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A Sufficient Condition for Nonlinear
Noninteracting Control with Stability
Via Dynamic State Feedback

Stefano Battilotti

Abstract—In this paper we give a sufficient condition to solve
the problem of achieving local noninteracting control with
asymptotic stability via dynamic state feedback for a nonlinear
affine system. Qur condition, which is automatically satisfied in
the case of linear systems, although only sufficient, is indeed
helpful in overcoming some of the geometric obstructions re-
cently pointed out in the literature.

1. INTRODUCTION

I ET us consider a square nonlinear affine system
m
*=f(x) + 2 &(x)u

yi=hi(x) > m (1)

where x(¢) e R” and u,(f) €R, f and g, are smooth vector
fields, #;: R” = R are smooth scalar functions, defined on
some open subset of R”. Without loss of generality we shall
assume that x, = 0 is an equilibrium point. Moreover,
throughout the paper, we set

h(x) = (hy(x) -+ hu(x)
g(x) = (&:(x) -~ gu(x))
G = span {g(x)}
K, = ker {dh,(x)}

i=1,-

and suppose that dim G = m.
The class of state feedbacks we consider is given by static
state feedbacks

u=oa(x)+B(x)v
with 8 square nonsingular matrix (such feedbacks are called
regular), and dynamic state feedbacks
u=alx,w)+B(x,w
w=y(x,w)+8(x,w
where «, B, 6, and y are smooth functions defined on

suitable open subsets. The problem of modifying (1) by
means of either static or dynamic feedback so that the ith
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scalar output depends on only the ith scalar input is generally
known as the nonlinear noninteracting control problem. His-
torically, necessary and sufficient conditions for solving the
nonlinear noninteracting control problem (without stability)
by means of regular static state feedback were given in [4],
[51, [6], [8], [11], [12], [17]. Dynamic extension has also
been investigated in [7], [13], [18], [19].

The problem of stability and noninteraction has been com-
pletely solved in the case of linear systems in [1] and [3]. In
the case that only static state feedback is allowed, Gilbert [1]
has shown that any decoupling feedback induces a well-de-
fined internal dynamics whose asymptotic properties are in-
dependent of the feedback itself. Therefore, internal stability
and noninteraction can be attained via static state feedback
only if these dynamics are asymptotically stable. In the case
that also dynamic state feedback is allowed, Wonham and
Morse [3] have given a geometric necessary and sufficient
condition to solve the problem of stability and noninteraction,
showing that if noninteraction can be achieved, then it also
can be achieved with stability.

In the nonlinear case, the problem of local stability and
noninteraction has been considered only recently by Isidori
and Grizzle [20], who have extended the result of Gilbert {1]
to the class of systems (1). They have shown that there exists
a well-defined internal dynamics (called P* dynamics) which
is fixed with respect to any decoupling regular static state
feedback, showing that the local asymptotic stability of this
dynamics is a necessary condition to obtain both noninterac-
tion and stability via regular static state feedback.

On the basis of these facts, in the case that the P*
dynamics is unstable, i.e., the problem of stability and
noninteraction cannot be solved by means of any regular
static state feedback, it is natural to ask if something similar
to the result of Wonham and Morse can hold for nonlinear
systems. A counterexample in [20] clearly shows that it is not
possible, in general, to obtain noninteraction and stability by
means of dynamic state feedback. The reason was actually
shown by Wagner [22], who has found out that, for the class
of systems considered in [20], there exists a well-defined
dynamics (called A,y dynamics), which cannot be elimi-
nated by any regular (in a sense to be specified) dynamic
feedback which makes (1) noninteractive. Therefore, the
A 4rx dynamics, which is contained in the P* dynamics and
is trivial in the case of linear systems (in perfect accordance
with the result of Wonham and Morse), must be asymptoti-
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cally stable if noninteraction and stability is sought by means
of dynamic state feedback.

In this paper, we give a sufficient condition, which is
trivially satisfied in the case of linear systems, according to
the Morse and Wonham’s theory, to solve the problem of
local noninteracting control with stability by means of regular
(in a sense to be specified) dynamic feedback. Our result
turns out to be useful in the case that the P* dynamics is
unstable, i.e., when noninteraction and stability cannot be
attained by means of regular static state feedback. For sim-
plicity, we shall consider the same class of systems consid-
ered in [20]. The general case will be treated elsewhere. We
shall prove that, under some mild regularity assumptions, we
can obtain local noninteraction and asymptotic stability by
means of dynamic state feedback if the A,,,, dynamics is
locally asymptotically stable and certain rank conditions are
satisfied. As it will be clear, this gives a generalization of the
result of Wonham and Morse for the class of systems consid-
ered. As in [3], the crucial point of our construction is the
definition of some extended independent distributions, start-
ing from some distributions which are not necessarily inde-
pendent and are defined on the original system (Section IV).

The paper is organized in the following way. In Section II,
some fundamental concepts are recalled. In Sections III
through V, we assume that the A,,, = 0 and solve the
problem in this particular case; then, in Section VII, we relax
this assumption, giving a more general result. In Section VI,
we consider also the possibility of reducing the dimension of
the dynamic extension. Finally in Section VIII an example,
for which our assumptions are satisfied, is given, clearly
showing how to construct a decoupling and stabilizing dy-
namic state feedback and how our condition can weaken the
requirement that the P* dynamics be locally asymptotically
stable.

II. A REVIEW oF SOME FUNDAMENTAL CONCEPTS

The reader is referred for details and proofs to [23].

We say that (1) has some relative degree at x, if the two
following conditions are satisfied: there exist integers
{ri,c+,r,}, 1 =r; < o, such that

1) L,L%h; =0 for 0O<k<r,—1, j=1,--,m and
L, Ly~ 'hi(x,) # O for some j (Ly¢ is the Lie derivative of
the smooth function ¢ along the smooth vector field 6);

2) the matrix (called decoupling matrix)

LglL}'_lhl LgmL?71h1

L, Ly 'h, L, L'r'h,
is nonsingular at x,.

In what follows, if 8 is any smooth vector field and A is
any smooth distribution, by [6, A] we mean the set {[8, 7]:
7€ A}, where [-,-] is the Lie bracket of any two vector
fields.

A smooth distribution A is said to be locally invariant
under a smooth vector field § if [§, A] C A for all x in a
neighborhood of x,,.

A smooth distribution A is said to be locally controlled
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invariant if there exists a smooth feedback u = a(x) +
B(x)v such that A is locally invariant under f = f + ga and
g = gB;, for j=1,---, m, where B; is the jth column
of 8.

