An Architecture for High Performance
Control Using Digital Signal Processor Chips

Stefano Battilotti and Giovanni Ulivi

Increasingly demanding industrial applica-
tions require fast and cheap computing tools
for real-time control. For example, high per-
formance industrial robotics would benefit
from fast and cheap computing, but fast struc-
tures are generally expensive and dedicated to
particular tasks [1,2,3]. Another example
which requires fast computing is the control
of electrical transients of ac motors, where
complex numerical computations must be car-
ried out within times like 1 ms [4]. A recent
paper described implementation of a self-tun-
ing controller which uses a digital signal
processing chip for rapid calculations [5].

For many control applications there is a
natural hierarchical structure so that algo-
rithms devoted to simple tasks are placed at
the lowest level (for example, controlling a
robot axis or determining the switching time
of a static converter), whereas complex tasks
are at the high levels, forming a pyramidal
control structure which reflects the multilevel
structure described by Mesarovic [6]. In such
a structure, tasks are usually repetitive and
involve rapid manipulation of data, directly
derived from the measurements of sensors,
while high-level tasks are done over larger
time intervals with more complex algorithms.

This paper describes a computing structure
taking into account the hierarchical consider-
ations above. The architecture consists of a
high level general purpose computer (HOST)
and up to eight digital signal processors

T il T

1

—
B
B}

PLANT

Fig. 1. System block diagram.

The authors are with Universita di Roma "La
Sapi. " Diparti di Informatica e Si

tica, v. udossiana 18, 00184 Rome, Italy. An earlier
version of this paper was presented at the 1989 IEEE
Industrial Electronics Conference, Philadelphia,

PA, November 6-10, 1989.

(DSPs) which can be interfaced with the con-
trolled plant(s).

The high-level computer is either a work
station or an advanced personal computer
with sufficient memory space (RAM and
mass memory), equipped with peripherals for
implementation of user-friendly interface and
with the ability to communicate with other
computers, perhaps in a local network. The
synchronization and the real-time communi-
cations between the HOST and a DSP are
implemented by the two memory bank alter-
natively switched between the HOST and the
DSP. A complete transparency and a mini-
mum overhead result for the tasks running on
the DSP.

Design Outline

The DSP chip can rapidly and efficiently
manipulate numerical data. For this applica-
tion the Texas Instrument 320XX DSPs chips
have been used, since they show a high com-
patibility among the components of the fami-
ly. Moreover, derived processors are available
(the so-called Digital Signal Controllers)
which can ease in some cases the interface
toward specific industrial processes [4]. How-
ever, the proposed architecture could be
implemented also by means of other kind of
DSPs, with the proper circuital modifications.

Two data paths collect most of the informa-
tion. The first is between the low level proces-
sor and the plant. This path is involved with
frequent transactions and computations, con-
cerning small amounts of data, and determines
the useful bandwidth of the control system at
the actuator level, so its speed is of paramount
importance.

The second data path is between the low-
level processor and the HOST computer. It
collects other types of data such as reference
values, controller parameters and quantities
derived from manipulating the measures com-
ing from the plant. These data can be trans-
ferred in bursts with a time interval between
transactions much longer than those at the first
level (ten times is a typical value). The transfer
speed during each burst is that allowed by the
HOST and is much lower than that the fre-
quency the DSP can achieve.

Communications are based on two random

20 0272-1708/90/1000-0020 $01.00 © 1990 IEEE

SAB SDB
CARD
ADDRESS
COMPARATOR

COMMAND STATUS
REGISTER REGISTER
—-{ BANK SWITCHER I
RAM1 RAM2]
=
% BANK SWITCHER i
PROM A8 DB
FAM T
CONTROL M
LOGIC S
o .l r
CONTROL

LOGIC
]
Wo

Fig. 2. Block diagram of a DSP card.

access (RAM) memory banks for each DSP
card alternatively switched between the DSP
and the HOST so as to get complete
transparency. This technique is conceptually
very clear, its implementation is simple and
allows the maximum decoupling between the
two computers.

