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Abstract

In this paper we show that if a certain class of nonlinear systems is globally asymptotically stabilizable through an
n-dimensional output feedback controller then it can be always stabilized through an (n — p)-dimensional output
feedback controller, where p is the number of outputs and n is the dimension of the state space. This result gives an
alternative construction of reduced order controllers for linear systems, and recovers in a more general framework the
concept of dirty derivative, used in the framework of rigid and elastic joint robots, and gives an alternative procedure for
designing reduced-order controllers for nonlinear systems considered in the existing literature. C: 1997 Elsevier Science B.V.
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1. Introduction

Let us consider nonlinear systems of the form
X = A(xy)x + B(xj)u, y=x (1

with x e R", u e R", y e R?, x,; being the first p components of the state vector, A(-) and B(') are smooth
functions. Moreover, for our purposes we will consider the class of smooth output feedback controllers

u=k(y,o), 6=n(y o). oeR 2)
with k(0, 0) = 0, #(0, 0) = 0. In this paper, we will study the following control problem.

Global stabilization problem (GS). Given A(x,) and B(x,), find, if possible, a smooth positive definite and
proper function ¥ (x, o) and a control law (2) such that along the trajectories of the closed-loop system (1), (2)
V(x(1),5(t)) is negative definite.

The class of systems (1) has been studied by several researchers [1-8]. Recently, in [7] it has been shown
that, under certain assumptions, the global stabilization problem for systems (1) can be split up into two
subproblems: a state-feedback problem and an output injection problem. As is well known, the first
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subproblem represents the possibility of globally stabilizing (1) via state-feedback. In order to clarify the
significance of the second subproblem, let us consider for a moment the case of linear systems

X = Ax + Bu, y=Cx (3)
and define the system
X=Ax+v, rteR’ y=Cx 4)

as the associated system of (3). In this case, the vector v is conceptually different from the control vector u and
has dimension n. The problem of globally stabilizing (4) via output feedback is commonly known as
stabilization via output injection of (3) and is dual to the stabilization problem via state-feedback of (3).
A necessary and sufficient condition for (3) to be stabilizable via output injection is that the pair (C, 4) is
detectable. This condition implies, in particular, that the unforced system (3) satisfies a suitable detectability
property.

More generally, for nonlinear systems the stabilization problem of (1) via state-feedback can be character-
ized through the existence of a Lyapunov function V(x) which decreases along the trajectories of the
closed-loop system. Similarly, the stabilization problem of (1) via output injection can be characterized
through the existence of a Lyapunov function ¥(x) which decreases along the trajectories of the closed-loop
associated system. In [7] it is shown that a nonlinear “separation” principle holds for systems (1) as long as
the Lyapunov functions V(x) and V(x) have the form

12TPz + 2T(xq) + E(xy). (5)

where z is the vector of the last n — p components of x. It is easy to see for many existing results on output
feedback stabilization of (1) (see [ 1-6], for example) that the Lyapunov function V(x) does not exhibit the
form (5). However, in [9] it has been shown that in these cases, by dynamically extending the system (1), the
state-feedback problem can be always solved with a Lyapunov functions of the form

32" Pz + 27 {(xy, 6) + (X1, 0)

together with a dynamic-stare feedback u = k(x, g), 6 = 5(x, 6). Thus, the separation principle holds also in
these cases (see Remark 3).

In this paper, we show that, under the same conditions for which a system (1) is globally asymptotically
stabilizable through an n-dimensional output feedback controller, one can always construct (n — p)-dimen-
sional output feedback controller (Theorem 2). The procedure proposed gives an alternative construction of
reduced order controllers for linear systems, recovers in a more general framework the concept of dirty
derivative, used in [10] and in [11] for the set point control of a rigid robot and an elastic joint robot,
respectively (see Remark 1) and gives an alternative procedure for designing reduced-order controllers for the
nonlinear systems studied in [1-6]. Finally, we show that, under the same conditions for which an
“uncertain” system (1) is “robustly” globally asymptotically stabilizable through an n-dimensional output
feedback controller, one can always construct a “robust™ (n — p)-dimensional output feedback controller
(Theorem 4).

