CONTROL SYSTEMS - 30/10/2020

[time 2 hours and 30 minutes; no textbooks; no programmable calculators]

Ex. #1) Consider the feedback system

with $P(s) = \frac{1}{s^2(s-1)}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion with approximate Bode plots)
- (ii) the open loop system PG(s) has phase margin $m_{\phi} \ge 40^{\circ}$.

Ex. # 2) Consider the feedback system

with $P(s) = \frac{s+2}{s-1}$. Design a controller G(s) such that

- (i) the poles of $W(s) = \frac{GP(s)}{GP(s)+1}$ have real part ≤ -4 ,
- (ii) the steady state output response $y_{ss}(t)$ to disturbances d(t) = t is zero.

Draw as precisely as possible the root locus of PG(s).

Ex. #3) For the system

$$\dot{x}_1 = -x_1 + x_2 + u$$
 $\dot{x}_2 = -x_2$
 $y = x_1$ (1)

calculate the forced output response y(t) with input $u(t) = \sin t$ and, if it exists, the steady-state output response $y_{ss}(t)$.