The family of invariant distributions under a set of smooth
vector fields {7 ,*++,7,} and containing a given smooth
distribution X is closed under intersection, so that the mini-
mal element exists and it is a2 smooth distribution. We denote
by (ry,*-+, 7,,| K this distribution, which can be computed
by means of the following lemma.

Lemma I1.1: Let us define the following sequence of
distributions

So=K
Sy = ,Z:I[T"’S"*l] + S ;-
iz

If there exists a k* such that S,. = S.,, (in this case, we
say that (7,,- -, 7,,| K) is finitely computable), then

Spw = (11,7, 7, K). ¢

Actually, in the above definition, we implicitly suppose
that S, is a smooth distribution (see [23] for a more general
setting). Note that if each S, is a nonsingular (i.e., of
constant dimension) distribution, then (7,,-*-,7,|K) is
finitely computable. The involutivity of (7, - -, 7, | K), i.e.,
10,,0,]€{z),"*+,7,,| K) ¥8,,0,€({r,,- -, 7,,| K), is en-
sured by the next lemma.

Lemma I1.2: Suppose that K is spanned by some of the
vector fields {7, -, 7,,}. The distribution (7,,"*+, 7, | K)
is involutive if it is nonsingular. ¢

Finally, consider an involutive nonsingular distribution A,
which is invariant under the vector field § and suppose
6(0) = 0. The restriction of 6 to the leaf of A passing
through x,, which will be denoted by 6 | A, defines a vector
field on that leaf.

III. FUNDAMENTAL ASSUMPTIONS AND DEFINITIONS

For simplicity, we consider the same class of systems as
considered in [20].

Assumption 1: The system (1) has some relative degree
at x,.

Assumption 1 can be shown to imply that there exists a
smooth regular static state feedback such that the resulting
closed-loop system is locally noninteractive (but not necessar-
ily asymptotically stable) [5], [8], [23], i.e., the ith scalar
input does not affect the scalar jth output for j # i. In what
follows, we can suppose that (1) has already been rendered
noninteractive by means of regular static state feedback. We
suppose also that x, is still an equilibrium point for that

system.
Now let
Pi*=<fsg1"“’gm|span{gj:j:'ti}> l:1’ s M
R:!‘:<f,g]9'”’gmlspan{gi}> =1, » m
Py={(f, 8" 8nlG)
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and

To compute P, R¥, and P, by means of standard algo-
rithms (see Section II), we require that they are finitely
computable (in general, it is not enough to suppose that they
are nonsingular): to this purpose, we assume that each S,
(see Lemma II.1) is nonsingular in a neighborhood of x, and
throughout the paper, by saying locally finitely computable,
we implicitly mean this. Moreover, we suppose constancy of
dimensions and if 7 is the dimension of the system dim P, =
n, i.e., the system is strongly accessible at x, [2]. The latter
condition is very natural in the case of linear systems, since it
implies full controllability. We collect all these assumptions
in the following.

Assumption 2: The distributions RY, P, and P, are
locally finitely computable and

P,, P¥, P*, P+ (P}, R}and }_ R} and Z RY
J#i J#i
i=1,+,m
have constant dimension in a neighborhood of x,. Moreover,
(1) is strongly accessible at Xx,.
Remark 1: Setting f = g, since R¥ locally finitely com-
putable, from Lemma II.1 (see also [23, Lemma I.8. 6]) it

follows that there exist vector fields { X,,: i =1,- m;
k=1,--+,s;} in the set
W,=1{0:0=gor0=[g,,.[g.a] ]
lsh<n-1, 0<j,=m, forl < k < h}
such that locally

Rf=span{X,:1<k=<s} i=1,--,m (3)

where s; = dim R},

Next, we denote by .# the Lie ideal generated by the
vector fields {[g;, adfg,): i,j=1,---,m; k= 0and i #
Jj} in the Lie algebra generated by {f, g,,"**, g,} and
define

Ayix =span{r:7ef}.

It has been shown in [22] that, for the class of analytic
systems which can be rendered noninteractive by means of
regular static state feedback, there exists well-defined dynam-
ics (called A,;;» dynamics) which is invariant (in a sense
specified in Section VII) under the class of dynamic state
feedbacks (which we call regular dynamic noninteraction
feedbacks) such that the closed-loop system resulting from
(1) still has some relative degree at (x,, w,) and is noninter-
active.

Remark 2: One might ask if Rf and A, depend on the
regular static state feedback chosen to render (1) noninterac-
tive. As a consequence of the results contained in [22] (see
also Section VII), A ,,,, is still the same if computed on two
different noninteractive systems obtained from (1) via regular
static state feedback. Moreover, since, whenever it exists, the
maximal controllability distribution contained in ;. ;K ; co-
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incides with R* (see [17] and [23, Lemma 7.4.2]), also R}
is independent of the regular static state feedback chosen to
render (1) noninteractive.

Remark 3: Supposing A, x = 0 and repeatedly using the
Jacobi identity, it can be shown that X, and X, commute
for j,i=1,+,m; j#i k=1,--*,5, and h =
1,-:-, s,

It is sjhown in [20] that under Assumptions 1 and 2 there
exist a local coordinate change, which for simplicity will be

denoted by x = (xT -++ xT, )7, such that
P¥ =span{d/dx;: j # i}
P* = span {3/9x,,,}

Py=span{d/dx;:i=1,--,m+ 1}

and the system (1) is locally expressed by

%= fi(x:) + galx)u; i=1,",m

)

m
Xpmpr = Smer(X) + Zlgm+1,j(x)uj
iz

yi = hi(x;) i=1,,m

(in gemeral x;, i = 1,-++, m + 1, is vector valued). More-

over, P*NG = span{gj j #i}. In [20], [23] it is also
shown that the dynamics (called P* dynamics)

xm+l = m+1(0’“.’0’ xm+1) =f|P*

is fixed under any regular static feedback which renders (1)
noninteractive. We suppose in what follows that the system
(1) has been put in the form (4).

Remark 4: If (1) is not strong accessible, we have the
more general form

%= fi(Xps Xmaa) + &u(Xis Xpmin)uy =100, m
X1 :fm+1(x1!'-"xm+2)
m
+ Zlgm+l,j(xl"“’xm+2)u (4'1)
j=
X2 =fm+2(xm+2)
yt=hi(x1 xm+2) i=17”"m

In this case, if X,,., = fni2(¥m42) is locally asymptoti-
cally stable, we can consider the system obtained by setting
Xpm+2 =0 and solve the problem of noninteraction with
stability for this system.

Remark 5: Recalling (3) and using the form (4), by
induction it is possible to show that

e = (8/8x) Yy x;) + (8/0%,41) Ziy(x)

i=1,--

()

i

,m

where Y;, and Z;, denote, respectively, the components x
and x,., of X;;.

