in the series. Metarule
A2 guesses a second guessed predicate,neighbor , to be
an ordering of all possible intervals (interval is defined
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Figure 1: Architecture of the NPSPECcompilation and execution environment.

in the instance file to be the integer range[1, N − 1]): a
tuple 〈intv, idx〉 in neighbor means that pitches at po-
sitionsidx andidx+1 in the series are divided by interval
intv. The final ruleA3 actually forcesseries to respect
this constraint: for each pair of adjacent pitchesP andQ
(at positionsX andX+1), the interval dividing them must
have orderX in the permutationneighbor .

Social golfer (problem nr. 010). Given N PLAYE-
RS= N GROUPS∗ GROUPSIZE golf players, this prob-
lem amounts to find an arrangement for all of them into
N GROUPSgroups of sizeGROUPSIZE over N WEEKS
weeks, in such a way that no player plays in the same group
as any other in more than one week.

IntFunc({1..N_PLAYERS}><{1..N_WEEKS}, play, 1..N_GROU PS).

fail <-- play(P1,W1,G1), play(P2,W1,G1), P1 != P2,
play(P1,W2,G2), play(P2,W2,G2), W1 != W2.

fail <-- COUNT(play(*,W,G),X), X != GROUP_SIZE.

Schur’s lemma (problem nr. 015). The problem is
to put N BALLS balls labelled{1, ..., N BALLS} into
N BOXESboxes so that for any triple of balls(x, y, z) with
x + y = z, not all are in the same box.

An NPSPECspecification for this problem is as follows:

Partition({1..N_BALLS}, putIn, N_BOXES). // S1

fail <-- putIn(X,Box), putIn(Y,Box),putIn(Z,Box), // S2
X + Y == Z.

Metarule S1 declares the search space to be the set of
all partitions of the set ofN BALLS balls intoN BOXES
boxes, while ruleS2 expresses the constraint.

Ramsey problem (problem nr. 017). The Ramsey prob-
lem is to color the edges of a complete graph withn nodes
using at mostk colors, in such a way that there is no
monochromatic triangle in the graph. A specification is
as follows:

Partition({1..N_EDGES}, coloring, N_COLORS). // R1

fail <-- edge(X,A,B), edge(Y,B,C), edge(Z,A,C), // R2
coloring(X,Col), coloring(Y,Col),
coloring(Z,Col).

Magic square (problem nr. 019). A magic square of
orderN is anN by N matrix containing the numbers 1 to
N2, with numbers on each row, column and main diagonal
having the same sum.

An NPSPECspecification for this problem is as follows:

Permutation({1..N}><{1..N}, square). // M1
Permutation({1..Nˆ2}, magic_square). // M2

Subset({1..Nˆ2}, diag). // M3
Partition({1..Nˆ2}, column, N). // M4
Partition({1..Nˆ2}, row, N). // M5

// Channeling constraints for "square"
square(X,Y,I) <-- I == (X -1)*N + Y. // M6
fail <-- square(X,Y,I), I != (X -1)*N + Y. // M7

// Channeling constraints for "diag"
fail <-- NOT diag(X), magic_square(X,I),

square(R,C,I), R == C. // M8
fail <-- diag(X), magic_square(X,I),

square(R,C,I), R != C. // M9

// Channeling constraints for "column"
fail <-- NOT column(V,C-1), magic_square(V,I),

square(_,C,I). // M10

// Channeling constraints for "row"
fail <-- NOT row(V,R-1), magic_square(V,I),

square(R,_,I). // M11

fail <-- SUM(column(*,I),C:0..MAX_SUM), // M12
SUM(diag(*),D:0..MAX_SUM), C != D.

fail <-- SUM(row(*,I),C:0..MAX_SUM), // M13
SUM(diag(*),D:0..MAX_SUM), C != D.

Metarule M1, together with rulesM6 and M7, defines
square to be an enumeration of all the entries of the
magic square (each of them having coordinates in[1, N ]×
[1, N ]). Hence, each entry is assigned an index in[1, N2].
MetaruleM2then guesses a value in[1, N2] for each entry.
Such values are all different.

The other guessed predicates (rulesM3, . . . , M5) are re-
dundant, and represent a more convenient representation



of the values in the main diagonal, in each row and column
respectively. RulesM8, . . . ,M11define them starting from
magic square , acting as channeling constraints.

Finally, rulesM12 and M13 force entries to be such
that the sum of values in the main diagonal, every row
and every column are all equal.MAXSUMis an instance-
dependent value representing the maximum value for the
sums.