Although based on a procedure conceptually similar to the one adopted for reduced observers, we obtain
stabilizing controllers which, in general. do not exhibit an observer-like structure. The meaning of this
statement is clarified by the following example. Let us consider

V=z4u =y -z
A stabilizing smooth dynamic output feedback is [7]

u=k(y,o3)=—y—0;— yo,,

k‘ | Rp— A _ — 3 ‘2 ? ,Y—/:— | p—
0y +k(y,0,)+y—0y, G,=—03+y +y(1+y) -+ v — o0y

Gy )
1 — 4
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forany 0 < 4 < 1. The structure of the above controller differs from that of a classical identity observer in the
term y(1 + y)4/(1 — 2) (in the &, equation). Note that, if / — 0, this extra term tends to zero. A similar
phenomenon happens in the case of reduced order stabilizing controllers.

2. Reduced order controllers

One of the main results of [7] states that, for the class of systems (1), if it is possible to achieve global
stabilization via state feedback and via output injection, separately, then it is possible to achieve it by dynamic
output feedback. The dimension of the dynamic controller is n. More precisely, one has the following result.
Let z be the vector of the last n — p components of x.

Theorem 1. Assume that
(State feedback) there exist a smooth, proper and positive definite function V(x) = 2" Pz 4+ z7{(x;) + &(x,)
and a smooth function k(x), vanishing at the origin, such that
cv

= (O[AG)x + Blx, k()]

is negative definite;
(Output injection) there exist a smooth, proper and positive definite function Vix)=3z"Pz +

Py

27(xy) + &(xy) and an (at least) C° function I(v), vanishing at the origin, such that

-~

'V
LA )X + 1(3)]
X

is negative definite.
Under the above assumptions, it is possible to find an n-dimensional control law (2) which solves the global
stabilization problem.

Theorem 1 gives a nonlinear analogue of the fact that if a linear system (1) is both stabilizable via
state-feedback and via output injection it can be asymptotically stabilized via dynamic output-feedback. The
procedure proposed in [7] gives an explicit expression of a stabilizing output feedback controller, once the
functions V(x), u(x) and V(x) are known.

In this note, we want to show that under the same assumptions of Theorem 1. it is always possible to
construct an (n — p)-dimensional stabilizing output feedback controller. This is stated in the following
theorem.

Theorem 2. Under the same assumptions as for Theorem 1, it is possible to find an (n — p)-dimensional
controller (2) which solves the global stabilization problem.

Proof. Let

-
A + 109)].
CX

cV
H(x) = ;—X[A(xnx +BO)k(x)], A =

By our assumptions, #5(x) and #;(x) are both negative definite. Moreover, .#;(x) exhibits the structure
2'D(x)z + zTE(xy) + F(xy)

with F(0) = 0 and E(0) = 0. Since .#;(x) is negative definite. the Hessian of #,(x) with respect to z, i.e. D(x,),
1s negative definite for x; = 0 and negative semidefinite for all x, # 0.
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Let 0 € R" 7. Define the following Lyapunov function candidate

Ve(x,0) =4z =0 + Py (X)) Pulz — 0 + P, (1)) + AV (x) (6)
with

B, =P — iP, Cmlxy) = — AL(x1) + L(xy)
and £ > 0 such that

P—iP>0.
It is easy to see that the function (6) is smooth, positive definite and proper. Moreover, let

u=k(xy,0 — P lm(x1)).

where k(x;, 6 — P,,*{,.(x;)) is the function k(x) with z = ¢ — P, ' {,u(x).

One has
ave eV 1 ol
z— —(xy), P,
axl’ (X 0-) EXI,Z(XI’ Pm Em(xl)) + g+ Pm gm(xl)) (@xl(xl) )
ave

(xs O’) - _(Z —0a+ PI;ICm(xl))TPms

do

where (OV/0x1, z)(x1, 6 — P,, ' {n(x,)) is the function (8V/éx,, z)(xy, z) with z = ¢ — Py, ' {ulx1).
After straightforward computations, along the trajectories of

X = A(x{)x + B(xy)u, 6 =n(xy, 0)
with u = k(x,, 0 — P, '{,.(x1)) and n(x,, 6) to be determined, one obtains for some smooth B(x,, &)

