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Abstract

In this paper we present a novel, hybrid, and automatic
strategy whose goal is to reduce the 2D scatter plot clutter-
ing. The presented technique relies on a combination of non
uniform sampling and pixel displacement and it is driven by
perceptual results coming from a suitable user study. The
same results are used to define precise quality metrics that
allow for validating our approach.

1 Introduction

Visualizing a data set containing large amounts of data
likely produces a cluttered image. The user suffers from a
strong sense of mess that rises from both the intrinsic limits
of visual devices and adopted techniques. As the number
of items increases, almost any kind of visual technique fails
to convey detailed information; a lot of graphical elements
overlap and many pixels become over plotted, losing useful
pieces of information.

This paper focuses on 2D scatter plots extending and
merging the results presented in [3, 5, 4]. In particular, we
analyze data density that is one of the main clues the user
can grasp from such a kind of visualization and, in order to
reduce clutter, we sample the data in a way that preserves,
as much as possible, density differences.

We address the cluttering problem in the following way:

e we defined a formal framework to measure the amount
of degradation resulting from a given visualization,
characterizing, e.g., the notion of collision and density,
both in a virtual space and a real space. Moreover, such
a formal framework allows for forecasting the number
of collisions and the screen occupation. In this paper
we recall just the main definitions, details about the
matter are in [4].

e using the above framework we defined some quality
metrics able to characterize the image degradation and
to drive corrective actions.

e we set up a set of strategies to reduce the image clut-
tering, using different kinds of sampling, i.e., uniform
sampling and non uniform sampling. Uniform sam-
pling relies on the idea of to randomly sample the data
set till a quality metric(s) reaches a predefined value
(details about the matter are in [3]). Non uniform sam-
pling, discussed in [4], considers the difference in den-
sities that exists in the dataset and applies different
sampling rates to different image areas, trying to max-
imize the number of density differences available on
the screen.

e we analyzed the way in which users perceive density
differences through a user study [5]. This allowed
for fine tuning our metrics considering perceptual den-
sity differences instead of numerical differences. A
first application of of this results is presented in [5] in
which the uniform sampling strategy is driven by the
new metric.

e we revised the non uniform sampling technique intro-
ducing two innovations: (a) we modified the overall
algorithm strategy incorporating the user study results
and we integrated in it a novel local pixel displacing
strategy. These two last improvements represents the
main contribution of this paper and are discussed in
detail in Section 5.

Summarizing, the contribution of the paper is twofold:

1. it presents a novel technique that uses at the same time
pixel displacements and non uniform sampling;

2. it exploits perceptual quality metrics for (a) estimat-
ing the image degradation and (b) driving automatic
enhancing techniques.

The paper is structured as follows: Section 2 analyzes
related works, Section 3 recalls the user test results, Section
4 introduces several quality metrics, Section 5 describes our
sampling/displacing technique, Section 6 discuss the ob-
tained results, and, finally, Section 7 presents some conclu-
sions and open problems.
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2 Related work

Our methods use quality metrics, sampling, and dis-
placement, as a way to produce more accurate visualization
and to reduce clutter. In the following we first report on
related proposals on metrics for Information Visualization,
then we relate our approach to clutter reduction to some
other existing ones.

2.1 Metrics and perceptual issues

The fact that Information Visualization needs metrics to
provide precise indications on how effectively a visualiza-
tion presents data is well known. As expressed in [14] Infor-
mation Visualization needs methods to measure the ”good-
ness” of a given visualization and a definitive and strong set
of methodologies/tools is still lacking.

First attempts towards this direction come from Tufte
that in [17] proposes an interesting set of measures to es-
timate the “graphical integrity” of static (i.e., paper based)
representations. Brath, in [15], starting from Tufte’s pro-
posal, defines new metrics for static digital 3D images.
He proposes metrics such as data density (number of data
points/number of pixels) that recall Tufte’s approach. He
provides metrics aiming at measuring the visual image com-
plexity like the occlusion percentage, that is the number of
occluded elements in the visual space (having interesting
connections with our metrics), or the number of identifiable
points, that is the number of visible data points whose po-
sition is identifiable in relation to every other visible data
point. While the main goal of the above metrics is to esti-
mate a general visualization goodness, or to compare differ-
ent visual systems, we mainly aim to assess the accuracy of
a specific visualization, dealing with pixels and data points,
in order to measure how accurately a visualization repre-
sents some data characteristics we are interested in (e.g.,
data density).