Langford’s number (problem nr. 024). The L(k, n)
problem is to arrangek sets of numbers1 to n, so that
each appearance of the numberm is m numbers on from
the last. As an example, theL(3, 9) problem is to arrange
3 sets of the numbers 1 to 9 so that the first two 1’s and the
second two 1’s appear one number apart, the first two 2’s
and the second two 2’s appear two numbers apart, etc. A
specification is as follows:

IntFunc({1..NUMBERS*SETS}, sequence, 1..NUMBERS). // L1

fail <-- COUNT(sequence(*,_),X), X != SETS. // L2
fail <-- sequence(I,N), NOT sequence(I+N+1,N), // L3

sequence(J,N), J > I.

MetaruleL1 declares the guessed predicatesequence
to be a function from {1..NUMBERS*SETS} to
1..NUMBERS. Rule L2 forces each number to appear
exactly SETS times in the sequence, whileL3 checks
whether the distances between two occurrences of the
same number are correct.

Balanced academic curriculum problem (problem
nr. 030). The Balanced academic curriculum problem
(BACP) amounts to design a balanced academic curricu-
lum by assigning periods to courses in a way that the aca-
demic load of each period is balanced, i.e., as similar as
possible. The curriculum must obey several administrative
and academic regulations, such that the respect of prereq-
uisites among courses, minimum and maximum number
of courses per periods, as well as minimum and maximum
academic load in each period.

Partition(load, curriculum, PERIODS).

fail <-- SUM(curriculum(?,*,P), X:0..MAX_LOAD),
period(P,M,_,_,_), X < M.

fail <-- SUM(curriculum(?,*,P), X:0..MAX_LOAD),
period(P,_,M,_,_), X > M.

fail <-- COUNT(curriculum(?,*,P), X:0..MAX_LOAD),
period(P,_,_,M,_), X < M.

fail <-- COUNT(curriculum(?,*,P), X:0..MAX_LOAD),
period(P,_,_,_,M), X > M.

fail <-- prerequisite(Pre, Post), curriculum(Pre,_,P),
curriculum(Post,_,Q), Q <= P.

4 Experiments

We chose a non-trivial set of instances for each problem
defined above, by using publicly available benchmarks
when possible (e.g., for BACP), and compiled all such in-
stances into SAT ones. Then, we ran different SAT solvers
on those instances, and measured their solving times. In

this preliminary stage, we used two recent SAT solvers,
very different in nature:

• ZCHAFF, one of the fastest, complete solvers today
available;

• BG-WALKSAT , a sound but incomplete one, based on
local search.BG-WALKSAT is a recent extension of
the well-knownWALKSAT , where the search is guided
by backbonesof the formula.

Furthermore, as already mentioned in Section 1, we started
investigating whether the application of different refor-
mulation techniques was suitable for improving solvers’
performances. In particular, we applied two different,
and in some sense, complementary, techniques: adding
symmetry-breaking constraints and neglectingsafe-delay
constraints. These techniques are briefly described in the
following:

Symmetry-breaking. The presence of symmetries in
CSPs has been widely recognized to be one of the major
obstacles for their efficient resolution. To this end, dif-
ferent approaches have been followed in the literature in
order to deal with them. The most well known one is to
add additional constraints to the CSP model, that filter out
many (hopefully all but one) of the symmetrical points in
the search space. These are called symmetry-breaking con-
straints, cf., e.g., [23, 9, 24, 26, 27, 12].

We used this approach with a major difference, adding
symmetry-breaking constraints at the level of the problem
specification. Hence, we broke “structural” symmetries of
the problems, i.e., those symmetries that depend on the
problem structure, and not on the particular instance con-
sidered. Breaking symmetries at the specification level has
been proved to be effective for different classes of solvers,
on different problems [3], and comes natural when using a
purely declarative modelling language such as NPSPEC.

Safe-delay constraints. Given a problem specification, a
safe-delay constraint is a constraint whose evaluation can
be safely ignored in a first step, hence simplifying the prob-
lem, and efficiently reinforced in a second step, when a
solution to the relaxed problem has been found [4]. The
importance of safe-delay constraints is that their reinforce-
ment can always be done in polynomial time, without fur-
ther search. Highlighting (and delaying) safe-delay con-
straints can be very useful when solving constraint prob-
lems, at least for three reasons:(i) For every instance,
the set of solutions is enlarged (since some constraints are
removed), and this can be beneficial for some classes of
solvers. (ii) The instantiation stage can be done more ef-
ficiently, since a fewer number of constraints have to be
grounded: this is the case also when using SAT technology,
since delaying constraints reduces the number of clauses
generated during instantiation.(iii) The reinforcement of
delayed constraints (which is guaranteed to be polynomial



time) is often very efficient, e.g., linear of logarithmic time
in the size of the input, (we show some examples in Sec-
tion 4). It is worth noting that also the deletion of safe-
delay constraints is done by reformulating the declarative
specification of the problem, hence independently on the
instance.

