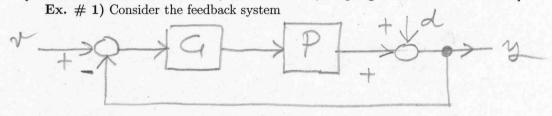
CONTROL SYSTEMS - 2/2/2021

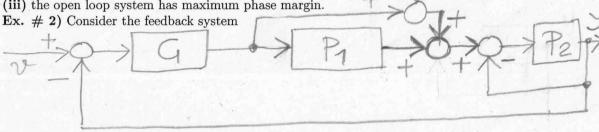
[time 2 hours and 30 minutes; no textbooks; no programmable calculators]



with $P(s) = \frac{1}{s^3}$. Design a controller G(s), with dimension 2, such that (i) the closed-loop system is asymptotically stable (use Nyquist criterion) with steady state output response $|\mathbf{y}_{ss}(t)| \leq 0.11$ to sinusoidal disturbances $\mathbf{d}(t) =$ $\sin(\omega t)$ for all $\omega \in [0, 0.1]$ rad/sec,

(ii) $|\mathbf{G}(j\omega)| \leq 0$ dB for all ω ,

(iii) the open loop system has maximum phase margin.



with $\mathbf{P}_1(s) = \frac{1}{s(s+2)}$ and $\mathbf{P}_2(s) = \frac{s-2}{s^2+s+3}$. Design a controller $\mathbf{G}(s)$, with dimension ≤ 2 , such that the closed-loop system is asymptotically stable with

(i) steady state error response $|\mathbf{e}_{ss}(t)| \leq 0.1$ to ramp inputs $\mathbf{v}(t) = t$,

(i) zero steady state output response $y_{ss}(t) \equiv 0$ to both constant d(t) and sinusoidal $\mathbf{d}(t) = \sin(t)$.

Draw the root locus of PG(s) using the Routh table for an accurate study of the crossing points of the imaginary axis.

of the crossing points of the imaginary axis.
Ex. # 3) Given
$$\dot{\mathbf{x}} = A\mathbf{x} = \begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix} \mathbf{x}$$
, $\mathbf{y} = C\mathbf{x} = \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$,

(i) determine the indistinguishable states x from the output y,

(ii) decompose the system into observable and unobservable subsystems, and find, if possible, K such that A - KC has the spectrum $\{-9, -3\}$,

(iii) for the system $\dot{\mathbf{x}} = A\mathbf{x} - K\mathbf{y}$, $\mathbf{y} = C\mathbf{x} + \mathbf{d}$, with disturbances \mathbf{d} and K as in (ii), compute the steady state output response $\mathbf{y}_{ss}(t)$ to constant $\mathbf{d}(t)$.