We give here a result, which will be useful in the follow-
ing sections.

Lemma III.1: Under Assumption 2,
a) Y RY=Pr=span{d/dx;: j#i}

J#i

i=1,--
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m
b3 RY= Py =span{0/dxsi= Lo m 4 1)
j=1
o) Rfc Nprc Nk,

J#i J#i

i=1,,m. O

Proof: This can be proven as in [17]. Here we give a
very simple proof. We show first that 3 j;e,-R;'f C PF. Since
by definition R} C P* for j # i, then also ¥, ,RT C P}.
Conversely, ¥, ,-Rj-‘ is constant dimensional, thus invariant
under fand g; for j = 1, -, m (since R¥ is), and contains
span {g;: j # i}, then by definition P* C ,,,R¥ so that
a) immediately follows. In exactly the same way we can
prove b). On the other hand, c) is a consequence of the fact
that ¥, . ;R; CP¥ CK;and RfC N,;,,¥, R} ®

IV. THE DyYNAMIC EXTENSION

We now, first, define an extended system of suitable
dimension and a set of extended distributions defined on it,
starting from the distributions R¥. Then, we show that,
under the assumption A ,,,, = 0, these extended distributions
are locally independent, involutive, nonsingular, and con-
trolled invariant for the extended system. In Section V, we
show that there exists a regular static feedback, defined on
the extended system, which renders these distributions simul-
taneously invariant. It will be seen that the resulting closed-
loop system is noninteractive with respect to the partition
{u,,"+-, u,,}. Finally, under certain rank conditions (see
(8)), it will be seen that there exists a nonregular static
feedback, defined on the extended system, which stabilizes
the system without destroying the above noninteraction prop-
erty.

Let us start by defining

n; = dim x; i=1,,m
ny=dim x,,,,
Ny =N+ ng i=1,-,m

m
n, = Z}nw,-.
i=

Consider the extended system

x=f(x)+g(x)u
w=u,
y=h(x)
where dim w = n,. Having set
N . . L
w,=| "], dimN =n;, dimpy;=n, i=1,--,m

W

and
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then we can rewrite the extended system in the compact form

5= fo(x%) + g*(x)ue (7)
ye — he(xe)
with
(x)
s =0 | () = (af(x) - gga(x))
0

h?(x°) = h(x)

where the ith zero block has dimension ny,i=1,m,
and
g:(x) 0
0 0
gi(x)=| o |, &nei(x) = [Lnxn,
0 0
0 0
i=1, ,m.

Moreover, let x§ = (x3 wl)” = 0. In what follows we need
also the following notations

G, =span{gf:i=1,--,m}, G, =span{gs.;}
=1,

G, = 51 G,, and G° = span{g°}.

, m

Let us now construct the following extended vector fields
X (x)
0
Xi(x°) = X (X 1)
0

0

where (see (5) for the definition of Y;, and Z,;)
Yie(x)) )
Z,(x)

and define the extended distributions

R¢=span{XS:1=<k=s}.

Xi(x,m) =

x;=0for j#i; Xpmy1=u;

Clearly, R; N G, = 0, since otherwise the vector fields
{Xy:i=1,---,m; k=1,---, 5} would not be indepen-
dent in a neighborhood of x,. Note also that s; < n,,;. The
dimension of the added dynamics can be actually reduced
(see Section VI). The following two lemmas are crucial for
our result to hold.

Lemma IV.1: Suppose that A,y = 0. Under Assump-
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tion 2, the distributions R¢, i = 1,---, m, are a) indepen-
dent, b) involutive, and c) have constant dimension s; in a
neighborhood of x§. o
Proof: a) follows from the fact that the matrix (X}
- X i’zi) has full-column rank and c) follows by construc-
tion. Let us now prove b). Since R are nonsingular at x,,
then they are also involutive from Lemma II.2; thus, we can
write

Si
[Xik» th] = ;lcikhtxit

i=1,myh,k=1,"-,s;

i

where ¢;,,, is a set of unique smooth functions. It can be
shown that c¢;;,, are functions only of x;. As a matter of
fact, since A, = 0 and the { X, } are in the set (2), we
have

S;

Z ( _LXj,Cikht) Xt

=1

i#ji,j=1,,myh k=1,--,s5r=1,"".,5;

0= [[Xik’ X,-,,], Xj,] =

which, from the independence of { X,;: 1 < ¢ < s;}, implies
Ly Cixn = 0 for j # i; in turn, this, along with Lemma
1.1, implies our thesis. Now, note that [ X;,, X;,] has the
form (5), so that we can define [ X,,, X,,1%(x;, u;) in the
same way as we did for Xi(x;, ;). By means of straight-
forward computations, it can be shown that

[Xik’ Xih]* = [X;Z’ Xﬁx]
i=1,,mk,h=1,"--,s,.
This, in turn, since the c;;,, depend only on Xx;, implies

* i
[Xik! Xy); = Zj:lcikth'*; so that

1

[ Xicr X
0
. Si
X5 ,Xie = . = . e
[ ik h] [X,‘T(’ X;‘;,] EICI“”X'
0
i=1,--,m;k,h=1, K

i.e., involutivity of Rj. [

Remark 6: One might ask if the choice of the set { X;:
1 < k < s5;} can influence the construction of R¢. It can be
shown that, no matter how we choose { X;,: 1 < k < s} in
the set (2), under the assumption A,,, = 0, we always
obtain the same distribution R{. As a matter of fact, denoting
by {XL: l<k=<s} and {X3: 1<k=<s} any two
choices in the set (2), we have

, S

Si
Xje= 2 cnXi i=1l,,mk=1,"-
h=1
As in the proof of Lemma IV.1, since 4,,,, = 0, it can be
shown that the c,, depend only x;. Thus, denoting by X/
and X2¢ the extended vector fields constructed as above, we
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have

§;

1 2 ; . — ese
xXhe =3 cn X3 i=1,-,m k=1,--,s;.
h=1

Remark 7: Tt is worth noting that if [ X, X;,] = 0 for

j#i,k,h=1,-+-,s;andall xina neighborhood of X, it
follows by construction that
(X5 X5] =0  j#isk k=15

for all x° in a neighborhood of xg.
Remark 8: 1t can be shown that, if A,,;x = 0, then
R¢ N G° = span { pf} i=1,,m,
where

gi(x)
0

3
i

gl (x> m)

0
and g?‘ is defined as X% (it is well-defined since g; is of the
form (5)). As a matter of fact, using the same arguments as
in the proof of Lemma IV.1, it can be shown that p; €RY.
Our thesis follows from the fact that Rf N G = span{g;}
and RfN G, =0.