For the various problems of Section 3, we used the follow-
ing instances:

• Golomb ruler: lengths up to 15, with up to 9 marks
when usingZCHAFF, and lengths up to 12, with up to
5 marks when usingBG-WALKSAT ;

• All-interval series: pitch classes up to 18 (ZCHAFF)
and up to 40 (BG-WALKSAT );

• Social golfer: up to 8 players, 6 weeks;

• Schur’s lemma: up to 50 balls and 10 boxes;

• Ramsey problem: up to 20 nodes and 7 col-
ors (ZCHAFF), and 12 nodes and 5 colors (BG-
WALKSAT );

• Magic squares: sizes up to 5, when usingZCHAFF,
and 4 when usingBG-WALKSAT ;

• Langford’s number: up to 4 sets and 19 num-
bers (ZCHAFF), and 4 sets and 10 numbers (BG-
WALKSAT );

• BACP: 2 benchmark instances, taken from CSPLib,
solved withZCHAFF.

Results of our experiments are shown in Table 1 (both
compilation and solving processes had a timeout of 1
hour). In particular, Table 1(a) shows compilation and
solving times forZCHAFF, while Table 1(b) shows times
when usingBG-WALKSAT on the same problems.

For each solver and problem, we report the number of
instances run, and the number of those solved successfully
in 1 hour. As for the incompleteBG-WALKSAT instead, we
report its success ratio, i.e., the percentage of the instances
for which this solver gave the correct answer. Then, we list
the overall times for compiling and solving the whole set
of instances for each problem.

Moreover, we investigate the effectiveness of the refor-
mulation techniques discussed above. In particular, we ig-
nored safe-delay constraints on the following problems:

• Golomb ruler: ruleG3 of the problem specification
can be ignored, hence enlarging the set of solutions by
all their permutations. However, in this case, a simple
modification of the other constraints is required [4]):
in particular, theabsolute valuesof distances between
marks have to be different.

• Schur’s lemma: we let balls to be put in more than
one box at the same time. If such a solution exists, a
valid solution of the original problem can be derived
by arbitrarily choosing a single box for each ball.

• Ramsey problem: we let multiple colors to be as-
signed to the same node. If such a coloring exists,
then it suffices to arbitrarily choose an arbitrary color
for each node having multiple ones.

We note that, in the last two cases, ignoring safe-delay
constraints reduces to guess multi-valued functions for the
guessed predicates. This task can be accomplished by
the current implementation of SPEC2SAT by defining a
guessed predicate as amultivalued partition or inte-
ger function. We also observe that for all three problems,
the second stage, i.e., recovering a solution to the original
problem from a solution to the simplified one, can be per-
formed very efficiently: inm log m for Golomb ruler (by
ordering marks), and in linear time for both Ramsey and
Schur’s lemma problems (we remind that the reinforce-
ment of safe-delay constraints is always guaranteed to be
polynomial).

As for symmetry-breaking instead, we broke some of
the symmetries in the Social golfer, Schur’s lemma, Magic
square, and Ramsey problems. In particular, as for So-
cial golfer, we fixed the scheduling for the first two weeks,
and made the first player play always in the first group
(these symmetry-breaking constraints are shown in [27]).
As for Schur’s lemma and Magic square, we simply fixed
the choice for the first edge and the first square, respec-
tively. As for Ramsey instead, a slighly more complex
symmetry-breaking constraint is added, by fixing a suit-
able ordering on the colors and on the edges.

Some comments on the results in Table 1 are in order. First
of all, both SAT solvers behave well in many cases, being
able to solve instances of reasonable size. However, it is
not the case that one solver is always better than the other:
ZCHAFF seems much faster thanBG-WALKSAT for solving
Golomb ruler or BACP instances (BG-WALKSAT was not
able to run on instances of the latter problem, due to their
large size), while the latter is better for All-intervals series,
Ramsey, and Social golfer, even if its success ratio (i.e.,
the ratio of satisfiable instances for which this incomplete
solver was actually able to find a solution) is not always
very high.

Interestingly, applying the two reformulation techniques
sometimes greatly helpsZCHAFF. As an example, by ig-
noring safe-delay constraints on Golomb Ruler, the overall
compilation time falls down of about 13000 seconds, while
the solving time increases only of about 25 seconds. A
similar behavior happens also when solving this problem
with BG-WALKSAT .