The DSP cards master the bank switching
but do not participate to the data transfer, so
their operating speed is practically unaffected
by the communications.

The synchronization between the two
levels results for each DSP card from the
handshake relative to the memory bank
switching. Such mechanism is started by the
HOST, which sends a suitable message to the
DSP as soon as new data have been computed
and then waits for the answer. This request is
detected by the DSP, which, at a suitable
instant, switches the two banks and sends an
acknowledge to the HOST. In this way the
data are exchanged between the processes and
the HOST can synchronize its activities.

IEEE Control Systems Magazine

Tothe bank
switchers
0
o H
CONTROL |»
2 werc |z @ a
. K ol ST @
OE1 SE2 a
W ! [SAB
5 oHarEa] o
comman |8
~ +] REGISTER 16
:ét Hour?
A0
M INTERNAL N1
. [~ ADDRESS STATUS '
M COMP. M REGISTER [3
“IN7
SDB

Fig. 3. Bank switching control logic.

System Block Diagram

The overall block diagram of the system is
given in Fig. 1, where the two system buses,
connecting the HOST and the DSP cards, are
shown. The first one is used for commands
and addresses (SAB), the other one for data
(SDB).

Figure 2 shows the interal structure of a
DSP card. It is worth noting that, although not
explicitly pointed out in the figure, the DSP
has two separate memory spaces, one for the
program code and the other for the data. The
data transfer between the spaces is accom-
plished by the highly efficient instructions
TBLR and TBLW. In the figure the two
memory banks and a PROM, accessible only
from the DSP, are shown. They are connected
as part of the program memory of the DSP.

This choice allows to easily download the
program code into the DSP. Indeed, beside the
data exchanged with the HOST-P, the banks
hold the TMS program sections most subject
to be changed plus a reserved parameter area.
This allows some parametric program sec-
tions to be changed "dynamically” (e.g., part
of the control algorithm) by rewriting them
starting from a suitable address.

On the other hand, the PROM holds the
permanent program sections, as for example
an initialization program and the synchroni-
zation and handling routines.

The two memory banks (2 kwords which
can be extended up to 4 kwords) are alterna-
tively connected to the DSP or the HOST. The
commutations are implemented by two
groups of 3-state buffers (Bank Switchers)
driven by the RAM Control Logic.

The PROM and the two banks give a Y-
shape to the program memory space. The
bifurcation address can be selected by
jumpers.

October 1990

Strictly connected to the memory is the
RAM Control Logic, which implement also
the synchronization mechanism.

Flip-flops necessary to card operations are
driven by the DSP by addressing them by
means of I/O instructions. The /O Control
Logic provides for that and moreover for ena-
bling the ports which allow the system to be
connected to the controlled plant.

A suitable register allows the HOST to
carry out a set of operations in the DSP cards
(e.g., bank read/write operations) while a
status register supplies the relevant informa-
tion about its operations. They are connected
to most of the other blocks. Moreover, a Card
Address Comparator allows the HOST to ad-
dress a specific DSP card. The comparator and
the two registers are directly connected to the
system buses.

All the system timings derive from an on-
board timer, which provides the interrupt re-
quests at each sampling instants to
synchronize the DSP. It is presettable over an
interval ranging from 100 ps to nearly 1 s.

Data Communication
and Interprocessor
Synchronization

As already mentioned, datacommunication
and synchronization are both implemented by
the bank switching mechanism. The data are
contemporarily exchanged between the two
computers simply by switching the RAM
banks containing them. In this way the low-
level processor has a minimum overhead and
also the synchronization proceeds from the
low to the high levels, as requested. Figure 3
shows the logic which implements the switch-
ing of the memory banks and supplies the
relative acknowledge when the request is
honored. It contains the relevant part of the

RAM Control Logic. The switching
mechanism is ruled by a semaphore which
represent the number of sampling instants left
to the next bank switching and is decremented
at every sampling instant by the DSP. At each
bank switching, the value of the semaphore is
initialized by the HOST. Therefore the
switching instant is determined by the low
level processor under the HOST control.