V(XO' _[Z—U+Pm Lmxl] D(Xl)[Z_U+Pm Sm(’cl)]

+ [z — 0+ P (u(x1)] [B(x1, 0) — Pun(xy, 0)] + AHs(x1,0 — P ' {mlx1)),
where #(x(, 0 — P, ' {,.(x,)) is the function #(x) with z = P, ' {a(x).
Choose
n(xl, P ﬁ X1, 0). (7)
Since D(x;) < 0 for all x; and #5(xy, 0 — P, ' {(x,)) < O, it follows that (7) is semidefinite negative. On the

other hand, since D(0) <0, V¢ vanishes only when z =0 — P, '{,.(x;), x; =0 and ¢ = P, ' {,.(x,) or,
equivalently, since (,(0) =0, when z =¢ =0 and x, = 0. This, by standard arguments on Lyapunov
functions, proves our theorem. [

Remark 1. The procedure proposed in the proof of Theorem 2 recovers in a more general framework the
concept of dirty derivative, used in [9] and in [10] for the set point control of a rigid robot and an elastic joint
robot, respectively. Indeed, let u(x,, w) be a smooth function, vanishing at the origin, and C, D and E be
matrices such that the system

X = A(x) + B(x)u(x,, w), w=Cw+ Dx, + Ex;, weR"?P 8)

is globally asymptotically stable at the origin. Note that the linear filter w = Cw + Dx; + Ex, requires the
knowledge of x%,. However, one can implement the same filter without knowing x, as follows. Let
o = w — Dx,. In the new coordinates the system (8) rewrites as

X = A(x) + B(x)k(x,, 0 + Dx,), d=Co +(CD + E)x,
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so that u = k(x,, 0 + Dx,), 6 = Co + (CD + E)x, is a stabilizing dynamic output feedback {10, 11]. It is
possible to see that the dirty derivative is intrinsically related to reduced order stabilizing controllers. Let
k(x1, 6 — Pyt {m(x1)), {m(x1), P and (x4, ¢) as in the proof of Theorem 2. It is easy to see that 7(x, o), for
each x,, is a linear function of g; thus, one can write

¢ = C(x)o + D(xy) )
for some C(x,) and D(x,). Moreover, define w = ¢ — P, ! {m(x1). In the new coordinates the system (1), with
u =k(xy, 6 — P, '{(x,)) and 5(x,, 0) as in the proof of Theorem 2, is given by

X = A(xy)x + B(xy)k(xy, w),
w=C(x)w + Pp ' 80n/0x, (x)%; + C(x1) P {mlxy) + E(xy).
In this case we obtain a nonlinear filter of the form w = C(x;)w + D(x;)%; + E(x;). This in some sense

generalizes to a nonlinear setting the concept of dirty derivative.
A converse procedure can be outlined. Indeed, if

X = A(x) + B(x)k(xy, w), w= C(x;)w+ D(x)%, + E(x,)
is globally asymptotically stable at the origin and if one can find a function {(x;) such that

a?
3 (x1) = D(x1)
X1
thenu = k(xy, 6 — f(xl)), & = C(x)o — C(x1){(x1) + E(x,)isa globally stabilizing output feedback control-
ler of the form (9).

Remark 2. The procedure proposed in the proof of Theorem 2 is similar, in principle, to the well-known one
for designing reduced observers. Indeed, for constructing reduced observers one considers as a new
“estimate” of z the quantity ¢ — Lx, and choose L in such a way that, under the assumption that the system
is observable, a certain matrix has all its eigenvalues in the left-half open complex plane. This guarantees,
among other things, that z — ¢ — Lx, as t —» cc. In our procedure, one may consider as an “estimate” of z the
quantity ¢ — Py, ' {m(xy).

