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Global Output Regulation and Disturbance
Attenuation with Global Stability via Measurement
Feedback for a Class of Nonlinear Systems

Stefano Battilotti, Member, IEEE

Abstract—1In this paper, we consider the problem of global
stabilization via output feedback for a class of nonlinear systems

which have been recently considered by many authors and are’

characterized by having nonlinear terms depending only on the
output y. Our result incorporates many recent results. When
static output feedback is considered, it is shown that the existence
of an output control Lyapunov function, satisfying a suitable
continuity property, is sufficient for constructing a continuous
output feedback law u = k(y) which globally (or semiglobally)
stabilizes the above class of systems. When dynamic output
feedback is allowed, it is shown that the stabilization problem can
be split into two independent stabilization subproblems: one is the
corresponding problem via state feedback, and the other is the
problem via output injection. From solving the two subproblems,
one obtains two Lyapunov functions which, combined, give a
candidate Lyapunov function for solving the output feedback
stabilization problem. The proofs of our results give systematic
procedures for constructing output feedback controllers, once two
such Lyapunov functions are known. One can also consider the
problem of output regulation and disturbance attenuation with
global stability via measurement feedback and show that a similar
““separation” condition holds.

I. BASIC DEFINITIONS AND PROBLEM STATEMENT

E will consider nonlinear systems of the form (or
globally diffeomorphic to)

&1 = Ai1(y)z + Bi(y)u
z = As(y)z + Ba(y)u
Y=z (1)

where z = (“), z € R", u e R™, w € R", y € RP, A;(y),
and B;(y) are matrices with smooth entries. In (1), v defines
the input variables and ¥y are the measured variables. System
(1) has been considered first in 1] and recently in [2]-[9].

Moreover, we will consider the class of continuous feedback
laws

u="1(0,y), o € R
=0, y) 2)
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with (0, 0) = 0 and (0, 0) = 0. In what follows, we will
refer to these feedback laws as (static or dynamic) output (or
measurement) feedback laws. In the case that y = z, we will
say (static or dynamic) state feedback laws.

Let us begin with formulating the problem of globally
asymptotically stabilizing (1).

Global stabilization problem via measurement feedback:
Given (1), find a control law (2) such that the closed-loop
system (1) and (2), with w(¢) = 0, is globally asymptotically
stable in (z, o) = (0, 0).

Semiglobal stabilization problem via measurement feedback:
Given (1) and compact Q¢ C R™"9, find a control law (2)
such that the closed-loop system (1) and (2), with w(t) = 0,
is locally asymptotically stable in (z, o) = (0, 0) with basin
of attraction containing 2°. '

Let V(z) be a smooth function. Moreover, let

= ()20 = (26))

(@) = G2 Al

b(z) = S-(2) Bly).

We will say that a proper and positive definite function V(z)
is a Lyapunov function for (1) if a(z) < 0 for all z # 0.
According to [10], we say that a proper and positive definite
function V() is a control Lyapunov function for (1) if for each
x # 0, such that b(x) = 0, we have a(z) < 0 (]| - || is the
euclidean norm of R™), or, equivalently, for each = # 0 there
exists a m x 1 vector k,, such that a(z) +b(z)k, < 0. We will
say that the control Lyapunov function V (z) satisfies the small
control property if for each € > 0 there is § > 0 such that, for

and

“each 7 # 0 satisfying ||z|| < 8., we have a(z) + b(z)k. < 0

for some k, with ||k;|| < €. An elegant proof is given in [10],
showing that there exists a control Lyapunov function V' (z),
which satisfies the small control property, if and only if it
is possible to find a feedback law u = k(z) which globally
asymptotically stabilizes (1) in z = 0. A former proof, based
on unity partition, was given in [11]. The feedback law

u=k(z) = a(@)+y/a? (@) b
S Hb(g?lj“b( ! b(e) else

has the claimed properties.

0018-9286/96$05.00 © ‘1996 IEEE



316 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 3, MARCH 1996

According to [6] (see also [7]), we say that a proper and
positive definite function V() is an output control Lyapunov
function for (1) if for each y # 0 there exists a m x 1 vector
k, such that a(z) + b(x)k, < 0 for all z and (0, 2) < O
for all z # 0. If V(z) satisfies the above properties in a
neighborhood of z = 0, we will say that V(z) is a local
output control Lyapunov function. We will say that the output
control Lyapunov function V(z) satisfies the small" control
property if there exists a positive real function L(y), defined
in a neighborhood of y = 0, such that L(y) — 0 as
y — 0 and ||ky|| < L(y), where for each y # Ok, satisfies
a(z)+b(x)ky < 0 for all z. It is shown in [7] that there exists
a local output control Lyapunov function V' (z) which satisfies
the small control property if and only if it is possible to find a
feedback law u = k(y) which locally asymptotically stabilizes
(1) in 2 = 0. Implicitly, this is shown on arbitrary compact
sets, but the compactness is actually an intrinsic limitation

of the procedure proposed. The proposed control law can.

be explicitly constructed once an output control Lyapunov
function and a unity partition are available. Further results
are given in [7] in the direction of finding expressions of
a stabilizing control law once an output control Lyapunov
function is available without passing through the construction
of a unity partition.

It is possible to extend the above definitions to the case
of dynamic output feedback. Let us introduce the additional
dynamics & = v, v € R%. Let V(z, o) be a smooth, proper,
and positive definite function. Correspondingly, let

oz, ) = 0 (x, 0)Aly)e
b(z, o) = (%‘g(x, o)B(y) Z—Z(w, 0')).

We will say that a proper and positive definite V(z, o) is a
dynamic output control Lyapunov function for (1) if for each
(y, o) # (0, 0) there exists a n + ¢ vector ky , such that
a(z, o)+ b(z, 0)ky , < 0 for all z and a(0, z, 0) < O for all
z # 0. We will say that the dynamic output control Lyapunov
V(z, o) satisfies the small control property if there exists a
positive real function L(y, o), defined in a neighborhood of

(4, o) = (0, 0), such that L(y, o) — 0 as |[(y, o)|| — O

and ||ky || < L(y, o), where for each (y, o) # (0, 0)ky o
satisfies a(z, ) + b(z, 0)ky,c < 0 for all z. :

Along the same lines, one can give the definition of dynamic
control Lyapunov function for (1).

The systems of (1) have been considered first in the seminal
paper [4] for the case of A(y) constant. In general, (1) is not
feedback linearizable, nonminimum phase, and, since B(y)
may have a singularity in y = 0, may even not have vector
relative degree at x = (. A first important step towards
the stabilization (1) is given in [2]-[5], where for the case
m =p =1, A(y)zr = Az + ¢(y) with A in Brunovsky
form, and B(y) = B a Hurwitz vector and relative degree at
z = 0, it is shown that global stabilization can be achieved
via dynamic output feedback.

In the case of single-input—single-output feedback lineariz-
able systems, the stabilization problem via dynamic output
feedback is solved in [13] under the assumption that a certain

map is globally invertible. This assumption guarantees that the
system is globally “observable” so that a global observer can
be constructed.

Another important step is marked in [8], where the problem
of asymptotically stabilizing (1) via dynamic output feedback
is considered under the two following main assumptions: a)
there exists a stabilizing controller v = k(z), and b) there
exists a constant matrix () satisfying a certain inequality
(“weak observability” property). While the first assumption is
common to ours and is quite natural in solving a dynamic
output feedback stabilization problem, the second one is
somewhat “coupled” with. the first one.