The toggle flip-flop Q2 stores the status of
the connections of the RAM banks.

The switching procedure is started by the
HOST-P, which sends a request along the
SAB. This is stored into the set-reset flip-flop
Q1, whose output is connected to the polling
line BIO of the DSP. The DSP-P, when
enabled by the semaphore, honors the request
by switching the banks and signaling the
operation by the ACK line.

The lack of a wait line in the simplest
members of the TMS family (TMS32010) has
determined also the I/O design. In fact, it was
not possible to use sophisticated program-
mable ports but it was necessary to resort to
standard TTL logic to build two external [/O
buses (address and data) to communicate with
the transducers installed on the plant.

Card Control Operations

Card control operations are carried out by
means of commands which the HOST-P can
address to each card. The most important
commands are listed in Table I. Some of them
(e.g., memory read) naturally refer to single
cards while others can be required to be con-
temporarily executed by a group of cards
(e.g., run). Therefore a mechanism has been
implemented based on two phases: during the
first, the command is stored in a dedicated
register (Command Register, see Fig. 4),
during the second all the stored commands are
executed. Obviously this mechanism requires
to store a do-nothing (idle) command in the
cards which should remain unaffected.

Table I
List of Main Commands

Memory Bank write
Memory bank read
Latch card status

Card status read

Bank switch request
Idle

Run*

Reset*

Forced bank switching*

*Commands used only
during code download

21

SAB 16
yan
508 s |cE ATN
3
IN
enable
COMMAND
ADDRESS
REGISTER COMPARATOR
I N
——
commands T

_

Fig. 4. Command transfer logic.

All the commands are sent by the HOST
along the SAB (normally used for memory
addresses) together with the card address.

It is to be noted that, with the used memory
bank sizes, 12 bit long addresses are required.
This value has been increased to 14 to take
into account future expansions. Therefore, if
astandard 16-bit portis used in the HOST, two
bits remain to implement the command
mechanism. One of them (ATN) is used to
distinguish between commands and memory
addresses. When it is active, each card com-
pares its address with that present on the SAB;
if they are equal, the Command Register is
enabled to latch the command. In this way the
proper commands are stored in the required
cards. Afterwards, the HOST-P can activate
the commands on all the card of the system
using the other bit (CE).

It is worth noting that highly repetitive
commands such as memory read and memory
write require only one command transfer:
once the command is latched, it can be ac-
tivated each time by asserting the CE line.

{DSP loop}
Repeat
If semaphore = 0 then
If switch_request Then switch_banks:
semaphore = semaphore - 1;
If semaphore < 0 Then error = true;
read_data_from_bank;
low_level_conrol;
write_data_to_bank;
Forever

{HOST loop}

Repeat
read_data_from_bank;
high_level_control;
write_data_to_bank;
send_switch_request;
Repeat

wait
Until switch_acknowledge
Forever

Fig. 5. Iterative parts of the software.

22

The drawbacks of this approach are the
slowing of the information flow along the bus
and the more complicated communication
software in the HOST; anyway such draw-
backs are completely compatible with the pur-
pose of the design, taking into account the

assemblers. Thus there is the possibility of
writing (maybe compiling) and assembling
the TMS programs on the HOST computer
itself. The obtained machine code is after-
wards down-loaded into the DSP cards.
Moreover the general purpose HOST can be
used to perform off-line computations. For
example, in a robotics application it can com-
pute the trajectory values and moreover it can
perform a performance evaluation.

The DSP synchronization software con-
sists in a few tens of assembler lines which
provides for decrementing and checking the
semaphore and switching the memory banks.
Other utility functions are provided as for
example standard I/O routines and data trans-
ferring between the DSP program memory
and data memory.