3. Robust reduced order controllers

Let us consider the uncertain nonlinear system
X = A(x;)x + B(x)u + AA(x, t)x + AB(x, u, ¥ =X (10)

with AA(x, t) and AB(x, t) unknown functions, x, being the first p components of x and z being the last n — p
ones. We will focus our attention on the following control problem, under the same class of controllers (2).
Assume that AA(x, t) and AB(x, t) are continuous functions of x and t (but weaker assumptions can be stated)
and that

IAA(x, )x + AB(x, hul|> < [|@(x;)x + P(xy)ul?
for all x, u and t and for some known smooth functions ®(x,) and ¥(x,).
Global robust stabilization problem (GRS). Given A(x,), B(x,), ®(x,) and ¥(x,), find, if possible, a smooth

positive definite and proper function V(x, 0), a C° positive definite function ¢ and a control law (2) such that,
along the trajectories of the closed-loop system (10)—(2), V(x(t), a(t), t) < — o(x(1), o(2)).

In [7, 8], for the class of systems (10), it has been shown that, if it is possible to achieve robust global
stabilization via state feedback and via output injection, separately, and if a coupling condition is satisfied
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between the two Lyapunov functions V(x) and V(x), then it is possible to achieve robust stabilization via
dynamic output feedback. The dimension of the dynamic controller is n. More precisely, one has the
following result.

Theorem 3. Assume that
(Robust state feedback) there exist a smooth, proper and positive definite function V(x)=3z' Pz +
z"(xq) + &(x,) and a smooth function k(x), vanishing at the origin, such that
oV 1oV évt

— (x)[A(x1)x + B(x;)k(x)] + 53— (x)—5—(x) + I P(x)x + Plxp)k(x)| 2
cx 20x Oox

is negative definite;
(Robust output injection) there exist a smooth, proper and positive definite function V(x)=
32" Pz + z7{(x;) + &(x,) and an (at least) C° function I(x,), vanishing at the origin, such that
av 1ev  ¢v?

=7 ) [AG)x + 1(x)] + 5 5= (x)

— 1 5
ex 2 dx gx(x)+-zH¢(xﬁxH

is negative definite;

(Coupling) P — P > 0.

Under the above assumptions, it is possible to find an n-dimensional control law (2) which solves the global
robust stabilization problem.

Similar arguments to those used in the proof of Theorem 2 lead to the following result.

Theorem 4. Under the same assumptions of Theorem 3, it is possible to find an (n — p)-dimensional control law
(2} which solves the global robust stabilization problem.

Proof. Let 0 € R"™7. Define the following Lyapunov function candidate

Vex,0) =3z — 0 + Py ' {mx 1)) Pulz — 0 + Py ' Slxy)) + V(x) (11)
with

P,=P—P, Cm(x1) = —{(xy) + <(xy).
Moreover, let
u=k(xy, 0~ P, lnlx))

where k(x,, 0 — P, '{,.(x,)) is the function k(x) with z = ¢ — P,, 1 {,,(x,) and

v 10V ovT
H(x) = —ARDX + BEROKRI + 55 (05— (6) + §1 @) x + Pk,
X 2 Cx ox
oV 16V ¢vT
H(x) = %(x)[A(xl)x +100)] + = (X) o (x) + 4] Plxp)x ]2
X 2 0x cx
Since
4
g(x)[A(xl)x + B(x))k(x) + AA(x, t)x + AB(x, t}k(x)]
1% tev  éveT
< T AGDX + BOKG)] + 5 5(x) () + B @(x,)x + P )k()]?
X 2 Cx cx

from this point onwards, one proceeds exactly as in the proof of Theorem 2. []
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As already pointed out, for many existing results on output feedback stabilization (see [ 1-6], for example)
the Lyapunov function V(x) does not exhibit the form (5). In [9] it has been shown that in these cases, by
dynamically extending (1), the state-feedback problem can be always solved with a Lyapunov function of the form

L2TPz + 2" (xy, 0) + E(xy, 0) (12)

together with a state-feedback u = k(x, 6), & = 5(x. ¢). Thus, the separation principle can be applied to the
dynamically extended system.

For lack of space, we will shortly outline the construction of the function (12) in the case of the systems
considered in [2], with no zero dynamics, Le.

Xy =X+ Afi(x), ... . % =u+ Af,(x ¥ =x (13)

with x = (x,, ..., x,) and unknown functions AfJ satlsfymg Yo A fi(x) [2 < 6%(|x,)) for all x and for some
5 € A, (bounded by) a linear function near the origin (see [9] for the discussion in the case of nontrivial zero
dynamics). We will denote by X, the vector (x, %5, ... , %), by Z, the vector (%5, ... , %) and by £ the vector
(G2, ..., 0% (6; and X; will be defined later).