Remark 9: By construction, if follows that

[fe.R]CG,+RECG+R; i=1,"-,m
[gf, RS] € G, + RS C G° + R!
i=1,,m;j=1,-,2m.

Thus, if A, =0, then each Rf is involutive (Lemma
IV.1.c)) and thus controlled invariant for (7) [23].
The following lemma will be needed in the next section.
Lemma IV.2: The distributions 3 ;.,R§ for i =
1,-+-,m and ¥/, R¢ are nonsingular and involutive in a
neighborhood of xg.
Proof: Immediate from Remark 7 and Lemma IV.1. ®

V. NONINTERACTION AND STABILITY

In what follows by invariance under g, (or g¢) we
mean invariance under each column of these matrices by the
bracket of a smooth vector field with g5, ., we mean the
bracket of the vector field with each column of that matrix,
by the Lie derivative of a vector (or a matrix) of smooth
functions along a smooth vector field we mean the Lie
derivative of each function along that vector field and finally
by the product of g2,_; with a column vector (or a matrix)
we mean the usual product of a matrix with that column
vector (or that matrix).

We prove in this section a result, which gives a sufficient
condition for local noninteracting control with stability via
regular dynamic state feedback. Anyway, this result has to be
regarded as an intermediate step to prove a more general
result in Section VII.
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Theorem V.1: Suppose that Assumptions 1 and 2 hold.
Then the problem of local noninteracting control with stabil-
ity by means of regular dynamic state feedback

u=a(x) + B(x)v
w=7y(x°) +6(x°)v
is solvable if A,,,, = 0 and

R} = span{g,, -, ady 'g,}

(8)

i=1,-"+,m

in a neighborhood of x,.

Remark 10: In the case of linear systems, A ,,;5 = 0 and
also (8) is trivially true, since RY by definition is a controlla-
bility subspace. Thus, Theorem V.1 is a generalization of the
result contained in [3] for the class of nonlinear systems here
considered. From (8) it also follows that R¥(0) (i.e., the
vector subspace of R” assigned to the point x, = 0 by the
distribution RY) is a controllability subspace for the linear
approximation of (4) in a neighborhood of x, (for, note that
(- 1)*A*b, = ad%g (0), where A = (3f/3x)(0) and b, =
£:(0)) and that for each / the system

x; = fi(x;) + g;,(x)u;

X =fm+1(xla"'

JEI
’xi-l’o’ xi+1v'”,xm+1)

m
+jz=eigm+l’j(x". X0, X, xm+1)”j (9)

is locally exponentially stabilizable by means of a linear state
feedback. As a matter of fact, from Lemma III.1.a) and (8)
we have
span {(8/3x;),: j # i} = P*(0) = X_ R}(0)
J#i
=span{b,;, -+, AV 'b;: j# i}

where (9/dx;), means 3/0x; evaluated at O (it can be
identified with a matrix having an identity matrix as jth
block element).

Remark 11: From (8) and recalling Remark 6, without
loss of generality and for simplicity, we can choose

Xp=adi g, i=1, mk=1,-5s

and throughout the paper we implicitly suppose this.

Remark 12: The requirement A, = 0 is actually too
strong. We need it only to prove Theorem V.1 and we shall
relax it in Section VII.

Before proving Theorem V.1, we need some preliminary
results.

Lemma V.1: Let U and V be, respectively, open sets in
R?and R" and A = span{Y;,---, Y,}, d < g, be a nonsin-
gular and involutive distribution for every x in U with
dim A = d. Let {»,,,: t, h, k = 1,- -+, d} be the unique set
of smooth functions such that [Y,, Y,] = Ziluhk,Y,. Let
also I';,- - -, T'; be smooth functions T;: U — R"*’. Consider

now the set of partial differential equations
l=k=d

(10)

where « denotes a function o: U = V. Given a point x,€ U,

Lyoa=Tia
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there exist a neighborhood U, of x, in U and a unique
smooth function «: U, — ¥, which satisfies the equations
(10) and, on a submanifold M 3x, complementary to the
leaf of A passing through x,, coincides with a given smooth
function « defined on M, if and only if the functions
Ty, --,T, satisfy the integrability conditions

d
I\, - T, + LY,,rk - Lykrh = Zl Vhiels
t=

l<h, k=sd (11)

forall x in U. ¢
Proof: It can be proven essentially in the same way as
in [23, Lemma VI.2.3]. o

In Remark 9, we have seen that each R{ is separately
controlled invariant for (7). The following lemma states that
the distributions R are compatible, i.e., can be rendered
simultaneously invariant. In what follows, we implicitly sup-
pose that the assumptions of Theorem V.1 hold.

Lemma V.2: There exists a smooth state feedback u® =
a®(x®) + B°(x®)v®, defined in a neighborhood of x§, such
that «®(0) = 0, B¢ is nonsingular at O and the distributions

R{, i=1,---, m, are locally invariant under f° = f°+
g°a® and £° = g°B°. Moreover, denoting by Sf the ith
column of 3°, we have g°8f = pf fori =1,-+, m. &

Remark 13: This result is a nonlinear analog of the
well-known fact that a set of independent controlled invariant
subspaces can be made simultaneously invariant under A +
BF'. 1t is worth noting that Lemma V.2 can be proven neither
as in [17, Theorem 3.1] nor as in [24], because in our case
we have o7 (R N G°) # G°.

Proof of Theorem V.2: We split up the proof in three
steps.

a) Since the R} are by definition invariant under f, it is
easy to see that by construction we can write

[ X5] = g5 vicu + 05

i=1, mk=1,,5 (12)

where c;, is a set of unique smooth (vector) functions, which
depend only from x; and g, and

[f: Xic]
0

e _
ik —

[f: Xu]*

0
where [f, X;,]* is defined as in Section IV (it is well-de-
fined since [ f, X;,] has the form (5)). It can be proven that
85 € R¢. As a matter of fact, since R} is by definition
invariant under f, we can write [f, X;] = 7. 1die Xirs
where d;,, is a set of unique smooth functions. But since
Appx =0, we have [[f, X, ], X;,] = 0 for i # j; using
arguments similar to those in the proof of Lemma IV.1, it

can be shown that d;;, depends only on x; and thus &5, =
T idu X € RS
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Since ¢;;, depends only from x; and y;, then

LXjehCik=0 j¢i;jyi=l9”.’m;k=19...’si;
h=1,"-,s;. (13)

Moreover, it is easy to see that

(8500 X5 o k=1

(14)

where v,, are n,; X n,,; matrices of unique smooth func-
tions, which depend only on x; and y;, and

[gre}z+i’ th] =0

—_ e
= 8m+iVik

i=1,,myj#i;h=1,,5.