A similar solution to the problem of stabilizing (1) via
dynamic output feedback has been given in [9] a) under the
assumption that there exists a stabilizing controller v = k(z),
b) under some “growth” conditions, and c) under a certain
unboundedness observability. These conditions are stronger
than those proposed in [8] due to the difficulty of separating the
problem of output feedback stabilization into the subproblems
via full information and via output injection, respectively.

Finally, using some seminal ideas contained in [8] and
[14], the problem of semiglobally stabilizing via dynamic
output feedback for the class of nonlinear systems, which
are minimum phase and in normal form, is solved under a
suitable “small-gain” assumption in [15]. Following a similar
approach, the problem of stabilizing a general nonlinear system
via dynamic output feedback is considered in the subsequent
[16], and a nice generalization to nonlinear systems of the
so-called “separation” principle for linear systems is given.
It is shown that state-feedback stabilizability plus complete
uniform observability imply semiglobal stabilizability via dy-
namic output feedback. The property .of complete uniform
observability involves the solution of a system of first-order
differential equations [i.e., the solution of (1)] and is not
sufficient for global stabilization via dynamic output feedback,
since, as shown in the recent paper [17], the “unboundedness
unobservability” phenomenon may arise. ‘

Another problem which will be discussed in this paper is
the one of achieving output regulation for (1), where the state
vector z may include reference signals as well as disturbances.
In particular, the z-equation of (1) includes the case in which
the reference signals and/or the disturbances are modeled by a
linear first-order differential equation w = Sw. In general, if
this is the case, one can try to solve a disturbance attenuation
problem (see later discussion). Let us formulate the output
regulation problem according to [8].

Global output regulation problem via measurement feed-
back: Given (1), find a control law (2) such that for each
initial condition (zg, o¢) the trajectories of the closed-loop
system (1) and (2) are bounded and ||y(¢)|| — 0 as t — oo.

The local problem for a general nonlinear system has been
given an elegant solution in [18] which closely follows the
corresponding linear solution. In this case, the problem of
output regulation is split into two separate subproblems which
are the natural extension of the corresponding counterparts in
the linear case. A different approach, as much as valuable, is
pursued in [19]. On the other hand, an important contribution -
to the solution of the global output regulation problem via
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output feedback has been given in {8], followed immediately
after by [2]-[5] (see discussion on the contributions to the
stabilization problem). "

When either the disturbances cannot be modeled through an
exosystem or the asymptotic tracking cannot be performed, it
can be useful to formulate a disturbance attenuation problem.
In this case, the class of systems considered is

&1 = An(y)z + B (y)w + Buia(y)u
%= A12(y)z + Bia1(y)w + Bz (y)u
T = As(y)x + Bar(y)w + Baa(y)u
y=on

where w are exogenous disturbances, and Z defines a penalty
variable which may include a tracking error or a cost on
the control. For simplicity of calculations, we will assume
Bai(y) = 0, BY,(y)Ba2(y) = I, and B3,(y)A2(y) = 0 (see
the simplifying assumptions in [20] and [21]). The purpose
of the control (2) is, on one hand, to achieve global internal
stability when the effect of the disturbances is not present (i.e.,
w(t) = 0) and, on the other hand, to attenuate the influence of
the disturbances on the penalty variables. Although there exist
several ways of characterizing the requirement of disturbance
attenuation, we will follow the one pursued in [22].

Disturbance attenuation problem with global stability via
measurement feedback: Given (1) and a real number 0 < v <
1, find a controller (2) and a smooth and nonnegative function
Vé(z, o) such that

Ve(z, 0, w) + |IZ||* = Pllwl|* < 0

and the closed-loop system (1) and (2) is globally asymptoti-
caily stable in (z, o) = (0, 0) for w(t) = 0.

In this formulation, -y represents a bound for the L£o-gain
(w — I) of (1) (see the seminal papers [23]). Sufficient
conditions for disturbance attenuation with local stability have
been given in [21] for affine-in-the-input nonlinear systems,
and necessary conditions for disturbance attenuation have been
given in [22, Theorem 4.2] for (2) being linear in y. In
particular, in [22] it has been shown that the solution of the
disturbance attenuation problem amounts to the solution of
two “uncoupled” Hamilton—-Jacobi (not strict) inequalities plus
a “coupling” condition between these two solutions, giving a
nice generalization of the corresponding conditions for linear
systems.

II. A SHORT DISCUSSION OF THE MAIN RESULTS

Let us now briefly discuss the main results of this paper.
Our first result is the following and concerns. semiglobal
stabilization of (1) via static output feedback.

Theorem 1: Assume m = 1 and let  C R™ be a compact
set. Let V(z) = $27Pz + 27((y) + £(y) be an output
control Lyapunov function for (1), satisfying the small control
property. Then, it is possible to find a static output feedback
law (2) such that the closed-loop system (1) and (2) is locally
asymptotically stable in x = 0 with the basin of attraction
containing 2. d

Theorem 1 proves the existence of a stabilizing output
feedback law through a constructive proof, once an output
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control Lyapunov function is available. Moreover, it consid-
ers for simplicity single-input systems, but more complex
arguments can lead to prove a similar result for multiple-
input systems (see Section IV for an illustrative example). The
sufficient condition of Theorem 1 is not necessary, since an
output control Lyapunov function of the required form does
not necessarily exist. .

A simple consequence of the arguments contained in the
proof of Theorem 1 is the possibility of obtaining global
stabilization, as long as one assumes that the rank of a certain
matrix is constant. This improves the procedure proposed in
[6], in the sense that the compactness of the region of aftraction
is no longer an intrinsic limitation of the procedure itself. Let

aly) = %@)[A@)]z P

where [A(y)]Y and [A(y)]: are the matrices obtained from
A(y) by selecting the first p rows and the last n — p columns
and, respectively, the last » — p rows and n — p columns.
The matrix a(y) is the Hessian (with respect to z) of the
function a(z) + b(z)u, with a(z) = 2% (z)A(y)z and b(z) =
9% (2)B(y)-

Theorem 2: Assume that m = 1. If for (1) there exists
an output control Lyapunov function V(z) = (1/2)27 Pz +
27¢(y) + £(y) which satisfies the small control property, and,
in addition, the matrix a(y) has constant rank, then it is
possible to find an output feedback law u = k(y) which solves
the global stabilization problem for (1). O

The stabilizing controllers, which can be constructed
through the proof of Theorem 1, may be sometimes complex
to construct, except when the additional assumption on a(y)
is stated. If this is the case, the expression of the controller is
straightforward once an output control Lyapunov function
is available. By this reason, we will prove Theorem 1
first, and, finally, we will remove the rank assumption on
a(y), giving the procedure only for the two-dimensional
case. In Section IV, Example 1 shows the procedure for a
higher-dimensional case and two inputs.

" Theorem 1 can also be proven, with far more complicated
notations, by simply requiring that V(z) is an output control
Lyapunov function for (1) on {z € R": V() < ¢} D Q.