Measuring, in this context, means measuring the per-
ception of visual features, therefore perceptual issues must
be taken into account. Many studies have been conducted
in the past to increase the effectiveness of visual systems
and to avoid degradation. Results coming from color
theory have been applied in practice in the context of
data visualization to select color scales that appropriately
reflect the properties of underlying data [12][2]. Preat-
tentive features (visual features detected by the human
eye without cognitive workload) have been exploited in
the visualization of multivariate data to allow the users to
efficiently detect visual patterns. Healey, in various pro-
posals, inspected the effectiveness of preattentive features
in deep and applied the results to build visually effective
and efficient visualizations [9]. In this paper, we exploit the

results of a perceptual study we conducted and presented
in [5], whose aim was to understand how users perceive
density differences in point based 2d scatterplots. With
these results, we are able to detect the threshold values
beyond which density differences are perceived.

2.2 Dealing with clutter

The problem of reducing visual clutter to produce more
effective visual representations has been directly and indi-
rectly addressed by a variety of proposals. Some of them
deal with the problem of reducing the overall clutter of the
visualization, especially when the screen displays a large
number of items, while others try to resolve clutter locally.

Clustering has been used as a way to aggregate visual
items to reduce the overall density, thus reducing clutter.
Hierarchical parallel coordinates is one example of such a
method [8].

Jittering is used in commercial systems like Spotfire [1]:
the overlapping items are displaced around their original
position so that they become visible [13]. Trutschl et al.
propose a smart jittering technique [16]: jittering is applied
in a way that items that are similar in the n-dimensional
data space are close with one another when moved from
their original position. We also use a kind of jittering in our
technique. But, while the typical jittering displaces items
around their original position randomly and applies it to the
whole image, we use a selective jittering that runs only on
specific areas and tries to move the items as less as possi-
ble from their original position. PixelMap [10][11] uses the
same idea of displacing items around their original position
together with a controlled distortion. It is used in geograph-
ical applications where each pixel represents the measure of
some variable in a given location. The distortion introduced
by the displacement is balanced by the distortion of the map
(e.g., the boundaries between states) so that topological re-
lationships are maintained.

Constant density visualization [18][19] is a distortion ap-
proach which is more oriented towards the representation
of distorted overviews to deal with clutter. It presents more
details within less dense areas and less details within denser
ones, allowing the screen space to be optimally utilized and
to reduce clutter. The drawbacks of this approach are that
(a) it requires the user to interact with the system, (b) the
overall trend of data is generally lost, and (c) some distor-
tions are introduced.

Sampling is used in [6][7] as a way to reduce clutter.
Since sampling reduces the number of displayed elements,
the overall visual density decreases and the visualization
becomes more intelligible. Uniform sampling has the in-
teresting benefit that data features like distribution and cor-
relation are preserved, allowing “fo see the overall trends
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in the visualization but at a reduced density”. However,
this idea is not free of drawbacks. In particular, choosing
the right amount of sampling is a challenging task and a
straightforward solution does not exist, leaving to the user
the non easy task of interactively selecting a sample ratio.
Moreover, when data present both very high and very low
density areas, two problems can arise:

o if sampling is too strong the areas in which density is
very low become completely empty;

o if sampling is too weak the areas with highest densities
still look all the same (i.e., completely saturated) and,
consequently, density differences cannot be perceived.

In summary, our approach differs from the discussed
metrics and clutter reduction techniques for three main as-
pects: it provides a sound model for defining, both in a
virtual and physical space, several metrics specifically in-
tended for digital images; it provides some guantitative in-
formation about an image quality; it exploits such results
to automatically drive sampling algorithms preserving, as
much as possible, specific visual characteristics.

3 The User Study

We performed a perceptual user study in order to answer
a precise question: what is the minimum difference in ac-
tive pixels between two screen areas that allows a user to
perceive a density difference? In this paper we omit the
experiment details and we just recall the main experiment
guidelines and results; the interest reader can found in [5] a
full experiment description.