A typical way the system works is the fol-
lowing. At the beginning the TMS code is
down-loaded from the memory-mass of the

Yiar (B
Learning = Memory (k+1)
Algorithm Memory (k)
f
Ut i ()
Yo + _ e . A (b
—- Conlroller -:% Plant -
- u

Fig. 6. Overall block diagram of the learning controller.

low-rate communication of the HOST along
the bus with respect to the very high operative
speed of the DSPs which control a real-time
process.

Moreover, this technique allows to get rid
of the problem coming from the cable length
and to adopt every needed communication
rate without slowing down the DSP opera-
tions.

The Management Software

As most of the communication mechanisms
heavily rely upon hardware resources, the sys-
tem software turns out to be very simple. It
mainly consists of the permanent DSP code
and the procedures implementing the various
operations which the HOST can perform on
the DSP card. The procedures are written
mostly in a high-level language (Pascal was
used) with some small parts in assembler to
improve the overall efficiency. The assembler
parts are transparent to the user as they are
embedded in Pascal procedures so to make the
programming as clear and easy as possible.

The HOST is a general purpose work-sta-
tion which can run cross-compilers or cross-

HOST into the two RAM banks while the DSP
is kept reset; afterwards the system is started.
The HOST-P works under a mixed inter-
rupt/polling environment. First an interrupt
wakes up the HOST-P; immediately it asserts
a switching request and then it waits for the
acknowledge from the DSP-P.

On the other side the DSP-P tests the
semaphore at each sampling time (given by
the on-board timer); if not enabled then it
skips the switching part of the code and starts
another control loop. Otherwise, it switches
the banks, signaling the acknowledge to the
HOST-P which thus can go on reading the
data stored by the DSP-P from the new avail-
able bank.

The HOST-P, after computing and storing
the data to be used by the DSP-P in the next
cycle, can go in an idle state, thus making the
HOST CPU available for lower-priority tasks,
such as giving information about the plant
status to the operator, if requested, until
another interrupt is generated.

The repetitive part of the processes above
described is shown in Fig. 5, using pseudo
Pascal-code.

IEEE Confrol Systems Magazine

o DSP

IBM JgL Digal (1 1ms
XT286 0T ports | |- 22025,
—,'117 Ports

DIA

Amplifier Ui
— Motor [*
Transmission
=3

RID

- [

Joint Selection

{

PR

Sensors
AlD -
- i,

Position
and Speed

ol e

Supervisionand Learning Digital Controller

Interface to the Robot Robot Arm

Fig. 7. Block diagram of the experimental environment.

Further Developments

The described system has been tested suc-
cessfully and it is currently used in our
robotics laboratory. The first version has been
implemented using a TMS32010 which al-
lows only a very small memory to be used.
Later on the same card a TMS32025 has been
installed by a piggy-back into the socket of the
first processor. In this way the C-compiler
available for this CPU can be used.

Currently a new card based on this proces-
sor is being designed, allowing room for a
larger memory (up to 32 kwords).

To reduce the component number, fast PLA
will replace several standard TTL chips.
Moreover, since during the tests it was check-
ed that the processor timings allow the bank
switching during consecutive instruction
fetches, the PROM will not be used so as to
make the circuitry simpler.

Experimental Results

An interesting application of the proposed
computer architecture has been the imple-
mentation of a learning controller for a three-
degree-of-freedom robot arm [7]. Iterative
learning is a control technique where the re-
quired input to a given system is built itera-
tively from successive experiments and the
performances on the repetitive tasks are
asymptotically improved from one iteration to
the other. This technique works even with
limited a priori knowledge of the system.

Under suitable assumptions, the leaming
schemes will converge and acquire from the
trials the information needed for the success-
ful completion of the task.

The control scheme (drawn in Fig. 6 for one
joint) is constituted by a standard feedback
loop in which a feedforward signal (vi(t)),
stored a in memory (Memory (k)), is injected.
The next feedforward signal (vi+1(f)) is
derived from the current one and the output of
the controller 1’ (t). The filters contained in the
learning algorithm block ensure the conver-
gence of the iterative procedure. The

October 1990

asymptotic value of the memory is such to
zero the error ¢(t) in a prescribed band of
frequency. Clearly, the involved signal
processing needs not to be carried out in real
time and, on the other hand, the two vectors
containing the memory data are rather long,
depending on the duration of the task.