When dynamic controllers are aiso allowed, we will show
that the global stabilization problem via measurement feed-
back can be split up into two subproblems: the problem via
state feedback and the problem via output injection. As is
well known, the first subproblem quantifies the possibility
of globally stabilizing (1) via state feedback. To clarify the
significance of the second subproblem and for simplicity, let

_ us consider the case of linear system (1) and define by

z=Az+u,u R
y=Cr =1

the system associated to (1) with w being a “fictitious” input
vector. In this case, the control vector u has nothing to
do with the control vector u in (1) and has dimension n.
The problem of globally stabilizing the associated system via
output feedback is commonly known as stabilization via output
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injection, and it is dual to the stabilization problem via the state
feedback of (1). A necessary and sufficient condition for the
associated system of (1) to be stabilizable via output feedback
is that the pair (C, A) is detectable. For nonlinear systems

&= f(z) +g(y)u
y=h(z) 3

this kind of detectability condition does not make sense.
The stabilization problem via output injection of (3) still can
be characterized through the existence of an output control
Lyapunov function for the associated system

= flz)+u
y = h(z).

It is easy to realize that (1), being asymptotically stabiliz-
able via output injection, is the natural condition needed to
prevent the unboundedness unobservability phenomenon [17]
and to guarantee detectability. In this paper, we w1l] prove the
following “separation” condmon
Theorem 3: Let V(z) = 32TPz + 27((y) + &(y) be a
control Lyapunov function for (1), satisfying the small control
property. Also, let V(z) = $2TPz + 27¢(y) + &(y) be an
output control Lyapunov function for its associated system.
- Then it is possible to find an output feedback law (2), with
¢ = n, which solves the global stabilization problem via
measurement feedback. O
Theorem 3 gives a nonlinear analogous to the fact that
if (1) is both stabilizable via state feedback and via output
injection, it can be asymptotically stabilized via dynamic
output feedback. The result of Theorem 3 has already been
proven in [24] as far as the existence of a stabilizing output
feedback is concerned. Indeed, the proof is not constructive,
since it is based on unity partition. Here, we give an explicit
expression of a stabilizing controller once a control Lyapunov
function for (1) and an output control Lyapunov function for
its associated system are available (see Recipe 2). ~
As is well known in the literature, if a linear system is
both controllable and observable (actually, stabilizable and
detectable is sufficient), a simple expression of a stabilizing
dynamic output feedback law is

u=Ko
. 6=(A+BK)o+ H(-Co +y)

where K and H are such that A+BK and A—H C are Hurwitz
matrices. Note that the dynamics of o incorporates a copy of
the asymptotically stable system & = (A + BK)z. Moreover,
this design is based on the construction of an observer which
gives an estimate ¢ of the state x of the plant. The structure
of the dynamic feedback law we propose here is not based
on imposing to it the structure of an observer and provides an
alternative expression of a stabilizing controller even in the
linear case.

We want to remark that if we know the expression of a
stabilizing controller u = k(xz) and that of a Lyapunov function
V(z) for (1) with u = k(z), clearly V(z) can be taken as a
control Lyapunov function for (1) (a similar remark holds for
an output control Lyapunov function).

Let us spend few more words on the structure we require
for the Lyapunov functions. Although this structure may seem
restrictive even for the class of nonlinear systems (1), many
recent results on both (robust) global and semiglobal stabiliza-
tion via output feedback can be recovered through the solution
of a state feedback and, respectively, an output injection
stabilization problem with Lyapunov functions having indeed
this structure (see [25]-[27]). Further applications of the ideas
contained in the proof of Theorems 3 and 6 are given in [28].

By relaxing the requirement on the structure of the Lya-
punov functions Theorem 3, we obtain also necessary condi-
tions.

Theorem 4: Let V(z,01) = 12TPz + 27((y, o1) +
&(y, 01), o1 € R®, be a dynamic control Lyapunov function
for (1), satisfying the small control property. Also, let
Vi(z, 02) = 12TPz + 2T((y, 02) + E(y, 02), 02 € R™,
be a dynamic output control Lyapunov function for its
associated system. Then it is possible to find (2), with
g = n + max{si1, s2}, which solves the global stabilization
problem via measurement feedback.

Conversely, assume that there exists (2) which solves the
global stabilization problem via measurement feedback- for
(1). Then, there exists a dynamic control Lyapunov function
V(z, o1) for (1), satisfying the small control property, and a
dynamic output control Lyapunov function V(z, o2) for its -
associated system. O

Theorem 4 arises from the fact that for nonlinear systems,
stabilization via dynamic feedback is no more equivalent to
stabilization via static feedback. Moreover, the sufficient part
of Theorem 3 (and 4) can be proven with a far more compli-
cated notation by simply requiring that V (, o1) and V(z, o)
are a dynamic control Lyapunov function and a dynamic
output control Lyapunov function, respectively, for (1) and
its associated system on {(z, 0) € R* % : V(z, o) < 1} D
0 and {(z, 0) € R*2: V(z, 09) < e} D Qy, with given
compact sets 2; C R™9 and Qy C R™1%2, The resulting
dynamic™ output feedback law semiglobally asymptotlcally
stabilizes (1).

In the framework of global output regulation via measure-
ment feedback, we have the following result which can be
proven along the lines of Theorem 1 and by using LaSalle’s
invariance principle [29]. Extensions of this result in the spirit
of Theorem 4 are still possible.

Theorem 5: Let V(z) = 1:7Pz + 2T¢(y) + &(y) be a
smooth, proper, and positive deﬁnlte function such that its
derivative with respect to time along the trajectories of (1),
for some continuous v = k(x), k(0) = 0, is less than or
equal to zero for all z and equal to zero only if y = 0. Also,
let V(z) = 327Pz + 27((y) + &(y) be an output control
Lyapunov function for (1). Then it is possible to find an output
feedback law (2), with ¢ = n, which solves the global output
regulation problem via measurement feedback. |

The result of Theorem 5 generalizes the local [18] and
global [2] results with respect to the class of systems con-
sidered. Moreover, the problem of global -output regulation
via measurement feedback is split up into two “separate” sub-
problems which are the natural extension of the corresponding
counterparts in the linear case.
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The second assumption of Theorem 5 is not very natural
even in the linear case (see [18]). By arguments similar to
those contained in the proof of Theorem 5, we can show that
Theorem 5 still holds if we replace the condition on V(z)
by the more natural one which gives (even locally) a weaker
result than the one contained in [18].

‘2a): There exists a continuous function [(y), 1(0) = 0
and a smooth, proper, and positive definite function V(z) =
£2TPz + 2T((y) + &(y) such that its derivative with respect
to time along the trajectories of (1), with » = I(y), is less
than or equal to zero.

The sufficient conditions of Theorem 5 [with the second
condition replaced by 2a)] can be further weakened in the
spirit of Theorem 4. .

We want to remark that for the purpose of consiructing
an output feedback controller which achieves global output
regulation, it is not necessary to know the expression of I(y)
(this will be clear from the proof of Theorém 5). A similar
remark holds for the problem of output feedback stabilization.

As already stated, when either the disturbances cannot be
modeled through an exosystem or the asymptotic tracking
cannot be performed, it can be useful to look at a disturbance
attenuation problem with stability. In our paper, the relevance
of the disturbance attenuation problem with stability is with
respect to the robust stabilization problem via output feedback
(see [25]), since as is well known, a robust stabilization prob-
lem can be formulated as a suitable disturbance attenuation
problem with internal stability.

Theorem 6: Assume that the system

z = A1 (y)z
Iy = Aa(y)z 3)

with output Zg, is detectable in the sense of [2]. Moreover,
assume that there exist smooth, positive definite, and proper
functions V(z) = 327Pz + 27¢(y) + £(y) and V(z) =
12TPz + 27{(y) + £(y) such that

1) There exists a continuous function u = k(z), k(0) =0,

such that
%(:ﬂ)(Al(y)m + Bia(y)k(x))
T
+ @) Bul) B (0 (o)

+ | A2(y)z + Bzz(y)k(x)HZ <0.