The main idea underlying the experiment was to present
the involved people with a uniform density screen (basis)
containing three more dense zones and to ask the users to
recognize them. We repeated the test, for each subject, sev-
eral times increasing both the uniform background density
and the density difference (delta) between the background
and the three denser zones. Figure 1 shows a generic exper-
iment step, in which the user marked one of the three denser
areas.

The results are collected in the table shown in Figure 2.
The table shows per each row a different basis (10, ..., 90)
and the five different increment steps (§) adopted along the
test (D1, ..., D5); for each increment the table shows the
corresponding recognition percentage (RP1, ..., RP5) as
well. As an example, the first row tells us that, while eval-
uating a basis of 10%, we asked the user to identify areas
containing 55%, 65%, 75%, 85%, and 95% extra pixels and
that the recognition rate was 62%, 77%, 82%, 92%, and
97%, respectively. We performed a single factor ANOVA
confirming the significance of our figures. The last column
shows, for each basis, the minimum increment we have to

Seleziona le 3 zone aventl densitda maggiore (un secondo click deseleziona)

test | dl 46

Figure 1. The user study main screen.

Basis\Delta D1 RP1 D2 RPZ D3 RP3 D4 RP4 D5 RPS DM

101 &5 B2 65 7 75 g2 85 92 95 97 65
200 38 4 40 B4 45 70 50 7 55 g7 45
30| 30 B2 3k 56 40 74 45 95 40 97 40

60| 22 72 25 92 28 100 a1 a7 34 100 22
ol 12 G4 135 67 15 73 16.5 77 16 a0 15
60 10 70 1.5 a7 13 95 145 97 16 a7 10

Figure 2. The user study results (all values
are percentages).

choose to guarantee that 70 out of 100 end users will per-
ceive the density difference. Using such a column we can
interpolate a function minimumd(A) returning the mini-
mum density increment an area A’ must show to be per-
ceived as denser than A (by 70 out of 100 users).

The experiment results have been used to improve the
accuracy of our algorithms, as described in Sections 4 and
5.

4 Models and metrics for density differences

We consider a 2D space in which we plot items by
associating a pixel to each data element and the pixel
position is computed mapping two data attributes on
the spatial coordinates. In [4] we derived a complete
framework to estimates the amount of colliding points
and, as a consequence, the amount of free available space;
here we just recall the main definitions useful for the
following discussion. Moreover, we introduce a substantial
modification to our quality metrics to take into account the
user perception.

4.1 Definitions

We assume the image is displayed on a rectangular area
(measured in inches) and that small squares of area A divide
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the space in m x r sample areas (S A) where density is mea-
sured. Given a particular monitor, the resolution and size
affect the values used in calculations. In the following we
assume that we are using a monitor of 1280x1024 pixels and
size of 137x10.5”. Using these figures we have 1,310,720
available pixels and if we choose S A of side [ = 0, 08 inch,
the area is covered by 20.480 (160 x 128) sample areas
whose dimension in pixels is 8 x 8.

For each SA; ;, where 1 < i < mand1 < j < r,
we calculate two different densities : real data density (data
density in the following) and represented density.

Data density is defined as d; ; = ™% where n; ; is the
number of data points that fall into sample area A; ;. For
a given visualization, the set of data densities is finite and
discrete. In fact, if we plot n data elements, each SA; ; as-
sumes a value d; ; within the set0, &, 2, ..., 2. In general,
for any given visualization, a subset of these values will be
really assumed by the sample areas. For each distinct value
we can count the number of sample areas computing the
data density distribution. For example, if we plot 100 data
points onto an area of 10 sample areas, we could have the
following distribution: 3 sample areas with 20 data points,
2 sample areas with 15 data points, 2 sample areas with 5
data points.

Represented density is defined as rd; j = %41 where p; ;
is the number of distinct active pixels that fall into SA; ;.
The number of different values that a represented density
can assume depends on the size of sample areas. If we adopt
sample areas of 8 x 8 pixels the number of different not null
represented densities is 64.

Because of collisions the number of active pixels on a
sample area SA; ; will be smaller than the plotted point so
RD; ; <D, ;.

4.2 Quality metrics

In the following we provide a quality metric that, fo-
cusing on the distorted area, provide an indication on how
many density differences are still visible in the displayed
image.