The constructive procedure is based on the combination of a step-by-step procedure with 5, arguments.
This procedure gives an alternative algorithm for designing reduced-order output feedback stabilizing
controllers for classes of nonlinear systems considered in the literature (see [2] for comparisons).

First of all, we perform a global coordinate change on (1), which will remarkably simplify the step-by-step
procedure, For, it is always possible to find a positive definite function V(x) = 3x' Wx, with W symmetric
and positive definite, and a smooth function g(y), g(0) = 0, such that

~ [ X2
v : lcV cpT _
)| || +aw X) S0 + 8 (xa) < —E7 () (14)
ox X, 2 cx
forsome e R".
Let X = Tx with
1 0 0 0 0
T a, 1 0 0 0
0 00 : a 1

It is easy to see that one can choose the numbers a; € R in such a way that W = TTW T, with W > 0 having
the form

wiy 00 - 0
0 wy;,, - 0
W =
0 0 .- 0
0 L

The considered system of coordinates (13) has the form
X, =%, +dnx, + Af (%)
Xy =%y 4 0%, + dyxy + Af(X),
(15)
Xy = X + Grp1 Xy + 0+ @R + Ay Xy +u+ Af(X),
Y =Xy,

where Afi(x),j = 1, ... . r, satisfies Y7 IIAf ()N < 8%(1x,) for all x and § = HJ for some H > 0.
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We are left to prove that there exist smooth functions u(y, X) and F(y, £), vanishing at the origin, and
a smooth, positive definite and proper function V(x, 2) such that

Xy + dyxg
v . . . . . . . .
o Z(X,Z) Xet ot -1 Xy T Aoy 22X -2t - F 42X+ 011X
’ drrxr+dr.r—1ir—l + .. +dr222+dr1xl +u()’,z)
F(XI,Z)
1oV ovT T-!
+ = DOTTT™—(x, 2) + | I's 52(| i< —aVix, X) (16)
2 éx ox T2

for some « € R™. Since, along the trajectories of (15) with u = u(y, £) and & = F(y, X), V is less than or equal
to the left-hand part of (16), and (16) would clearly imply global asymptotic stability of the closed-loop system
(15).

For satisfying (11), we will proceed by steps. We will prove only the first three steps of the procedure, since
any other step can be performed in the same way as the third one. Moreover, we can assume that 52 is
a smooth function of x; and define k =1 | T 1.

Robust output feedback problem # 1. If, for any smooth function 7, linear near the origin and vanishing at the
origin, V;(x,) = y*(x;) and u,(x;) = x,L,(x,) — d,,x, then

Vv, lcV2
(xx)“x(xl) + o=

2%, (‘C1)+k0( 1) € = Vilxy)

é
0x,
for some «; € R™ and for some smooth L,(x;) < 0.

Let

I 0
T, = .
’ <az 1)
Robust state feedback problem #2. If

1
Vsz(Xz) = Vi(xy) + ( — uy(x4))?

and

uz(Xz) = (X3 — uy(x)Ly(x;) — G22X; — 31X

with [, > 1, then

Vs o 3, 10Vs, 17 S N
= (X))l . . . + 2= (X T> T —=2(X,) + ko (x)) < —oag, Vol X
6X2( (azzxz by X, + (x) 3 6X2( 2T,T, %, (X3) + ko=(x,) as2 V2(X5)

for some a5, € R* and smooth L,(x;) < 0.

Robust output injection problem #2. It is always possible to find a positive definite function V;,(X,) =
1[Wyyx1 + W,,x3] and a smooth function 4:(y), 4»(0) = 0, such that

Vi~ [( Zz > - :| 10V, 6V,T2 ~
—=(X - . + G0 [+ 2= X) T, T —2(X,) + ko2 (x —e, V(X
6X2( 2) Gyp % + Gy X, q2(y) 5 6X2( 2T, T, 8X2( 2) (x1) < 2 Vi (X5)

for some ¢, > 0.
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Robust output feedback problem #2. Let P, Py, {15(x1), {s2(x1), &r2(xy) and &ga{x4) be such that
Vid(Xo) = 3Z3Pps + Z,{1a(x1) + Ep2(x))

and
VsalX2) = 323 Psy + Z3(s2(x1) + Esalxy).