(15)

From (14) it follows

Lth7ik=0 Joi=lymy jEiyk=1,",5;
h=1,--,s,. (16)
Now, let f¢ = f¢+ Y7 85, ;«; We shall prove that there

exist smooth (vector) functions oy,
neighborhood of x§, such that

[fe, Rf] C R¢

, @,,, defined in a

i=1,,m.

(17)
For, making some computations, we get

[F. X5] = emvileu
- Z‘grenﬁq'(Lkaaj') + 8%

VE]

— Lyeo; + vy ) +

We have that (17) can be satisfied if and only if the following
set of partial differential equations are satisfied
m;j#Ei;h=1,",5;

(18.1)

Lygoy=0 0, j=1,"",

and
Lyea; = ceomyk=1,",8;.

(18.2)

Cir T Yir%;

It is clear that (18.1) and (18.2) can be thought of as m
separate problems, so that for each i =1,-*+, m we can
think of (18.1) and (18.2) rewritten in the following way

L i T B
. =T.
Xin\ Oy AN P

j= ,---,m;h:l,-“,sj (19)
where
Yin th) e s s
if j=1i
T, = (0 0 J
0 else

and «,,,; = 1 on a submanifold M3 x{ complementary to
the leaf of R{ passing through x§ (since from (19)
LysQpmir = 0, then «,,,; = 1 in a neighborhood of x¢).
Smce R* is involutive, we can write [X;,, Xyl
= % Vipke Xy for i=1,---,m. Applying Lemma V.1
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for each i = 1,--+, m to (19) with A = Y. | R¢, which is
locally nonsingular and involutive from Lemma IV.2, it
follows that for each i there exists «; solving (19) and such
that «;(0) = O (in this case «; is not unique) if and only if
the following conditions are satisfied:

Sl
TyeTin — Tinli + LXf,,Fik - Lkath = ;1 VinkeLit
k,h=1,,s (20)
and
I‘ikl"jh - thrik + ijehl-‘ik - LXeI‘jh = 0
jEL k=1, s;h=1,-,s. (21)

We shall prove first (21). Clearly, we have T =TT
= 0 for i # j so that (21) reduces to 0 = LXeP,k for j # i
but this is true from (13) and (16). On the other hand,
relations (20) can be easily derived from (12), (14), and the
following Jacobi identities:

=[Lre xal, xa) + (177, X3l X
= [fe (x5, X5]]  hik=1,".s

] Xh] + [[gm+l’ Xieh]’ Xie;(]

_[gm+l7[X1h’Xiek]] h,k'—‘l,"',s

So we have shown that (17) can be satisfied with «of =
©7aT -+ aT)7, where the zero block has dimension m.
b) By means of a smooth nonsingular matrix

_ (Imxm 0

_[[g;wi’

* Inw x”w

it is possible to rearrange the columns of the matrix g¢
that, denoting by 8f; the ith column of (87, we have (see also
Remark 8)

Ri28] = ¢° = X5

e __ e ;] — e
1i = Pi i=1,

From involutivity of R{ (see Lemma IV.1) and Remark 7, it
follows that

[&¢, R?] C Rf

,m.

i,j=1,,m.

¢) Recalling (14) and (15) and proceeding as above, it can
be shown that there exist n,,; X n,,; matrices 3,; of smooth
functions, defined in a neighborhood of x§, such that 3,,(0)
=1, v, and Rf, i=1,--, m, are invariant under &,

gmﬂﬁzj, j=1,-+-+,m, if and only if we can solve the
following set of partlal differential equations

Lxe Bri = YirBoi i=1,,mk=1,-,s (22.1)

and

LyeBy;=0 L j=1,mj#i;k=1,",s,
(22.2)

This equations can be rewritten as

Bai Ba;
L. :F
i (52 m+l) Jh(B2,m+])

Joi=1m
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where

ifi=j
0 else

and 8, ,,.; = 0 on a submanifold M*°> x{ complementary

to the leaf of R{ passing through x¢ (since from (23)

ie);fhﬁz,mﬂ =0, then B, ,,, =0 in a neighborhood of
o).

Again, using the same arguments as above, we can think
of (23) as m separate problems and it can be shown that they
can be solved. )

We denote the closed-loop system resulting from applying
the feedback (a®, 8¢) to (7) by

x=f “(x) +
yi=hi(x) i= (24)

For simplicity of notation, set u¢ = v,
Lemma V.3: There exist new local coordinates z = (z7
+ 27,1)7 and a partition u® = (u] -+ uZ,, )7 such that
Ri=span{d/dz} i=1,+,m

and (24) is locally expressed as

4 =f1(z1, Zmer) T E11(zy, T Yy

+ gl,m+l(z1’ zm+l)um+l

2m =fm(zm5 zm+l) + gmm(zm’ zm+1)um

+ gm,m+l(zm’ zm+l)um+l

(25)

Zm+1 :fm+1(zm+l) + gm+l(zm+1)um+l
L (CAE T B B
wheredimu; = 1,i=1,--,m,anddimu,,,, = n,. ¢

Proof: Consider the distributions E§ = ¥.7_,R¢ and
Ef =% o ,-Rj'i, which from Lemma IV.2 are locally nonsin-
gular and involutive. Since R} C ;. Ef and thus

m

S RE=Ef+ E

Jj=1 J#i

E§ =

and since the R; are locally independent, by using similar
arguments to. those contained in [20, Lemma 4.1], it can be
shown that there exists a local coordinate change z = (z7

-z} .17 such that R¢ = span {3/dz,}. From the invari-
ance of R? under f¢ and g°, since R¢ N G° = span { g7}

and Rf C (., ker {dh¢}, it follows (25). o
Note that (25) is noninteractive with respect to
{uy,*++, u,} but not necessarily asymptotically stable. Now

let z, = z(xg) and suppose without loss of generality that
Z, = 0.
Lemma V.4: The linear approximation of (25) in a neigh-
borhood of xg is controllable. o
Proof: Having set A = (3f/0x)0) and b, = g,(0),
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from Lemma III.1.b) and (8) it follows
span {(3/8x,)g: i = 1,"--, m + 1}
m

Py(0) = > R}(0)

i=1

span {b;, -+, A% 'b:i=1,--,m},

I

i.e., the linear approximation of (4) in a neighborhood of x,
is controllable. But this means that also the linear approxima-
tion of (7) in a neighborhood of x§ is controllable. Since the

feedback («®, 3°) is regular, our thesis follows. ®
Lemma V.5: R{(0) is a controllability subspace for the
linear approximation of (25) in a neighborhood of x¢. o

Proof: This is essentially proved in {3]. Here we give a
very simple proof. Since from our assumptions

R:'k = span {gi,' Tt ad;"ilgi}
then by construction (see Lemma V.2) it must be also
R¢ = span {g;’,- o ad;ie_lg'f}.