2) There exists a continuous function {(y), [(0) = 0, such

that
& @A) +1)
— —T
+ 2 (BB () % ()

+ lla(wa <0
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and the Hessian (with respect to z) of

@A) + 1)
_ —T
A (@)Bu ) B () 5 —(a)

+ 34l

o+

is definite negative for y = 0.

3) ¥’ P - P > 0.

Then, the disturbance attenuation problem with global sta-
bility via measurement feedback is solvable. 0O

Theorem 6 shows that if the two “uncoupled” Hamil-
ton—Jacobi inequalities 1) and 2) have a solution, and a
“coupling” condition between the two corresponding solutions
is satisfied, then the disturbance attenuation problem with
global stability via measurement feedback is solvable, proving
again that the problem can be split up into two subproblems:
one is the corresponding problem via full information and
the other is the dual problem via output injection. This
“separation” principle has been proven to be a necessary
condition in [22] for the first time, in the case that the
class of controllers (2) is linear in y. Our result gives an
alternative proof even in the linear case, and our procedures
give systematic tools for designing ad hoc controllers.

In the linear case, V(z) and V(z) are quadratic in . In
this case, 1) and 2) are the classical Riccati inequalities, dual
to each other.

Before ending the section, we remark that by using the
arguments contained in the proof of Theorem 6 and since, as is
well known, a robust stabilization problem can be formulated
as a suitable disturbance attenuation problem, one can recover
many recent results on global robust stabilization via output
feedback ([25]-[28]).

III. PROOFS OF THE MAIN RESULTS

For a given n x n matrix M by [M]. ([M],), we will denote
the last n — p (the first p) rows of M. Dually, by [M]* ([M1¥)
we will denote the last n — p (the first p) columns of M.

Proof: Proof of Theorem 1: We first assume that a(y)
has constant rank. Finally, we will remove this assumption
and show the constructive procedure for the two-dimensional
case (see comments in Section II).

After direct computations along the trajectories of (1), one
has

V(z, u) = a(z) + b(z)u = zTa(y)z
+27(B(y) + 8(y)u) +v(y) +ew)u @)

with a(z) = Z¥(2)A(y)z, b(z) = §%(z)B(y) and for some
o(y), B(y), v(y), 6(y) and €(y) (see Recipe 1).

From the structure of (4), one can assume that a(y) is sym-
metric. Moreover, since a(y) has constant rank and %(O) =0,
¢(0) = 0, ¥(0) = 0, B(0) = 0, and v(0) = O, from the
definition of output control Lyapunov function we conclude
that a(y) is negative definite for all y. ‘
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Since a(y) is nonsingular for all y and V(z) is an output
control Lyapunov function, it follows that for each y # 0 the
function ¢y 4 (2) = 2 a(y)z+27 (B(y)+6(y)u)+y(y) +e(y)u
has a global maximum at 2} , = 3o~ (y)(B(y) + 8(y)u).
We have y,0(23,) = ~(8(s) + S(uu) a1 (u)(B(y) +
6(y)u) + v(y) + e(y)u. Since for each y # 0 there exists u
such that ¢, (25 ,,) < 0, we obtain for each y # 0

V(z, u) < u?®(y) +ud(y) + H(y) <0 Q)

for some u, ®(y), ¥(y), and H(y), with ®(y) > 0 for each y.
Let ®(y) = W2(y)®(y), ¥(y) = ¥*(y) and H(y) = H(y).
By construction, ®(y) > 0, ¥(y) > 0, $(0) = ¥(0) =
H(0) = 0. Moreover, let
(0
if U(y) =0
_Hu)+/H W)+ %
27

*()e(T(y)+H(y))
_ ()
if ®(y) = 0 and W(y) #

E(y)

Il

2\/52 (¥)—3®H(y) cos (% arcos { \/%(7 ) —T(y)
L 3%(y)
L i Q(y) #0 ©

where 0 < arcos{ Ey)

vV ~Q3(y)} ST
R(y) = — 5120 (s) - 9% ()T () B(1)
+27G(B(y), T(y), Hy)T (v)]

Q) = ~T'(y) + 3H(y)B(y)
G(2(y), U(y), H(y))

_ _% (2T () - 9T (y) H(y)B(y))

2/ (@ () - T B()))
o(U(y) + F(y))e™ ()

with o(-) any smooth function such that 0 < p(6) < 1 for all
0, o(f) > 0 for all # > 0, and p(8) = 0 for § < 0.

We will show that the function k(y) = k(y)¥(y) solves
the global stabilization problem for (1). We will prove sub-
sequently the following facts: a) (6) is the pointwise solution
of a couple of algebraic equations [see (7a) and (7b)], b) the
coefficients of these algebraic equations are a smooth function
of y, ¢) use the implicit\ function theorem in the spirit of [10]
to conclude that (6) is a smooth function of y, and d) (6) is
continuous in y = 0 and, finally, v = k(y) solves (5) for all
(y, 2) # (0,0).

1) Let us consider the set of equations

SE(WE (v) + 2T (n)k(y) + H(y) <0 (Ta)
B(y)k (y) + T(y)k (v) + H(y)ky)
+ G(®(y), U(y), H(y)) =0 (7b)

with G(®(y), ¥(y), H(y)) as above. Using (5) and by
straightforward computations, one shows that for each
nonzero y inequality, (7a) is satisfied by some real
number k(y)

The left-hand part of (7b) is, for each nonzero y such
that ®(y) # 0, a polynomial in k(y) of degree 3. By
standard arguments of algebra, it can be shown that this
polynomial has three distinct real roots if

1 [Wy)—ﬁ(yﬁ(y)} 8
27 3

+i

L [ )SE T ()B0) 270 @), T F)T w)] ? <6
(y) # 0. ‘ '
o 3
Since for ®(y) # 0
~4[T°(y) - 3H(y)3(y)]*
+[20°(y) - 9T (y) H (y)B(y))*
= —27(T*(y) — 4 (4y)B(v)) B ()3 (y)

<0 \ ®

it follows that

_ P W) -9V Hw)RW)+2y/ [T (v)—3H (1) B (1)) <0<

27%° (y)
< _ BP0 9TWAWEW) -2V [T ) -3E@)T W)
278" (y) ’

(10)
From (10), since _21( 5> 0(T(y) + Hy))e T ® > 0

when H(y) = 0 and ®(y) # 0 (remember that U (y) =
0 = Hy) < 0) and —4[T(y) - SHY)F())® +
27" (y) — 9T (u) B (y)T()]? = 0 for B(y) # 0 if and
only if H(y) = 0, we have for ®(y) # 0 (X) shown at
the bottom of the next page. We conclude that (11) is
always satisfied with G(CIJ(y) U(y), H(y)) defined as
above. Under the assumption ®(y) # 0, it is well known
from elementary algebra that the three distinct roots of
(7b) are given by (Y) shown at the bottom of the next
page. It is easy to see that, under our assumptions, it
is k1(y) > k3(y) > k2(y) and, since <I>(y) > 0, the
derivative of (7b) with respect to k(y /), ie., the left-
hand part of (7a), evaluated in k(y) = ks (y) is strictly
negative as long as ®(y) # 0.

On the other hand, for each y # 0 such that B(y)=0
and ¥(y) # 0, the left-hand part of (7b) boils down to
a polynomial in k(y) of degree 2. It is easy to see that .
this polynomial has two distinct real roots if

T (y) - 4T (y)G(0, T(y), H(y)) < 0
Y(y) #0, B(y) = 0.