Therefore, these processings have been
devoted to the HOST, while the standard feed-
back loops have been implemented on the
DSP.

The experimental system is constituted by
a prototype manipulator and the multimicro
structure. Its block diagram is given in Fig. 7.
As the HOST computer, an XT286 has been
used, equipped with a Burr Brown Carrier
which provides the lines to SAB and SDB
buses. A single DSP card has been used, car-
rying a TMS 32025.

All the robot joints are revolute and are
actuated by dc motors through harmonic
drives with transmission ratios equal to 160.
Motors are powered by current amplifiers,
whose reference values are provided by 12-bit
D/A converters.

Each joint is equipped with a resolver and
a dc tachometer for velocity feedback. The
analog outputs of both sensors are converted
into digital values with a resolution of 16-
bit/2n and, respectively, 11-bit/(rad/s).

Besides computing the new feedforward
signal, the XT286 provides the system mass
memory and the graphic user interfaces. All
the functions are programmed in Pascal; in
particular, the trajectory generation is done at
this level. It also provides a programming
environment for the TMS 32025, including an
editor and the C cross-compiler to generate the
executable codes.

The closed loop linear control (proportional
plus derivative) is performed by the DSP with
a sampling time of 400 ps. The most relevant
system variables (among the others, position
and velocity errors and the output of the linear
controller) are stored every other sampling
instant in a local buffer and transferred to the

XT286 every 20 ms, the sampling time of this
computer.

These data are progressively saved in a
large buffer in the PC RAM. At the same rate,
the proper segment of the time-varying refer-
ence signals y4(t) and vi(t) is downloaded. At
the end of each trial, the XT286 buffer is
processed off-line and the new learning out-
put vi+7(t) is computed.

Conclusions

A multimicro DSP-based architecture for
control applications has been designed and
implemented showing high performances and
modularity. To obtain these results, a hierar-
chical structure has been preferred and the use
of real-time operating system was avoided.
Instead, the system relies upon simple, still
efficient, hardware resources. Two levels can
be seen, the higher one consists of a high
performance work-station, the lower one of
up to eight DSP. Each DSP card contains two
RAM banks alternatively switched between
the DSP and the work-station which controls
the whole system. The synchronization be-
tween the two levels is obtained by exploiting
a RAM bank switching mechanism requested
by the HOST and honored by the DSP. The
system can be easily programmed and it is
currently used in our robotics laboratory.

References

[1} J. Ish-Shalom and P. Kazanzides, "SPARTA:
Multiple signal processors for high-performance
robotic control,” in Proc. IEEE Int. Conf. on
Robotics and Automation, 1988.

[2] Y. Wang and S. E. Butner, "A new architecture
for robot control," in Proc. IEEE Int. Conf. on
Robotics and Automation, 1987.

[3] S. S. Leung and M. A. Shanblatt, "Computer
architecture design for robotics," in Proc. IEEE Int.
Conf. on Robotics and Automation, 1988.

[4] A. Bellini, G. Figalli, and G. Ulivi, "A
microcomputer-based optimal control system to
reduce the effects of parametric variations and
speed measurement errors in induction motor
drives," IEEE Trans. Ind. App., Vol. 1A-22, no.1,
1986.

[5] K. H. Gurubasavaraj, "Implementation of a
self-tuning controller using digital signal processor
chips," IEEE Control Syst. Mag., vol. 9, June 1989.

[6] W. Findeisen et al., "Control and coordination
in hierarchical systems,” IIASA Wiley and Sons,
1980.

[7] A. De Luca, G. Paesano, and G. Ulivi, "A
frequency-domain approach to learning control:
Implementation for a robot manipulator,” presented
at 4th IEEE Int. Symp. Intelligent Control, Sept.
1989.

23