This exactly implies our thesis. Note that RZ(0) is the
controllability subspace associated with u; in the linear ap-
proximation of (25). L]
We have now all we need to stabilize (25) without destroy-
ing noninteraction with respect to {u,," "+, u,,}.
Lemma V.6: There exists a linear state feedback of the
form

up=Fz+v Q=1 (26.1)

(26.2)

U m+1%m+1

where v; are the new inputs, such that the closed-loop system
resulting from (25) is locally asymptotically stable and nonin-
teractive. o

Proof: Consider the linear approximation of (25) in a
neighborhood of x,

4= AuZi+ A i Zmar F Dt by U

u-
it = Amat,me1Zmet ¥ Ot s i¥ma -

From Lemma V.5 the pairs (A4;;, b;;), i=1,--+, m, are
clearly controllable. But also the pair (A, ;| iy
b1 1. m41) is controllable, since from Lemma V.4 the over-
all system is. This means that the system (25) can be locally
exponentially stabilized by means of a suitable feedback of
the form (26); the resulting closed-loop system is also nonin-
teractive, since this feedback is decentralized. ®

Proof of Theorem V.1: Apply sequentially Lemmas
V.2, V.4, and V.6. Finally, set

0

a(x) ay(x°)
(W)) T

a,,(x€)

+gBe(x*) diag (Fy, -+, F,y ) 2(x°)

where diag () denotes a diagonal block matrix and z(x°®) is

(27.1)
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the vector function z expressed in x¢ coordinates, and

() - e g 9] = [z v

v(x°) 0 o0

[
VI. SOME REMARKS ABOUT THE DIMENSION OF THE
Dynamic EXTENSION

In this section, we show how to reduce n,,. A first attempt
is given by picking

m
no=3s, (28)
i=1

which is actually less or equal than Y[ (n; + ng) (i.e., the
dimension of our previous dynamic extension). To this pur-
pose, we modify the construction of Rf in the following
way. First, note that

span {3/0x;} C R} + span{8/3x,,,,}- (29)

Recall now the form (5) and set X; = (X, - X;,). It
follows from (29) that from the matrix
Yo e n+n i=1,",m
o Z; Zis,- ! 0 - ’

which has full rank for all x in a neighborhood of X, it is
always possible to choose a nonsingular submatrix

Xl.*=(Y“ Yi‘f‘)}si i=1,---,m.
* “ee *

For simplicity, we can suppose that X ¥ consists of the first
s; rows of X,. Call x,, ., the first s, — n; components of

X, and X. ., the other components. Moreover, choose
dim w; = s; and dim \; = n,. With this notation, set

X;(x)
0
X£(x°) = X%, 1) i=1,,m
0
0
where
X¥(xism) = XH(x) | x;=0for j# i3 Xby ) = i3 Fipyy =0
i=1,--,m
and define
R¢ = span { X7} i=1,,m.

Involutivity can be proven as in Lemma IV.1 if the following
additional assumption is made.
Assumption 6:

=i
X1

It is possible to give weaker versions of Assumption 6, but
we do not do this here. Also, local independence of Rf can
be proven as in Lemma IV.1. Further reduction can be
achieved by taking

m
nw=2dim(R,.n(ZRj)). (30)
i=2 Jj<i
Suppose the following.

Assumption 7.1: The distributions R} N (L, ;RY), i =
1,++, m, are nonsingular in a neighborhood of x,. More-
over, setting dim (R} N (X, ;R})) = ¢; for i =2,---, m,
it is always possible to find vector fields {7;,;: I = 1,---, ¢;},
i=1,-++,m, in the set (2) such that R} N (3, ,R}) =
span{T;;: [ =1,--,¢9;} fori=2,--, m.

From Assumption 7.1 and Remark 1, it is possible to find
vector fields { X;: i =1,-+-,m; k=1,--+, 5} in the set
(2) such that locally

RY =span{X,: k=1,--,5} i=1,-,m (31)

and

10 (58 - 56 1

j<i
i=2,,m. (32)

Note that X, € RY N (X, ;R}) C span{d/dx,,, } for i
=2,---,mand k= 1,--, p; and that all the vector fields
{ X,;} have the form (5). This, with (32), implies that from
the matrix
Z,=(Z; -+ Zy)yng i=2,c0,m

we can choose a g; X s; submatrix Z* such that it has full
rank for all x in a neighborhood of x, and the first p;
columns are independent. For simplicity, we can suppose that
Z}¥ consists of the first o, rows of Z;. As above, call x},,,
the first g; components of x,,,, and ¥.,,, the other compo-
nents. Moreover, choose dim w; = 0, dim w; = dim p; = g;
for i = 2, -+, m. With this notation, set

Xl(x) Xi(x)
0 0
Xf(xe) = 0 ’ Xie(xe) = Z;k(xi’ l"'i)
0 0
0 0

where
ZH(xi m) = Z(x)| x;=0for j# i; Xy 1= pi3 Xipy1=0
and define
R¢=span{Xf} i=1,---,m.

The involutivity of R¢ can be shown as in Lemma IV.1, if
also the following assumption (similar to Assumption 6) is
made



1042

Assumption 7.2:
X,

i
m+1

=0 i=2,-,m.

ax
On the other hand, local independence of the distributions

R{ can be proved in the following way. It suffices to show
that the matrix

Xe=(X191 ...X'lr-’s1 X,‘;,, e X

ms,,,)

has full rank at x§ = 0. Suppose that this is not true. Thus,
there exist some scalars c¢;;, # 0 such that

f i ik Xi(0) = 0

i=1k=1

(33)

(X, (0) is the vector assigned to O by the vector field X,,)
and

,m

(34)

where Z is the kth column of Z}. Let i denote the greatest
integer such that ¢;;, # 0. Then, from (33) it follows that

_Z chjk

J<ik=1

Si
> cuZi(0)=0 i=2,--
k=1

Si

X;(0) = kZl i Xk (0), (35)
i.e,, there exists 0 # v = X3_ ¢, X;,(0) € R¥0) N
(£, <;R7(0)). But from the definition of sum and intersection
of smooth distributions (see [23]) we have R?‘(O) n
(X;<;R¥0) = (Rf N T, ;R%)0). These facts, along
with (32), implies that ¢;, = 0 for k > p,. But from (34),
since the first o; columns of ZX(0) are independent, it
follows that ¢, =0 for all k= 1,--+,s; and this is a
contradiction.

The results of Section V are still true if we use as R}
either one of the extended distributions constructed above,
but we do not show this here. We want to stress the impor-
tance of constructing a set of distributions for which Lemma
IV.1 is true and such that X/ depends only on x; and ;.

