## NAME, SURNAME AND STUDENT NUMBER (\* required fields):

## CONTROL SYSTEMS - 5/2/2019 (A)

[time 3 hours; no textbooks; no programmable calculators]



with  $P(s) = \frac{s+1}{s^2}$  design a controller G(s), if any, such that

- (i) the feedback system  $W(s) = \frac{PG(s)}{1 + PG(s)}$  is asymptotically stable (use the Nyquist criterion with reasonable approximations for the Bode plots) and its steady state output response  $y_{ss}$  to constant disturbances d
- (ii)  $|j\omega G(j\omega)|_{dB} \leq 36$  dB for all  $\omega$ ,
- (iii) the open loop system PG has phase margin  $m_\phi \geq 30^\circ$  and crossover
- frequency  $\omega_t \in [5, 10] \text{ rad/sec.}$

with  $P(s) = \frac{s+2}{s^3-2s^2-2}$ , determine, if any, a 2-dimensional controller G(s)such that the given feedback system has the following properties:

- i) it is asymptotically stable with poles having negative real part < -1
- ii) the steady state output response to constant disturbances  $d_2$  is 0
- ii) the absolute value of the steady state output response to unit ramp disturbances  $d_1$  (i.e.  $d_1 = t$ ) is  $\leq 0.1$ .
- 3) Given  $P(s) = \frac{(s+1)^2}{(s^2+1)(s-1)}$  draw the root locus of P and design, if any, a controller  $G_1(s) = K$  such that the closed-loop system  $W(s) = \frac{PG_1(s)}{1 + PG_1(s)}$ is asymptotically stable. With  $G_1(s) = \frac{1}{s}$  draw the root locus of  $PG_1$ (help: the positive root locus has the singular points  $s \approx 0.2 \pm 0.6j$  for  $k \approx 0.2$  and  $s \approx 0.4$  for  $k \approx 0.1$ ; the negative root locus has the singular point  $s \approx -2.4$  for  $k \approx -28$  ). Design, if any, a controller  $G_2(s) = K$  such that the closed-loop system  $W(s) = \frac{PG_1G_2(s)}{1+PG_1G_2(s)}$  is asymptotically stable.
- 4) Given the system

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} d + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x, \tag{1}$$

with state  $x \in \mathbb{R}^2$ , control u, controlled output y, disturbance  $d = D \sin t$ , with unknown  $D \in \mathbb{R}$ , and reference input  $v = \delta_{-1}(t)$ , find, if possible, a controller such that the closed loop system is asymptotically stable and its steady state output response  $y_{ss}$  is v.