Since o(-) > 0 thn H(y) = 0 and G(3(y), T(y),

H(y) = -7 (1)e(T(y) + H(y)). the above in-
equality is always satisfied with G(®(y), V(y), H(y))
defined as above. The two distinct roots are given by

H(y) - \/ H(y)+

15 ()0 (T(y) + H())

ki(y) = 2% (1)
oo @+ VI W) + B )e(@6) + H)
= 2T(y) |



BATTILOTTI: GLOBAL OUTPUT REGULATION

2)

3)

4)

It is easy to see that under our assumptions, k1(y) >
k2(y) and, since W(y) > 0, the derivative of (7b) with
respect to k(y), i.e., the left-hand part of (7a) evaluated
in k(y) = ka(y), is negative as long as ¥(y) # 0 and
®(y) =0

Note that G(®(y), U(y), H(y)), defined as above, is
smooth at each y # 0, since ®(y), ¥(y), and H(y)
are themselves smooth, and for each ¥ # 0 such that
T’ () - 3H(7)B(F) = 0 we have o(T(y) + H(y)) =0
for all y in a sufficiently small neighborhood of 3. Thus,
each coefficient of the polynomials (7a) and (7b) are
smooth functions of .

Since the polynomial (7b) is equal to zero and its
derivative with respect to k(y), i.e., the left-hand part
of (7a) is strictly negative invoking the implicit function
theorem in the spirit of [10], it follows that k(y) satisfies
(7a) for all (y, z) # (0, 0), and it is smooth at each
y # 0. :
Since the proof is quite technical and consists of
lengthy algebraic computations, we will omit it (a
complete proof may be obtained via electronic mail
at stefbatt@riscdis.uniromal.ing.it).

Now, we will remove the assumption that a(y) has
constant rank. For the reader’s convenience, we will
prove the theorem in the two-dimensional case with
m = p = 1. The general procedure goes in the same
way.

Since a(y, z) + b(y, z)u < O for all z and for some
v and, in addition, a(0) < 0, it follows that a(y) is
negative semidefinite for all y. Now, define the sets

S =R
So = {y € R: ay) = 0}.

Since a(0) < 0, it follows that 0 ¢ Sp. By easy
arguments, one can conclude that the set Sy is closed
in R.

Let ¢y,u(2) = 27 a(y)z + 27 (B(y) +8(y)u) +7(y) +
e(y)u. The idea of the proof consists of constructing
continuous' feedback laws u = k;(y), j = 1, 2, such
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that ¢, &, (y)(2) < 0 for all z and y € S1/8 or y € So,
respectively, such that (y, z) € Q/{(0, 0)} and finally
putting all these feedback laws together.

More explicitly, at each point y € S1/So, a(y) is
negative and nonzero. In this case, one proceeds as in the
case that a(y) has constant rank to obtain a continuous
feedback law ki(y) such that ¢, 4, (,)(2) < 0 for all
y € S1/S0 and z but (y, 2) = (0, 0).

On the other hand, at the points y € Sy one can
proceed as follows. At each point y such that a(y) = 0,
since V(z) is an output control Lyapunov function,
necessarily B(y) + 6(y)u = 0. Let

Tp = {y € R: 6°(y) # 0}.

Moreover, let

_ @)+ V() +4y) |

w(y) ) (1)
Since, by definition of output control Lyapunov function,
at each y # 0 if e(y) = 0 then v(y) < 0, using the
small control property of V() and the same arguments
contained in [10], one can prove that the function (11) is
continuous at each y € So N (R/Tp). Moreover, since at
each y € So N(R/Ty), we have §(y) = B(y) = a(y) =
0, the function (11) is such that @, ,¢(2) < 0 for all
y € So N (R/Ty) and 2.

Finally, let

Bly)
Ay) 50)" (12?
At each point y € Tp, the function (12) is continuous
and is such that 5(y) + §(y)A(y) = 0.

Now, given » € R™, let (6, r) be any smooth
function such that 0 < p(8, r) < 1 forall 8, p(8, r) =1
for > r and g(8, r) = 0 for § < %. By compactness
arguments, it can be shown that there always exists 7 >
0 such that <py7ﬂ(g)(z) < Oforall zand y € SyN(R/Tp)
such that both §%(y) < 7 and (y, z) € Q.

Correspondingly, choose

ko(y) = (1 — 2(8%(y), T)A(y) + o(8*(y), T)n(v)-

—3 - = ~2 —= = . _ -
Y0¥ (W H ) P()+2y/ [¥ (y)-3H(y)®()]3 < G(@(y), \If(,'_?/), H(y))

273 (y)

X
< _ P W) T@HF) -2/ [ 1) -3H )T @
278" ()
(2 _— = ) 1 R( =

Eito) = 2\/‘1’ (y) — 3H(y)®(y) cos (3 arcos{ﬁ}) ‘ W(y)

ne BEL
B 2\/@2(3!) - 3H(y)®(y) o8 (§ arcos {\/-%} + %ﬂ') ~T(y)

2\/T2 (y) — 371—(y)—<_5(y) cos (% arcos {—%(%L—} + %w) - T(y)

Faly) = V=-Q3(y) )

39(y)
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It is easy to see that the function ko(y) is continuous at
each Sy and is such that ¢, x,(,)(2) < 0 for all z and
y € Sp such that (y, z) € Q.

By compactness arguments, it can be shown that there
always exists ¢ > 0 such that ¢, ,(,)(2) < 0 for all z
and y € Sg such that —a(y) < o and (y, z) € Q. If
necessary, since 0 € Sp, o can be taken smaller so that
0¢&{ye So:—aly) <r}

It is easy to show that the output feedback law

k(y) =(1 = o(=aly), o))ko(y)
+o(=a(y), o)ki(y)
is continuous and such that ¢, r,y(2) < 0 for all

(y, z) € Q/{(0, 0)}, i.e., solves the semiglobal stabi-
lization problem for (1). Indeed, we have

3)

Py k() (2) = (1 = 0) @y ko () (2) + 0Py k1 () (2)

where for simplicity we have omitted the arguments
of the function g. Since 0 < g(-,-) £ 1 and since
Py ko(y)(2) < 0 for all z and y € Sp such that
—a(y) < o and (y, z) € Q and @, ()(z) < 0 for
all z and y € S1/Sp such that (y, z) € 2/{(0, 0)}, it
follows that ¢, x(,)(2) < 0 forall (y, z) € Q/{(0, O)}
This completes the proof of the theorem.

At this point, we can give a systematic procedure to con-
struct stabilizing output feedback controllers, once an output
control Lyapunov function V' (x) is available. For the sake of
simplicity, we assume that a(y) has constant rank. A general,
but far more complex procedure, can be worked out in the
case that this assumption is violated.

