Exercises on Knowledge Representation

Riccardo Rosati

Corso di Laurea Magistrale in Ingegneria Informatica
Sapienza Università di Roma
2017/2018
Exercise 1

We want to formalize knowledge about the domain of students and professors.

In particular, we want to formalize the following statements:
Exercise 1 (contd.)

1. Every student is a person
2. Every professor is a person
3. Every student has an ID (matricola)
4. Every student attends at least one course
5. Every course is taught by a professor
6. Every student is not a professor
7. Every exam is constituted of a course, a student, a date and a grade
Exercise 1 (contd.)

1) Choose the most appropriate knowledge representation language for expressing the above knowledge among the following:
 - ALC
 - Datalog
 - ASP
 - OWL
 - DL-Lite
 - RDFS

2) Express the above knowledge in the formalism chosen at the previous point.
Exercise 1 - Solution

1) The formalism chosen is ALC, because:
 - According to statements 3, 4, 5, we need to refer to «existential» individuals (and Datalog and ASP are not suited for this)
 - According to statements 4, 5, we need qualified existential restriction (DL-Lite is not suited for this)
 - According to statement 6, we need to express disjointness between concepts (RDFS is not able to express this)
 - ALC seems enough to express the seven statements, so we do not need the extra abilities of OWL
Exercise 1 - Solution

2) We choose the following vocabulary (set of predicates and individuals):

Concepts: STUDENT, PERSON, PROFESSOR, COURSE, GRADE, DATE

Roles: hasID, attends, isTaughtBy

Moreover, we have ro reify the notion of exam at point 7 (that would be naturally encoded by a relation of arity 4) using a concept EXAM and four auxiliary roles examStudent, examCourse, examDate, examGrade
Exercise 1 - Solution

2) Here is the formalization of the statements in ALC:

\[
\begin{align*}
\text{STUDENT} & \subseteq \text{PERSON} \\
\text{PROFESSOR} & \subseteq \text{PERSON} \\
\text{STUDENT} & \subseteq \exists \text{hasID.T} \\
\text{STUDENT} & \subseteq \exists \text{attends.COURSE} \\
\text{COURSE} & \subseteq \exists \text{isTaughtBy.PROFESSOR} \\
\text{STUDENT} & \subseteq \neg \text{PROFESSOR} \\
\text{EXAM} & \subseteq \exists \text{examCourse.COURSE} \\
\text{EXAM} & \subseteq \exists \text{examStudent.STUDENT} \\
\text{EXAM} & \subseteq \exists \text{examGrade.GRADE} \\
\text{EXAM} & \subseteq \exists \text{examDate.DATE}
\end{align*}
\]
Exercise 1 - Comment

• Notice that statement 7 is problematic for ALC (and Description Logics in general), since DLs do not allow for expressing relations of arity greater than 2.

• However, the reification technique allows for representing (although unnaturally) these kinds of n-ary relations.

• Datalog and ASP allow for directly define a 4-ary exam relation, so, with respect to statement 7 alone, they should be preferred: however, they have more important limitations with respect to the other statements (in particular, both Datalog and ASP are not able to express statements 3,4,5; in addition, Datalog is not able to express statement 6)
Exercise 2

We want to formalize knowledge about the domain of students and professors.

In particular, we want to formalize the following statements:
Exercise 2 (contd.)

1. Every student is a person
2. Every professor is a person
3. Every student has an ID (matricola)
4. Every course is taught by a professor
5. Every student who attends a course is an active student
6. Every student is not a professor
Exercise 2 (contd.)

For each of the following description logics:
- DL-Lite$_R$
- EL
- RL
identify which of the above statements can be formalized, and write the corresponding axioms.