NAME, SURNAME AND STUDENT NUMBER (* required fields):

.....

CONTROL SYSTEMS (A) - 2/7/2019

[time 3 hours; no textbooks; no programmable calculators]

in which θ is an angular position and θ_r is the angular position to be tracked. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use the Nyquist criterion with reasonable approximations for the Bode plots), the steady state angular position θ_{ss} to constant disturbances d is such that $|\theta_{ss}| \leq 0.02$ and the steady state error $e_{ss} = 50$ for an angular velocity $\dot{\theta}_r = 2$ rad/sec is such that $|e_{ss}| \leq 0.04$,
- (iii) the open loop system has phase margin $m_{\phi}^* \geq 50^{\circ}$ rad/sec.

Design one dimensional controllers $G_1(s)$ and $G_2(s)$ such that the closed-loop system is asymptotically stable with zero steady state error to constant inputs r. Draw the root locus of the open-loop system.

3) Given the system $\dot{x} = Ax + Bu$, y = Cx, with

$$A = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}, \ B = \begin{pmatrix} 1 \\ \beta \end{pmatrix}, \ C = \begin{pmatrix} 1 & \alpha \end{pmatrix},$$

discuss the values of $\alpha, \beta \in \mathbb{R}$ for which there exists an output feedback controller (state feedback+state observer) such that the eigenvalues of the controlled system are all in -2 and the state observation error goes to zero at least as e^{-2t} .