IV. RECIPE 1

o Let V(z) = 127 Pz+2"((y) +£(y) be an output control
Lyapunov function for (1) satisfying the small control property
and, correspondingly, define

= 5o AW + PAG)E

- _(y)[A(y)] y+CT(y)[ ()]%y

a(y)
()

B) = ai(y)[A(y)]zy + AW )
+ PIAWIY + (AW <)
5(0) = 5B, + PIEG)-
e(y) = 3—'y(y)[3(y)]y + CT(y)[B(y)]z-
Symmetrize o(y) if necessary. Moreover, let
2(y) = ~ 17 () W)o()
V(y) = ey) - %5T(y)a"l(y)ﬁ(y)

H(y) =+(y) - EBT(y)a"l(y)ﬂ(y)

D(y) = ¥ (y)@(y), U(y) = ¥*(y), H(y) = H(y)

R(y) = ~3 [59°(y) ~ 9% () H(5)(»)
+27G(B(y), T(y), H(y)® ()]

Qy) = - (y) + 3H (1) 3(y)

G(3(y), ‘@(y),?(y))
- _517-[(2@3(11) — 9U(y)H(y)2(y))

—9 — =
+2y (@ () - 5 0)3 )]
—_ _ =2
o(T(y) +H(y)e * W
with o(-) any smooth function such that 0 < p(#) < 1 for all

0, g(8) > 0 for all § > 0, and p(#) = 0 for § < 0.
e The output feedback law

0
if U(y) =0
_Hy)+/H <y>+ 7 (y)g(@<y>+H<y))\p< )
if @(y) =0 and \I/(y) #0 .

T° (y)—~3%H (y) cos (

R(y)

V-Q3(y)

3 arcos

+g7r) “T(y)

V(y)

32(y)
( if B(y) # 0 and T(y) #0

solves the global stabilization problem for (1).
Proof: Proof of Theorem 3: Let us consider the extended
system
= A(y)z + B(y)u(y, o)
=9y, o), 0 €R"
Y = 1. \ (14)

To prove the theorem, we will construct a feedback law (2)
which globally asymptotically. stabilizes (14) in (z, o) =
(o, 0)

k) = { : if b(z) =
z a(2)+/F @D IBEIT
) bT(z), else

with a(z) = 4% (z)A(y)z and b(z) = %Y (z) B(y). Moreover,
let u = k(y, [0].) and define ~

V(z, 0) = Viplz, o) + A\V(z) . (15)
with ‘

Vin(s, 0) = 5(2 = [01:)7 Pz = [0]:)

+ (Z - [U]Z)Tgm(yy [U]y) + §m(y, {U]y)
P,=P-)\P : ‘

Cm(y, [0ly) = =2¢(y) + Cy) + A([oly)
nly, [01,) = 3y — [0,

A Pl )

and A > O such that P, is positive definite. ‘
We will show first that V¢(z, o) is positive definite. Note
that since P,, is positive definite and symmetric and since

~Coly)
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3(z = 10])TPu(z — [0]:) + (2 = [0]:)TCm(y, l0]y) 2>
—3CE(y, [0]y) Pntim(y, [0]y) for all (z,0), we have
Vim(z, 0) 2 L|ly = [0]y]|> > 0. Moreover, since Vi, (z, o) >
3lly = [o]yli* and the equality holds if and only if z — [o], =
=3P Cm(y, [o]y), we conclude that Vy,(z, o) = 0 if and
only if y = [o]y and 2z — [0], = —PrT¢n(y, [0],) or,
equivalently, since (n([0]y, [0]y) = 0, if and only if z = 0.
Since AV (z) is positive definite, it follows that V¢(z, o) > 0
for all (z, o) # (0, 0) and V*(0, 0) = 0.

Moreover, V¢(z, o) is smooth and proper. Indeed, V(z) is
proper, V*(z, 0) > §ly — [0],||> > 0, and for each (y, [0],)
‘the function V¢(z, o) is quadratic in z — [o]..

After straightforward computations, along the trajectories
of (14) one obtains

V(x, o, u, v) = P “(Y)z+ 2 [ﬂe(y, o) + 8%y, o)v]
+7°(y, o) + €(y, o)v  (16)

for some a®(y), ﬁe(y7 o) Y ( 0), 8°(y, o) and €(y, o).
Moreover, a®(y) = §[A(y)]; + PlAW)]:-

To prove the theorem it is sufﬁcxent to show that there
exists a continuous function v(y, o) such that (16) is negative
for all nonzero (z, o). Since for each (y, o), (16) is a quadratic
function of z, we can rearrange the entries of a°(y) in such a
way that a®(y) is a symmetric matrix.

By our assumptions on V(x), as in the proof of Theorem
1, we can prove that a®(y) is negative semidefinite for all y
and negative definite for y = 0.

Now, redefine v as T~*(y, o)v, where

O0px (m— I
T(y, 0) = ( p_x](D_lp) P- 1Bcrfx(py [ ] ))

With T'(y, o) as above, we have a partition % (y, o), 85(y, o)
of §(y, 0)T(y, o) and €{(y, o), €5(y, ) of e*(y, 0)T(y, o),
respectively, such that

65 (¥; 0) = Itn-p)x(n—p)
5;(:‘/7 U) = O(n—p)xp

€i(y, 0) = ~[o]7 + CL(y, lo],) P!

e _ 9m

62(3/7 0) - m(yﬁ [U]y)

_1 aCnl
m (9[0’] (

T

— Gy, [ol)P, [oly) = —y" + o],

and (16) can be rewritten as

2ot (y)z+27[B(y, 0) + vi(y, o)) +1(y, o)
+ei(y, o)vi(y, o) + €5(y, o)valy, o) <0

with (EEZ Z% a partition of T~1(y, o)v corresponding to
that of 6¢ (y, 0)T(y, o) and €*(y, 0)T(y,

in such a way that

o). Choose v1(y, o)

2a°(y)lol: + By, o) +ui(y, o) = 0. %))
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We will show that it is always possible to choose va(y, o) in
such a way that

Tof(y)z + 2T [-205(Y)[o]:] +1°(y, 0) = €i(y, 0)
-[205(y)lol + B°(y; o) + €5(y, o)ualy, ) <O
for-all nonzero (z, o), i.e,, (16) is negative for all nonzero

(z, o). Indeed, since a®(y) is negative semidefinite for all y,
we have ‘

Tas(y)z + 2" [-2a°(y)[o).] + 7 (y, 0)
- iy, o) (W)lo]: + B°(y, )] -
+ €5(y, o)va(y, o)
= [0]Z a*(y)lo]: - o] o*(y)o].
+27a%(y)z + 27 [-20(y)[o]]
+7°(y, o) — €1 (y, 0)[2a°(y)[o]-
+B8%(y, 0)] + €5(y, o)va(y, 0)
= ([0]: = 2)Ta*(y)([0]. - 2) ~ [o]:0*(y)[0]-
— €1y, o)[2e°(y)[o]. + B°(y, 0)]
+ 7y, o) + €5y, o)va(y, o)
with e§(y, 0) = —[o]] + (L (y, [o]y)P," and € (y, 0)
= —yT + o ] By straightforward computations, since (,
(y, [o]y) and j—( Y, lo]y) are smooth (vector) functions of
their arguments and (. (y, [0],) = 0 and %’f(y, [6ly) =0
when y = [o0],, we obtain

~lo):a*W)ol: = (=[o]: +Cnly, [0])Pr")
- 2a(y)[o]: + B°(y, o)+ 7°(y, o)

=AM(y, [0]:) + (y = [0],)"Qy, o) (18)

with

)%
M(@) = 5= (2)Ay)o + B(y)h(z))
and for some continuous (vector) function Q(y, o), vanishing
at the origin.
From (18), if we choose

v2(y, 0) = Q(y, o) + (y — [o]y)
-y + [o]7,
Lot (y)z + 27 18°(y, o) + vy, )] + (v, o)
+ €1(y, o)vi(y, o) + €5(y, o)va(y, o)
= AM(y, [0]) + (2 = [0].) e (y) (2 — [0].)
—(y — [0ly)"(y = [oly)-

Since a®(y) is semidefinite negative for all y and a®(0) is
definite negative, it follows that (z—[¢],)Ta®(0)(2—[0].) =0
if and only if z = [o],. Since AM(y, [0],) < O for all
nonzero (y, [o],), it follows that (20) is nonpositive for all
(z, o). Moreover, using the above facts, we conclude that
(20) is zero only when y = [g]y = 0 and 2z = [o], = O,
ie., £ = o = 0. This, by standard arguments on Lyapunov
functions [21], completes the proof of the theorem. O

At this point, we are ready to give a systematic procedure
for designing output feedback stabilizing controllers, once the
conditions of Theorem 3 are satisfied.