It is worth noting that the lower bound (30) is the best
possible if we want to construct a set of extended independent
distributions R¢. As a matter of fact, independently of the
value of n,, it must be

m
n+n,— > 520

i=1

so that

s
s
NE

n,z» s;—n=

{

dim R* — dim (

R’?‘)

1

dim(R;m (ZR;’-‘)).

Jj<i

1l
—

Il
'ME

i=2

The last equality in the above formula can be proven as in
[3], since from Assumption 7.1 the distributions Z}: | R;'-‘ for
i=1,--, m are locally nonsingular. As a matter of fact,

suppose by induction that 3/} R* is locally nonsingular.
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Then also ¥;_,R} = Z;;IIR"-‘ + R} must be locally non-
singular, since R} N (X;.;R}), R, and ¥, R} are.

In Section VIII an example of the above construction will
be given.

VII. THE A, x # 0 CASE

As already noted, the requirement A, = O is usually
too strong a condition. In this section, we relax this assump-
tion, showing that the asymptotic stability of the A,y
dynamics will be sufficient to our purposes. The idea consists
of factoring out the A, , part and to apply the results of
Sections IV and V, after having checked that the regularity
assumptions and (8) still hold for the ‘‘quotient’” system.

Let us go back to (4). We restate Assumption 2 as follows.

Assumption 2.1: The distributions P, R}, and P, are
locally finitely computable and

m
P()s P,‘*s P*’ Pi* + m Pj*’ RT, Z R:k, jz:lR;e, AMIX and

J#i J#i
*
Apyx + Ri

are nonsingular in a neighborhood of x,.

Since A, is nonsingular, by definition it is also invari-
ant under f and g. Moreover, A, C P¥ fori=1,"--, m
(see also [22]). It can be easily shown that there exist local
coordinates x = (x7 - xIx! xT . ;)T such that (4)
is locally expressed by

X, = fi(x) + &i(x;)u i=1,,m
xm+1,1 =fm+1,1(x1" X xm+1'1)
m
+ 2 gm+1,lj(x17'”5xm’ xm+l,l)uj
j=1

m
Xm+1,2 =fm+1,2(x) + Z]ngrl,Zj(x)uj
Jj=

yi=hi(x)) (36)
where P =span{d/dx;: j# i} and A,y = span{d/

1
0X,, 41,2} The A,y dynamics are defined as

xm+1,2 :fm+1,2(09"" xm+1,2) =f|AM1X' (37)

Consider now the class of regular dynamic noninteraction
feedbacks

i=1,,m

1

a(x®) + B(x°)v
Ww=58(x°) + v(x°)v. (38)
Let

fe(xe) _ (f(x) +6<(g)(cf))a(xe))

ge(x%) =

g(x)ﬁ(xe))
y(x4) |

It is worth noting that the dynamic static feedback we use in
Theorem V.1 is regular, since, as it can be checked, the
relative degree of the extended closed-loop system is the
same as that of the open-loop system (4). Suppose also that
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the distribution A%,;, defined as A,,;» but with f and g,
replaced by f° and gf, is nonsingular at x§. In [22] it is
shown that, under the above assumptions, if we define the
map

T UX V->U

x¢=(x,w)rx

where U and V are neighborhoods, respectively, of x, and
Wy, and (7x) e is its differential at x°, then

(W*)xe(Aiwx(xe)) = Apx(X)
and

fm+1,2(0" e xm+l,2)

re AS =
T Boax S (Xms1,2: W)

where x,,,, , and W form a coordinate system on the leaf of
A% x passing through x¢. Thus, it is clear that the local
asymptotic stability of the A, dynamics is a necessary
condition in order to obtain local stability and noninteraction
by means of any regular dynamic feedback.

The main theorem of this section is the following.

Theorem VII.1: Suppose Assumptions 1 and 2.1 hold.
The problem of local noninteracting control with stability by
means of regular dynamic state feedback (38) is solvable if
the A,y dynamics is locally asymptotically stable and

RY=span{g, -, ady g} i=1,,m (39)

in a neighborhood of x,. ¢

Before proving this, we need a preliminary result. Note
that, since from Assumption 2.1 A,y + R} and A, are
locally nonsingular, then the integer §; = dim (A5 + RY)
— dim A, is well-defined in a neighborhood of x,. Con-
sider now the map

o:U— UJFrmx
XH.(XI,"', xm’ xm+1,1)

where U is such that (U, x) is a Frobenius chart with
coordinate functions x and Z 2™ is the foliation induced
in U by A, x, and denote by (ox), its differential at x. Let
P, and P, be the distributions, defined on U/ F %, which
assign to each point o(x), respectively, the subspaces
(0%) (Py(x)) and (%), (P}(x)) and R; the distribution
defined on U/F *Mix, which assign to each point ¢(x) the
subspace (0x) ((A 75 + RF)(x)) (in general, A, ¢ RF).
Note that these distributions are locally nonsingular, since
P¥, Py, Ayyx + R, and A, are. Note also that for each
# in the set (2) there exists a vector field 6, defined on
U/ F4mx | such that

800 = 046 (40)

(O denotes composition) and vector fields f" and §;, j=
1,--+, m, such that f = oxf and &; = oxg;. This is obvi-
ous if one thinks that A,,;, is nonsingular and thus invariant
under the vector fields f, g;,j=1,""-, m, and #, which
implies that only the component x,,,, of f,g o j=
1,-+-, m, and 6 depend on x,,,, ,. Moreover, dim R; = §;
in a neighborhood of o(x,).

1043

Lemma VII.1: Under assumptions of Theorem VII.1 we
have

a) P=o«PF=span{d/dx;: j¢{i,(m+1,2)}}

=(f. &, . Emlspan{g j =i}y i=1,, m
b) 130=0*P0=span{a/axj;j¢(m+1’2)}
= (f, &1, mlspan {g;2i = 1,0+, m});
¢) R,=0x(R}+Ayx)=span{g, -, adi™ g,
=<f,§1,“',§m|span{gi}) i=1,+,m.
¢

Proof: Let us prove a). Since P is finitely com-
putable, the sequence

S, = span{g;: j # i}
m
Se= [/ Seon] + Zl[givsk—l] + Sk
i=

converges in a finite number of steps to the distribution P*
(see Section II). From Lemma II.1 and since ox[f, 6] =
[f, oxb]land ox[g;,0] = [&;, 048] for j=1,--+, mand 6
in the set (2), it follows that (¢)(S,) must also converge in a
finite number of steps to (f, &,," - ", &nlspan{g;: j#i})
so that a) follows. Similarly, b) follows. To prove c), note
first that the well-defined matrix

N

D;=ox(g adjj_lgi) =(& ad}i_lgi)

i=1,,m

(41)
has rank §; for all ¢(x) in a neighborhood of o(x,), since
dim R; = §; and, from (39) and the nonsingularity assump-
tions, span { D;} = R ;- Moreover, the first §; columns of D,
must be locally independent, since otherwise at o(x,) = 0
we should have

dim(span{bi,'--,/ff"_ll;i}<.§,- i=1,>,m

where A = (8//8%)(0) and b, = g,0). Since rank D, = 3,,
this would be a contradiction. By dimensionality arguments,
since span{§;,* -+, ady~'¢;} C R, it follows that

span {§;, -, ad¥"'g,} =R, i=1,--,m. (42)

From this, using (2), (3), and (40), it also follows that

gior0=[&,[ (& & ]

0
l<sh=<n-1,0<j,=m forl<k=<h}

1
=
1

;=span{g;, -+, ady g} i=1,-,m.

