NAME, SURNAME AND STUDENT NUMBER (* mandatory fields):

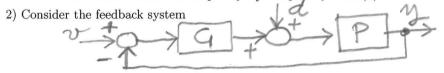
......

CONTROL SYSTEMS - 26/10/2019

[time 3 hours; no textbooks; no programmable calculators]

with disturbance d, input v, output y and $P(s) = \frac{1}{s(s+1)(s+5)}$. Design a controller G(s) with minimal dimension such that

- (i) the closed-loop system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable (use Nyquist criterion) with steady state output response $y_{ss}(t) \equiv 0$ to constant disturbances d(t),
- (ii) $|G(j\omega)|_{dB} \leq 30dB$ for all ω
- (iii) the open loop system P(s)G(s) has phase margin $m_{\phi}^* \geq 40^{\circ}$ rad/sec and maximal crossover frequency ω_t^* compatibly with (ii).



with disturbance d, input v and output y and $P(s) = \frac{s-1}{s(s-2)}$. Design a controller G(s) with minimal dimension such that the closed-loop system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable with steady state output response $y_{ss}(t) \equiv 0$ to constant disturbances d(t). Draw the root locus for PG(s) and find all the real values of the gain K for which the system $W(s) = \frac{KPG(s)}{1+KPG(s)}$ remains asymptotically stable.

with $P_1(s) = 2$ and $P_2(s) = \frac{4}{s(s+3)}$, determine the steady state output responses $y_{ss}(t)$ and 5% settling times to i) $d_1(t) = 2\delta_{-1}(t)$ and ii) $d_2(t) = 0.5\delta_{-1}(t)$.