CONTROL SYSTEMS (B) - 3/2/2023

[time 3 hours; no textbooks; no programmable calculators; all the mathematical passages must be motivated and clearly explained]

where $\mathbf{P}_1 = \frac{s-1}{(s+2)^2}$ and $\mathbf{P}_2 : \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{m}, \ \mathbf{y} = C\mathbf{x} + \mathbf{m} + \mathbf{d}$ with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & -4 \end{pmatrix}, \ B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 \end{pmatrix},$$

design a controller G(s) with minimal dimension in such a way that:

(i) the feedback system is asymptotically stable (use Nyquist criterion as stability test) with steady-state error response $|\mathbf{e}_{ss}(t)| \leq 0.5$ to inputs $\mathbf{v}(t) = t$ and steady-state output response $\mathbf{y}_{ss}(t) = 0$ to constant disturbances $\mathbf{d}(t)$.

(ii) the open loop system has $\omega_t \leq 0.4 \text{ rad/sec}$ and $m_{\phi} \geq 40^{\circ}$.

with $\mathbf{P}_1(s) = \frac{s-1}{s+2}$ and $\mathbf{P}_2(s) = \frac{1}{s(s-1)}$, design the controllers $\mathbf{G}_1(s)$ and $\mathbf{G}_2(s)$ in such a way that:

(i) $G_1(s)G_2(s)$ has dimension ≤ 2 , $G_2(s)$ is proper and $G_1(s)$ is strictly proper

(ii) the poles of the internal feedback system $\frac{\mathbf{G}_2(s)\mathbf{P}_2(s)}{1+\mathbf{G}_2(s)\mathbf{P}_2(s)}$ are all in \mathbb{C}^- with real part ≤ -0.5

(iii) the feedback system is asymptotically stable with steady-state error $\mathbf{e}_{ss}(t) = 0$ to constant inputs $\mathbf{v}(t)$.

With $G_1(s)$ and $G_2(s)$ designed in (i)-(iii), draw the root locus of the open loop system $G_1(s)P_1(s)\frac{G_2(s)P_2(s)}{1+G_2(s)P_2(s)}$ (using the Routh table for crossings of the imaginary axis).

where $\mathbf{P}: \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}, \ \mathbf{y} = C\mathbf{x}$ with

$$A=\begin{pmatrix}0&0\\1&1\end{pmatrix},\;B=\begin{pmatrix}1\\0\end{pmatrix},C=\begin{pmatrix}0&1\end{pmatrix},$$

design $\gamma \in \mathbb{R}$, $F \in \mathbb{R}^{1 \times 2}$ and the state observer O in such a way that the system is asymptotically stable with steady-state output response $\mathbf{y}_{ss}(t) = 1$ to inputs $\mathbf{v}(t) = 1$ and with all eigenvalues in -1 (*Hint*: here the state observer O is a dynamical system which computes an asymptotic estimate $\hat{\mathbf{x}}$ of the state \mathbf{x} of \mathbf{P} from \mathbf{y} and \mathbf{u}).