(19)

and since €§(y, o) = we obtain

(20)
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V. RECIE 2

o Let V(z) = 127Pz + 27((y) + £(y) be a control Lya-
punov function for (1), satisfying the small control property,
and let V(z) = $27Pz+ 27((y) + £(y) be an output control
Lyapunov function for its associated system. Let

P,=P-)\P
Gn, 171) = ~AC(5) + E6) + Aoly) ~ o)
6n(y, [oly) = 3lly = (01,1 + 5640, [019) P Gm 3 [o1)

with A € RT such that P, is positive definite.

o Let u = k(y, [0]:), with
if b(z) =0
a@)+ az(m)+“b(73)“4bT(g;) else

0
(=)

with a(z) = ¥ (2)A(y)z and b(z) = Z¥(z)B(y). (Actually,
any continuous stabilizer k(z) is good for our procedure.)
Moreover

a’(y) = (y)[ W)y + PIAW)IE

B(y, o) = [@@(y, [o]y) + Ag—j(y)}

~([AW)lyy + [B»)lyw)

T
+ (A@E)T F’a%”

T
- %} 4, [a]y>[a1z]

+ P([A(y)ly + [B(y)]-u)
+ (AW T [em(w, [o]y)
+ /\C(y) - Pm[a]z]'

e Let Q(y, o) be any continuous (vector) function, vanish-
ing at the origin, such that

(y = lo,)"Q(y, o)
= —(n(y, [0]:) PR 20°(9)[o): + B°(y, 0)]

+ X, [oh)([A(y)]z({ay]z)

+ [B(y)]-k(y, [am)

553,7 . [U]y)([A(y)] ([y]z)

+ Bk, [au).

The dynamic output feedback law

u = k(y, [U]Z)v
. Opx(n—p) Toep )
o= ,

( —Pnt PRty loly)

,(— (v) =
Q(y7 O')+y—[0'y

- solves the global stabilization problem for (1).

ﬂe(y,] ))

Proof: Proof of Theorem 4 (Necessity): If there exists an
output feedback law (2) which globally asymptotically sta-
bilizes (1) in (z, o) = (0, 0), necessarily there also exists
a dynamic state-feedback law which globally asymptotically
stabilizes (1) in (z, o) = (0, 0). Also, the output feedback law

u = B(y)n(o, y)
o = o(o, y)

globally asymptotically stabilizes the associated system (1)
in (z, o) = (0, 0). From here it follows the existence of a
dynamic control Lyapunov function V(z, o1) for (1), satisfy-
ing the small control property, and a dynamic output control
Lyapunov function V (z, o2) for the associated system of (1).

Sufficiency: Assume that s; < s9 (the other case goes in
the same way). Let ”21) be a partition of oy such that o2
has s; components. On the other hand, let us rename the
state vector oy as og1. Moreover, define V¢(z, 091, 022)' =
12T Pz+27((y, on)+E(y, 021)+ 3|22 ||* and the auxiliary
system

& = A(y)r + B(y)

021 = v1. (21
Since V(z, oa1) satisfies the small control property for (21),
from [10] we know how to construct a continuous state-
feedback law u = n(z, 021), v1 = o(z, g21) which globally
asymptotically stabilizes (21) in (z, o21) = (0, 0). Cleatly,
Ve(z, 091, 022) is a dynamic control Lyapunov function,
satisfying the small control property for the system

= A(y):v + B(y)u
021 =1
0"22 = V2 (22)

and the feedback law u = n(z, 021), v1 = o(z, 021), ve =
—099 is continuous and globally asymptotically stabilizes (22)
in (z, 021, 022) = (0, 0, 0). From here we can proceed as in
Theorem 1 with V() and V(x) replaced by V*(z, 021, 022)
and V(z, 021, 092), respectively. ]

Proof: Proof of Theorem 5: Let V°(z, o), vi(y, o), and
v2(y, o) be defined as in the proof of theorem. We obtain again

Ve(z, 0,v) = \M(y, [0].) = (y — [o]y)" (v — [0],)
+(z = [0])"a*(y)(z ~ [0].) (23)

where af(y) is negative semidefinite for all y. Since
AM(y, [o].) < 0 for all nonzero, (y, [¢].) and the equality
holds only if y = 0, it follows that (23) is nonpositive for all
(z, o) and is equal to zero only if y = [o], = 0, i.e., output .
regulation is achieved and the trajectories of the closed-loop
system (1) and (2) are bounded (by LaSalle’s theorem: see
[29D. O

Proof: Proof of Theorem 6: Let us consider the “ex-
tended” system

& = A1 (y)z + Bui(y)w + Bia(y)u(y, o)
¢ =v(y, o), c €R"” '
T = Ay(y)z + Baa(y)u

Yy=21.

4)
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To prove the theorem we will construct an output feedback law
(2) solving the disturbance attenuation problem with global
internal stability for (24).

Let u = k(y, [0].) and define

Ve(z, 0) = Vim(z, 0) + V()
with
Ve, ) = 3 = 01 Pz = [01:)

+ (2 — [O']Z)TCm(y’ [U]y) +&m(y, [U]y)
Pn=~*P-P
(s [oly) = =€) +72CW) + C([oly) — 7*<(oly)

iy o) = 5lly = o
+ 305, 01 P om0 [0

Note that by our assumptions, the matrix ~2P — P is positive

definite. Moreover, following the lines of the proof of Theorem.

3, V¢(x, o) can be easily shown to be C L proper, and positive
definite.
Along the trajectories of (24), we have

I @) r(w)e + Bual)w)
o @B ) B () )

ove
+ Fa_(a}’ o)y, o) + |A2(y)z + Baa(y)ull?

= zTae(y)z + ZT[ﬂe(yv U) + 6e(yv U)qj(yv J)]

¥ (y, o) + €y, 0)u(y, o) (25)

for some suitable a<(y), B°(y, o), v°(y, o), §°(y, o) and
€*(y, o). By our assumptions and by construction, af(y) is
negative semidefinite for all y and «®(0) is negative definite.
As in the proof of Theorem 3, one can prove that for some
continuous v(y, o), (25) is negative for all nonzero (z, o).
Since (25) is less than or equal to zero (with and v chosen
as above) and greater than or equal to

Ve(z, o, w) + 12|17 = 4||w]® (26)

from the simplifying assumptions it follows that:
Ve(z, 0, w) + [ Aa(m)al + flul® = 7 [lwl® < 0. @D

By standard arguments on Lyapunov functions, (27) implies
that for w(t) = 0 the closed-loop system is stable. Global
asymptotic stability follows from the detectability assumption
on (3) and the fact that a®(y) < 0 with a°(0) < 0. O

Note that the roles of A and 71—2 in the stabilization problem
and in the disturbance attenuation problem, respectively, are
similar, except for the fact that X is a design parameter while
~ is a priori given. For robust stabilization, v becomes a
design parameter and it is strictly connected to the gain of
the uncertainties.