The complete list of the involved parameters is the fol-
lowing:

o the overall number of points being plotted, n;

e the display area size, in terms of number of pixels,
x_pizels, y_pizels;

o the sample areas size in terms of number of pixels,
l_pizels (we are considering squared sample areas);

e the number of collisions &k per sample area (SA);

o the data density and the represented density.

In order to introduce our metric we need some prelimi-
nary measures and definitions. In particular, because of our
metrics focuses on distorted areas, we introduce a threshold
value A that allows for distinguishing acceptable crowded
SAs from non acceptable ones. To fix the idea, we can state
that we cannot bear SAs showing more than 32% of colli-
sions w.r.t. [_pixels x l_pixels. Obviously, the lower this
value the better the image and A is a parameter that allows
for fine-tuning our algorithms.

Using A we can define the following metric:

BSAr(Bad SA ratio)=#-2[ 25 shoutug k24

that gives the measure of the screen percentage affected
by a non acceptable distortion.

Now we can concentrate on relative densities, measuring
the density differences that are preserved in the distorted
portion of the image through the metric PDDr (Preserved
Data Densities ratio). This metric is calculated comparing
couples of sample areas and checking whether their relative
data density (D) is preserved when considering their repre-
sented density (RD).

Introducing the Dif f(z,y) function defined as:

1 ife >y
Diff(z,y)=q 0 ifz=y
-1 ifz<y

we define the match(i, j, k,1) function that returns true
iff Dif f(D; ;, D) = Dif f(RD; j, RDy ).

In order to produce a measure, we apply an algorithm
that iteratively considers all the possible couples of Dis-
torted SAs (DSA), comparing their D and RD through the
Dif f function and counting the number of times it finds a
non matching pair.

Moreover, in order to take into account the relevance of
a comparison between two sample areas, we weight each
comparison using the number of points falling in the two
sample areas.

In pseudo-code, the algorithm is the following:

function PDDr () {

couples=0;

sum=0;

foreach distinct pair(DSA[i] []j1, DSA[k][l]){

couples = couples + pt(DSA[i] [j]) + pt(DSA[k][1]);

if ( match(i, j, k, 1) )
sum = sum + pt(DSA[i] [j])+ pt(DSA[k] [1]);
1

return (sum / couples);

}

where pt(SA; ;) is a function returning the number of
data points falling in a SA.

In the end the variable sum contains the number of
weighted matchings couples encountered during the itera-
tions; dividing it by the weighted total number of possible
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distinct distorted couples we obtain the weighted percent-
age of matching sample areas ranging between 0 and 1 (the
higer the better).

This last metric provides a distortion evaluation, count-
ing the densities differences still visible in the crowded area
and weighting such differences through the involved points.

The main drawback of this metric is that it uses numer-
ical differences between sample areas to decide wether a
data density difference is well represented by the corre-
sponding represented densities. As an example, a sample
area containing 55 active pixels is considered denser than
another one containing 54 active pixels while both of them
look the same to the end user.

The experiment results have been used to improve our
metrics and algorithms, introducing the PDif f(x,y) (Per-
ceptual Diff) function as a modification of the above intro-
duced Dif f(x,y) function:

1 ifz > y+y x minimumd(y)
PDiff(z,y) =< —1 ify>az+ax minimumd(x)
0 otherwise

Using the PDiff function within the match function mod-
ifies in a substantial the above metric, obtaining the PPDDr
(Perceptually Preserved Data Densities ratio) metric. In this
way the quality metric deals with user perceptible vs nu-
meric density differences. It is worth noting that the new
PDif f(x,y) function returns a lower number of matching
than the Dif f(x,y) function, allowing the optimization al-
gorithm to focus only on what really matters: the user point
of view.

In order to better understand the difference between the
two approaches, we apply the two metrics against the ex-
ample in Figure 3 that shows about 160,000 mail parcels
plotted on the X-Y plane according to their weight (X axis)
and volume (Y axis). It is worth noting that, even if the
occupation of the screen is very little, the area close to the
origin is very crowded (usually parcels are very light and
little), so a great number of collisions is present in that area.

Using the pure numeric metric, PDDr with the 32% col-
lision delta, we obtain the reasonable vale of 0.71, meaning
that in the distorted area about 71% of the data points are
presented correctly in the image (i.e., their relative density
is preserved in the final image). If we consider, instead, the
PPDDr metric we obtain a worse (but more realistic) value,
0.57. That implies that the old metric counted a great num-
ber of "fake” density differences (numerical differences) not
perceivable by the users.