This means that the sequence
$o = span {2}

~

m
Se = [f’ Sk—]] + _Zl[éj,Sk,,] + S,
i=

converges after a finite number of steps; from Lemma II.1 it
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follows that VIII. ExamMPLE
(f, &1, s &plspan {§,}) = 1@,- = Span {gia' T ad;:" 'é,»} Let us consider the simple decoupled system
i=1,--,m. @ X, =u,
Proof of Theorem VII.I: Let us consider the system X, = U,
X=filx)+gi(x)u, i=1,'m X; = sin x; + sin x, + x,
xm+1,1:fm+1,1(x1""’xm’xm+1 1) Y1 =X
+ng+1 (X X X 1) Y 72 = % (44)
J=1 It can be seen that
yi=hi(x;) i=1,,m. (43)

R} = span {0/0x,,8/0x,}

Since A,y is locally nonsingular, using similar _arguments * _
to those used to derive (40), it easily follows that Apyx =0, Ry = span {9/9x,,0/0x}
where A MIx is defined as Ay but with f and g; replaced P¥ =R}
by f and g,. From Lemma VII.1 and Assumptlons 1 and P} = R*
2.1, Theorem V.1 still holds with (4) replaced by (43) and
P*, Py, and R? replaced by P, PO, and R so that (43) P* = span {0/dx3}.
can be rendered locally nomnteractive and asymptotically * L
stable by means of a regular dynamic state feedback of the The P* dynamics is given by
form (27). If we set %°= (x| ==+ xLxI . w7, the X3 =X,
resulting closed-loop system (in X¢ coordinates) is given by L

se . which is clearly unstable. Thus no regular state feedback can
¥ = filx) + gu(x) Fizi(2°) + ga(x))vy i=1-0m help us obtain noninteraction and stability.
Xmy1,1 = mat (X0 X Xpmat1) However, (44) is strongly accessible at x, = 0 and it has
relative degree {1, 1} at x,. Moreover

RY =span{g;, [/, &]} i=1,,m

+> st lj(xl" L Xy Xpa 1)”; and A, = 0. Thus, our result applies. The distributions
J=1 ’ ' R¢ are given by

m
+ Zlgm+1,1j(x1" s Xy X 1) Fi2,(£°)
iz

W= 8(%°) + v(£)v

, 1 0
y,-=h,-(x,-) i=1,--,m 0 0
where the z,(X%°) are the functions z; (see Lemma V.3) . 0 —cosx
expressed in %€ coordinates. Since the A, dynamics is R{ = span {g I [f > 8 1] } =spanj |1 0
locally asymptotically stable and the outputs do not depend 0 —cosx,
On X, ., ,, it follows from standard stability results for 0 0
triangular systems ([23, Appendix]) that also the composite 0 0
system
%, = fi(x;) + gi(x)Fz,(2°) + g.(x;)v;
. 0 0
Fpmer 1 = et (X070 X Xy 1) 1 0
0 —cosx,
+ S Xy X Fjz;(x¢
E o007 X T VEEUE) e pan a5, (1,220 = span{ [0 o0
0 0
+Z}gmﬂ,u(xl""’xm’xm+1,1)vj 1 0
/= 0 —cosx
W= 8(%°) + v(2)v 2
Xmt1,2 =f,,,+1,2(X1,' e X Xt 10 Xt 2) It is easy to check that a suitable feedback («®, 3°) is given
by
+ Zlgm+1,1j(x1" T X xm+1,13xm+1,2)
i= . . T
J . =(00 00 (sinx,+py) O (sin x, + p,))
" Fz;(x) \
m
+2 gm+1,1j(xn' s Xy X110 xm+1,2)”j
i=1

e = (45)
Yi = hi(x;) i=1,",m

is locally noninteractive and asymptotically stable. [

coco~o~
o—ocor~o
coo~oco
co~ococo
omococoo
—~oococoo
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The linear coordinate change
5 =X
2= M
23 =X
24 = 2

Zs =N — X

=N —X;
Zy=X3 7 Iy T Ko
puts the closed-loop system, resulting from applying 45) to
the extended system (7), in the form (25). This system can be
rendered locally exponentially stable and noninteractive by
means of a suitable feedback of the form (26).

From the results of Section VI, it follows that, since
locally R* N R% = span{[f, g,]} and the vector fields
{X,: i=1,2; k=1,2} do not depend at all on x5, we
could have taken n, = dim(Rf N RY) =dimp, =1 as
well. The R¢ would have been given in this case by

span

span —cos X,

cC oo O OoO0O=
(=]

—cos X,

and
at=(0 0 0 (sinx,+p))
B¢ =1I3.

IX. CONCLUSIONS

No result so far has considered the problem of computing a
dynamic state feedback which ensures both local asymptotic
stability and noninteracting control. We give a sufficient
condition to solve this problem. For simplicity, we treat the
class of systems (1) which can be rendered locally noninter-
active by means of regular static state feedback. Our condi-
tion, which turns out to be useful when the P* dynamics are
unstable, requires the A, dynamics to be locally asymptot-
ically stable and some rank conditions to be satisfied, under
the assumption that the overall system is strongly accessible
at x,. If we consider the class of regular dynamic noninterac-
tion feedbacks, the requirement of A, to be locally
asymptotically stable is also necessary in order to obtain local
stability and noninteraction [22], so that our assumption
seems to be very natural. On the other hand, the rank
condition (8) seems still too strong to be also necessary.

From our result, it also follows that for the class of square
right invertible systems (in the sense of Fliess [14], [15],
[16]) we can first apply the dynamic extension algorithm [13]
(see also [23]) in order to get some relative degree and then,
after having applied a noninteracting regular static state
feedback, check if our conditions are satisfied on the system
thus obtained.
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