Before ending the section, we want to remark that all the
results contained in this paper can be easily extended to the
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more general class of systems

g1 = An(y, w)z + Biu(y, ww + Bua(y, u)
s = Aps(y, w)z + Bi2a1(y, u)w + Bia2(y, v)
T = As(y, u)z + Bai(y, w)w + Baa(y, v)

Yy =1

VI. SOME EXAMPLES

Example 1: Let us consider the system

i1 =2z —y1 +yiys +cun
G2 = 2 + Y2 — 2y1y3 — Cuz

2= —z(lyl? - ) +ua. (28)

It is easy to show that V/(z) = (1/2)||z|? is an output control
Lyapunov function for (28) and satisfies the small control
property. In this case, a(y) = —(llyl* - 1)% which is equal
to zero at all points y lying on the circle with radius one and
18(y)|I? # 0 for all y.

The assumptions of [7] are violated, and it is quite hard
to construct a stabilizing output feedback controller following
the lines suggested in [6]. We will see how to construct a
semiglobally stabilizing output feedback controller, following
the lines of the proof of Theorem 1. We have

So={yeR®: |yl* =1}, S =R*, T =R".
Choose

AM(y) = —(y1 + y2), p2(y)
_ )+ V) + Ay - )t
c(y1 — y2)

() = (y1y2) (—_2;@ y1%> @;)

and, correspondingly, ko(y) = (2;%) Moreover, choose

Wiy
( 221(y) |,
0

Wy
2% (y)

/P ) , o else

Vo (y)

with

if y1 =y
ki(y) =

where
1
P00 =1

Wi(y) = S+ 12, Taly) = clus ~10)

H(y) = 2() + 501 + 1)

U (y)
49, (y) HQ).

v(y) = —

A stabilizing output feedback law is

k(y) = (1 — o((lyll* — 1)?, 0)ko(y)
+o((llyll? = 1?, a)ki(y)
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with (-, ) and o defined in such a way that, if u = ky(y),
along the trajectories of (28) one has V(z, u) < 0 for all
z and y such that (||y|> — 1)2 < o and (y, z) € Q. Since
mingy jy2=13{7*(¥) + c*(y1 = y2)*} > 0, we can simply
choose ¢ in such a way that

\/7

)+ Ay — y2)?
o

for all (y, z) € Q2 such that (||y||*> — 1)? < 0.
Example 2: Let us consider the system

y=z4u
=192 - 2 (29)

Note that (29) is not of the form of (1). It can be globally
asymptotically stabilized through a state-feedback law v =
—y — z — yz with a Lyapunov function V(z) = 3(y? + 22).
Moreover, it can be globally asymptotically stabilized via
output injection through a feedback law u; = —y and ug =
—y” —y and with a Lyapunov function V(z) = 1(y2422). We
claim that it can be globally asymptotically stabilizable also
via dynamic output feedback. Consider the extended system

y=z+u

F=y? -2

o1 =11

G2 = vy (30)

with 01,00 € R, 0 = "1), z = (¥), and look for an

o2
output-feedback u = 7(y, ), ¢ = p(y, o) which globally
asymptotically stabilizes (30). According to the procedure
of Theorem 3, let us consider the positive definite function
Ve(z, 0) = 5(1=N)|lz - o]|? + 3||z||?, with 0 < A < 1, and
let u = k(y, 02) = —y — 02 — yo,. We obtain
V(yv 2y O, U, ’1)2)
= (1= Nl(y — 01)(z + k(y, 02))

+ (2 = o) (4~ 2°)]

+Aly(z + k(y, 02)) + 2(y” = 2°)]

— (1 =Ny — o1)v1 + (2 ~ 72)va].

Consider the function

1=y —01)z + (2 — o2)(y* ~ 2°)]
= Myloa(1+y) —2(1+ y)] = (1 =)z = o2)va.

4o (1 + y) so that

T(Zv g, 'U2) =

Choosevz—y~al~02+y + =5

~(1-=N[(z- 0'2)2(2 + 209 + 02)
—(y — o1)og].

r(z, o, v3) =

As a consequence, since

My(z + k(y, 02)) + 2(y* — 2%)]
= Mly(z + k(y, 2)) + 2(y* — 2%)]}
— Ayloa (1 +y) + yz(1 +y)]

we have V(z, o, v1, v) = Aly(z + k(y, z)) + z(y2 - 23)] -
(1=M)[(z —02)*(2* + 202+ 03) ~ (y — 01 )02+ (y — 71)(v1 —

k(y, 02))]. By choosing v1 = k(y, 02) + 02 + (y — 01), we
obtain V(z, o, vy, Ug) = Aly(z + k(y, z)) + 2(y? — 2%)] -
(1=XN)[(z—02)*(2® + 209+ 02) + (y — 01)?] which s strictly -
equal to zero for (z, o) # (0, 0). This proves our claim.

Note that the resulting stabilizing output dynamic feedback
is
o1 =02+ k(y, 02) +y — 01

gy = —0§+y2+y(1+y)%+y—a
The structure of the above controller differ from that of a
classical observer in the term y(1+y) ﬁ (in the &9 equation).
Example 3: Assume that (30) is perturbed by some un-
known disturbance w and that the penalty variable 7 is the
output y, ie.,

y=z+u+tw
Z=y2~z3
I=uy.

The disturbance attenuation problem can be easily solved in
this case following the procedure of Example 2.

Example 4: The simplified dynamic model of an elastlc
joint robot can be rewritten in state space form as

:El = X9
To = —Bl_l(wl)[C’(xl, To)xy + K(21 — 23) + h(z)]
T3 = T4

1’4 = BQ_I[K(.’El - Is) + u]

where z; is the (nx 1) vector of the link relative displacements
[30]. It is well known that under a quite natural assumption
on the so-called joint stiffness matrix K, “there exists a
smooth, proper, and positive definite function V(z) and a
smooth feedback law u = k(z) which solve the global
stabilization problem However, the function V(z) is of the
form V(z) = 327 P(y)z + 27¢(y) + £(y) which does not
satisfy the assumptlons of Theorem 3. Moreover, if only the
link position is available for feedback, i.e., y = x1, the
terms C(z1, Z2)z2 are not linear in the unmeasured variables.
However, by using the ideas contained in the proof of Theorem
3, it can be shown that a globally stabilizing linear ‘output
feedback controller can be readily implemented [31].

VII. CONCLUSIONS

In this paper, we have discussed the solution to several
global control problems for a given class of nonlinear systems
by means of dynamic output feedback. These systems are
characterized by having nonlinear terms depending only on the
output y. In a first part, we have shown that, given a compact
set & C R™, if there exists an output control Lyapunov function
which satisfies the small control property, it is possible to
construct an output feedback law v = k(y) such that the

" resulting closed-loop system is locally asymptotically stable

in z = 0 with basin of attraction containing . In some cases,
the result becomes global.

In a second part, we have allowed dynamic output feedback
and shown that for the same class of systems the global output
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regulation problem (in particular, the global stabilization prob-
lem) and the disturbance attenuation problem can be split up
into two subproblems: one is the problem via full information
and the other is the problem via output injection.

Our result shows the important role of the problem of
stabilization via output injection in solving the problem of
dynamic output feedback stabilization at least for the class of
systems considered. This and the extension of the procedures
used in the proofs of our results will be the object of further
study.
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