S Sampling and displacement to reach target
densities

The basic problem we want to address here is to find
a way to represent, in the limited visualization space, as

v
0
U
M
E
WEIGHT
Figure 3. The scatter plot represents a

dataset of mail parcels. The parcel’s weight is
mapped to the X-axis and the parcel’s volume
to the Y-axis.

many density differences as we can, that is, trying to pro-
vide a visualization that is as representative as possible of
the real underlying densities. In general, for visualizations
where specific interventions are not employed, this corre-
spondence is not accurate: when data are visualized on
a crowded scatterplot, high data densities are mapped to
few represented densities, the ones in which almost all pix-
els are active, and a large number of high data densities
are ”squeezed” to few and very close represented densities;
thus, some existing density differences cannot be perceived.

Any given visualization is a particular mapping between
the set of data densities and the set of available represented
densities, therefore the problem can be translated into the
one of finding an optimal mapping between data densities
and represented densities, that is, associating each data den-
sity to one of the 64 (under the hypothesis of 8 x 8 sample
areas) available represented densities. Modifying this map-
ping, we can potentially find some more accurate represen-
tations. To this aim, we must: (1) find a method to decide
which data densities are mapped to which represented den-
sities; (2) then we need a way to perform these mappings in
practice.

As for the first point, we devised an algorithm that splits
the range of existing data densities into 64 intervals which
will be assigned to the 64 available represented densities. It
calculates the average number of sample areas with respect
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M n. of sample areas
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I

data densi
1 2 3 5 6 7 i b

RD1 RD2 RD3

(20) (15 + 5= 20) (7+3 +10=20)

Figure 4. The split algorithm. The data den-
sity axe is split into 64 values in a way that
each contains the same number of sample
areas.

to the available represented densities (K = %ﬁf‘“m),

then, using this value, it builds the intervals. Starting from
data density D = 1 (D = 0 is not taken into account in
calculations because no interventions are applied in empty
sample areas) it adds densities to the current interval un-
til the sum of the included sample areas is equal to the
average. When the value K is reached, a new interval is
built. In the example in Figure 4, D = (1) is assigned
to RD = 1 because it already spans 20 sample areas;
D = (2,3) are assigned to RD = 2 because they sum up
to 20; D = (7, 3,10) are assigned to RD = 3 because they
sum up to 20; and so on. The resulting effect is that we have
intervals of different sizes: large intervals containing many
data densities that span few sample areas; short intervals
containing few data densities that span many sample areas.
This implies that the densities that cover many sample ar-
eas are sampled with finer details, because it is more likely
they are singularly mapped to single represented densities,
while the opposite happens for the densities that cover few
sample areas. The rationale behind this is that the algorithm
tries to represent more accurately the densities that span a
large portion of the screen while it accepts some distortion
for few concentrated areas.

Once the mapping is computed we have, for each data
density, a target density to reach. Thus, we need a way
to turn on the number of pixels that produces the desired
represented density. There are three possible cases and
three associated interventions:

Represented density is equal to target density. This is the
simplest case, the current represented density is already
equal to the one we want to reach, so we just have to leave
things as they are.

Represented density is greater than target density. This is
the case when the number of pixels turned on by the data
points falling in the current sample area is higher than the
target density we want to reach. In order to change the
represented density we sample the data until we reach the
target represented density.

Represented density is lower than target density. This is
the case when the number of pixels turned on by the data
points falling in the current sample area is lower than the
target density we want to reach. It is worth to note that
this case can happen only because of data points’ collision.
In our model, data density is always higher than any target
density, therefore if the current mapping provides an insuf-
ficient number of active pixels, these must necessarily be
because of overlapping. In order to reach the target density,
we use pixel displacement so that some overlapping items
become visible and represented density can be increased.
In order to minimize the distortion introduced by displace-
ment, the pixels are moved as close as possible to their origi-
nal position. In any case, since the displacement takes place
locally, within single sample areas, the entity of distortion
is minimal and cannot have macroscopic negative effects.

