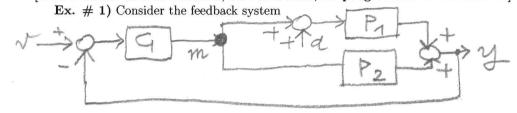
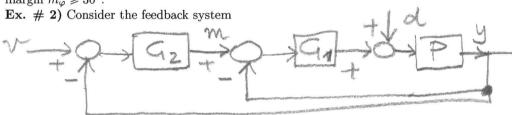
CONTROL SYSTEMS - 1/6/2021

[time 2 hours and 30 minutes; no textbooks; no programmable calculators]



with ${\bf P}_1(s)=\frac{1}{s^2}$ and ${\bf P}_2(s)=\frac{1}{s^3}.$ Design minimal dimensional ${\bf G}(s)$ such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion) with steady-state output response $\mathbf{y}_{ss}(t) \equiv 0$ to constant disturbances $\mathbf{d}(t)$,
- (ii) $|\mathbf{G}(j\omega)| \leq 36 \text{ dB for all } \omega$,
- (iii) the open loop system has crossover frequency $\omega_t \geqslant 5$ rad/sec and phase margin $m_{\varphi} \geqslant 30^{\circ}$.



with $\mathbf{P}(s) = \frac{1}{s-2}$. Design minimal dimensional controllers $\mathbf{G}_1(s)$ and $\mathbf{G}_2(s)$ in such a way that the closed-loop system is asymptotically stable with steady-state output response $\mathbf{y}_{ss}(t) \equiv 0$ to disturbances $\mathbf{d}(t) = t$. Draw the root locus of the open loop system $\frac{\mathbf{G}_2\mathbf{G}_1\mathbf{P}}{1+\mathbf{G}_1\mathbf{P}}$ using the Routh table for an accurate study of the intersections with the imaginary axis.

Ex. # 3) If the forced output response $\mathbf{y}(t)$ of a given system to a step input $\mathbf{v}(t) = \delta^{(-1)}(t)$ is

$$\mathbf{y}(t) = 1 - e^{-t}(1+t) - e^{-3t}$$

- (i) determine the I/O transfer function P(s) of the system
- (ii) determine a state space realization of P(s)
- (iii) determine (approximately) the 5%-settling time