ZCHAFF is also positively affected by symmetry-
breaking. As for Magic square, Ramsey, and Social
golfer, the speed-up is impressive. It is interesting to



ZCHAFF

Problem name Instances SAT compil SAT solving Total
nr. solved unsolved time (sec) time (sec) time (sec)

Golomb Ruler 34 34 0 39412.96 2.46 39415.42
with safe delay 34 34 0 26654.29 27.66 26681.95

All-Interval Series 14 13 1 6.29 6600.70 6606.99
Social Golfer 168 110 58 64467.93 212527.78 276995.71

with symm breaking 168 162 6 62774.72 3782.73 66567.45
Schur’s Lemma 164 164 0 2412.57 0.08 2412.65
with safe delay 164 164 0 2510.13 0.12 2510.12

with symm breaking 164 164 0 2537.14 0.08 2537.22
Ramsey problem 85 82 3 155.24 10803.04 10958.28
with safe delay 85 82 3 153.95 10802.61 10956.56

with symm breaking 85 82 3 9099.76 484.017 9583.78
Magic Square 3 3 0 281.16 128.59 409.75

with symm breaking 3 3 0 282.03 38.25 320.28
Langford’s number 43 41 2 1982.14 18109.22 20091.36

BACP 2 2 0 2798.85 2.20 2801.05
(a)

BG-WALKSAT

Problem name Instances SAT compil SAT solving Total
nr. success ratio time (sec) time (sec) time (sec)

Golomb Ruler 20 100% 15274.17 3528.55 18802.72
with safe delay 20 60% 7617.11 6315.08 13932.19

All-Interval Series 36 17% 171.21 702.98 874.19
Social Golfer 137 43% 16453.92 3633.48 20087.40

with symm breaking 137 46% 17132.50 3792.73 20925.23
Schur’s Lemma 164 100% 2412.57 4.32 2416.89
with safe delay 164 99% 2510.00 4.18 2514.18

with symm breaking 164 100% 2537.14 7.03 2544.17
Ramsey problem 85 94% 155.24 8.47 163.71
with safe delay 85 100% 153.95 7.49 161.44

with symm breaking 85 94% 154.64 8.05 162.69
Magic Square 3 33% 281.16 31.97 313.13

with symm breaking 3 33% 282.03 32.07 314.10
Langford’s number 36 67% 813.64 355.53 1169.17

(b)

Table 1: Results of the experiments usingZCHAFF (a) andBG-WALKSAT (b) for solving different CSPs.

observe that the compilation times do not grow signifi-
cantly, since the symmetry-breaking constraints we chose
are quite simple (apart for Ramsey, where a more com-
plex symmetry-breaking constraint was used). It is worth
noting that adding more complex constraints to these prob-
lems led to poorer performances for both SPEC2SAT and
ZCHAFF. Another interesting aspect is that the local search
solverBG-WALKSAT does not take benefit from symmetry-
breaking, hence confirming the intuition that a reduction
of the solution density is an obstacle for local search (cf.,
e.g., [22, 3]).

5 Conclusions and future work

In this paper, we discussed how the availability of spec-
ification languages for constraint problems that automat-
ically compile instances into SAT, can make SAT solv-
ing technology an effective tool for Constraint Program-
ing. We experienced NPSPEC and SPEC2SAT on sev-
eral well-known benchmark problems for CP, and demon-
strated how they can be easily formulated in NPSPEC,
and solved by exploiting state-of-the-art SAT solvers. Ad-
ditionally, we showed how applying reformulation tech-
niques such as ignoring safe-delay constraints or adding
symmetry-breaking constraints to the problem specifica-

tions can be very effective in improving solvers’ perfor-
mances, and/or easing the compilation task.

It is worth noting that such techniques have already
been used in ad-hoc SAT encodings of particular CP prob-
lems. As an example, the standard DIMACS SAT en-
coding of Graphk-coloring, actually omits the “at-most-
one color” constraint of the problem, that is actually safe-
delay [4]. The same happens in the SAT encoding for Job
shop scheduling given in [8], where propositional variables
represent the encoding ofearliest starting timesandlatest
ending timesfor all tasks, rather than their exact scheduled
times. As for symmetry-breaking, ad-hoc SAT encodings
of various problems usually take care of breaking (some of
the) symmetries in the generated SAT instances.

The main difference of our work with respect to the oth-
ers, is that the user can perform such optimizations at the
symbolic level of the specification, by relying on a purely
declarative language such as NPSPEC. Right now, this is
done manually by the NPSPECmodeller, however, in some
previous work, we showed how recognizing whether a re-
formulation technique can be applied, can be in principle
autonomously made by system, since it reduces to check
properties of first-order logic formulae [4, 3, 6]. Of course,
since the goodness of a particular optimization technique is
expected to depend both on the problem and on the solver



(cf. results in Table 1), a much wider experimentation is
needed, using a larger number of solvers on a wider set
of problems. A deeper investigation of the applicability
of other techniques to the SAT case (cf., e.g., [5]) is also
planned.

Another important point that lacks in the current prelim-
inary version of this work is the comparison of SAT with
respect to CP solvers for the investigated problems. To this
end, we plan to make a much wider experimentation that
involves also state-of-the-art CP solvers, e.g., among the
others, the well known OPL language [28], by Ilog.
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