When the right mapping has been performed and target
densities are obtained we have, in principle, the best possi-
ble mapping. Looking at the image through the lens of our
PDDr metric (see Section 4.2) this is the best result we
can achieve. But, as pointed out in Section 3, this trail of
thoughts does not take into account the fact that differences
of one single pixel cannot be perceived. This is why a third
stage is needed.

Using the results given in Section 3, we restrict the val-
ues of represented densities to the ones that can perceived as
different. To this aim, we re-sample the dataset in a way that
only the perceivable represented densities are presented on
the screen, that is, the ones obtained in the user study. Start-
ing from the represented density 64 downward to 1, they are
sampled to let them reach their next available lower value:
(1) to 1; (2, 3) to 2; (4,5,6) to 4; etc. The complete set of
mappings is reported in Table 1.

Roughly speaking, we can think of the whole process as
follows. We have at disposal p different represented den-
sities that are matched against k real data densities where,
likely, k >> p; that implies that each represented density is
in charge to represent several different data densities, hiding
differences to the user. The strategy consists in changing,
with sampling and displacement, the original data densities,
altering their assignment to the p available represented den-
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Represented Density Perceptual Density
1 1
2,3 2
4,5,6 4
7,8,9,10 7
11,12,13,14,15,16 11
17,18,19,20,21,22,23 17
24,25,26,27,28,29,30,31 24
32,33,34,35,36,37,38 32
39,40,41,42,43,44,45,46 39
47,48,49,50,51,52 47
53,54,55,56,57 53
58,59,60 58
61,62,63 61
64 64

Table 1. Represented densities mapped to
perceptual densities. In order to visualize
only visible density differences, the repre-
sented densities are re-sampled according to
the values provided in the table.

sities to maximize the number of correctly represented data
density differences. Then, since the problem of perceptual
differences is recognized, an additional step is introduced
in which the visualization is re-sampled to obtain only per-
ceivable represented differences.

6 Discussion

In order to assess the validity of our method we compare
the new technique with the old one, using a real dataset that
contains 160,000 mail parcels data. Figure 5 shows: (a)
the original visualization, (b) the one obtained with the old
method (i.e., non-uniform sampling), (c) the one obtained
using the new method (i.e., with sampling, displacement,
and perceptual issues).

It is quite evident that both Figure 5 (b) and (c) allows
for grasping more details in the most crowded zone, leaving
the less dense areas quite untouched. This is a general char-
acteristic of the non uniform sampling. Moreover, looking
at Figure 5 (c) we can note two additional improvements:

1. the density differences are more evident. This is due to
the fact that not all the represented densities are avail-
able: according to Table 1, only 14 out of 64 repre-
sented densities are available on the screen and this,
according to the user study, increases the density dif-
ferences perception;

2. some faint areas are more evident. As an example, in
the left lower part of the image is quite evident a new

cluster. This is the effect of the displacement activity
that rescues points in areas that present a number of
collisions higher than the average.

The visual impressions are confirmed by our metrics: the
original values of PDDr and PPDDr (0.71 and 0.57) rises in
image (b) to 0.79 and 0.65 reaching, in image (c), the values
0.83 and 0.76. We can claim that our technique increased
the percentage of data points that are correctly perceived by
the end user (in terms of relative density) as much as 34%
(i.e., 0.766/0.57).

7 Conclusion And Future Work

In this paper we presented a novel automatic strategy for
enhancing 2D scatter plot quality, preserving in the final im-
age as many density differences as possible. To this aim, the
strategy incorporates three novel techniques:

1. it uses at the same time sampling and pixel displace-
ment;

2. it is driven by perceptual issues gathered from a suit-
able user study;

3. it incorporates a quality metric useful for both driving
the algorithm and validating the results.

Several open issues rise from this work. In particular,
several choices deserve more attention: it is our intention
to analyze the influence of increasing/decreasing of sam-
pling area dimension, in term of image quality and compu-
tational aspects. Moreover, some statistical analysis of the
data distribution could provide automatic means for deter-
mining the optimal sample area dimension.

Finally, we are we are currently extending the presented
approach to other well known Infovis techniques, i.e., par-
allel coordinates.
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(a) original

(c) new method

Figure 5. Comparison of sampling methods visualizing the mail parcels dataset: (a) the original
visualization; (b) the visualization obtained with our old sampling method (i.e., perceptual issues
neglected); (c) the visualization obtained with our new method taking into account perceptual issues.
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