Note that C[z(xl) = 0
Pick [, > 1 large enough so that

P,, =Py, — Ps; > 0. (17
From (12), it follows that the function V,(X,, £,) = Vs, (X,) + Vo2 (X5, £5) with

Vool X3, £2) =383(X 0, £)Pna,  8x(X,, 55) =%, — 65,

6,=0;,— Pns Cm2(x1), Cmalx1. 01) = {ralxy) — {s2(xy)

1s smooth, proper and positive definite.
Denote by u,(y, £,) the function u,(X,) with X, = &,. By direct calculations, we obtain

f .
y

Xy +dyx, | R
% ~ o~ .. - - 1¢V ~ CV
pr= = (X5, 25)| da1 X+ da1xq + uz(y, 25) : )T, T —~ (X29 ) + k3% (Ix,))
X5, 2, = 20X X,
| Fy(v, 2y) /

4 !

< -1,V (Xz, fz)

with o, = min{x«g,, £;} and for some smooth F,(y, ¥,). Moreover, by construction VX, £5) = y2(xy).
Let

1 0 0}
T,=|a 1 0)
\0 a3 1

Robust state feedback problem #3. As in step #2, if
~ o~ ~ 1 . ~
Vs3 (X3, 22) = Vo(X, 25) + EI—(M — uy(xy, £5))
3

and
u3(X'3, fz) = (X3 — uz(xy, f2))143(—%1, fz) — d33X3 —d33X; — d3 Xy

with I3 > 1, then

)22+511X, \\
Vsy &5 « X3 + d22%; + da1 %y
— (X3, 2 . ool - -
0X,,2, d33X3 + d32X; + d31 X1 + us(X3, 25)
\ Fyi(p, 23) + Fya(y, 23) /
10Vss: & « T@Vs3 " o~
——=(X;3,2,)T5T; X3, 55) + k3% (Ixy) € —a53 V3 (X3, £ 18
26X3( 3,22)7T3 8X3( 3, 22) (1x1l) s3Vs3(X3, 23) (18)

for some ag; € R* and smooth Li(x;, £,) < 0 and for any smooth F,,(y, Z5).
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Robust output injection problem # 3. As in step # 2, it is always possible to find a positive definite function
Vis(X3) = 3[W; 1 x?2 + w5, %3 + w,33%2] and a smooth function §;(y). §1(0) = 0, such that

Vs o Lo N 18V o 1V -
—(X X3+ dy,X; +dag X + V) | === (X3) T3 T3——=(X3) + ké*(xy)
°x, 3) i 3~ z~z z~ 2~1 1 qs(y) 3 ox, (X3)T5T53 5X3( 3) 1
\ @33X3 + A32Xp + A3 Xy
< —e3Vis(Xs) (19)

for some &3 > 0.

Robust output feedback problem # 3. Pick /5 > 1 large enough so that

N 1. ~ . ~
63 =03 — Pz {palxy, 25), Cma(Xy, 22) = —us(xy, 25)

is smooth, proper and positive definite.
Moreover, denote by us(x,;, £) the function u3(Xs, £;) with Z; = £5. By tedious but straightforward
calculations, one obtains

! )22-}-&11,’(, \

av X3+ A2X; + dz; Xy
Vi a4 o« . oo : -
—m = (X3, 23)| d33X3 + d32%; + dayxq + uz(xy, 23)

X5, 2 - -
3 For(v, 25) + Faaly, 25)
\ Fai(y, 23) /
1oV o =« vl oL A ~ . o~
+ (X, E)T T —(X,. E) + ko2(x ) < =3 V3 (K3 Z3)
25X3( 3, 23) T3 3(,’X3( 3 23) (xy1) 3V3(X3, 25

with 23 = min {«s3, £3} and for some smooth F,,(y, £3) and F5,(y, £3). Any following step can be performed
as in step #3.
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