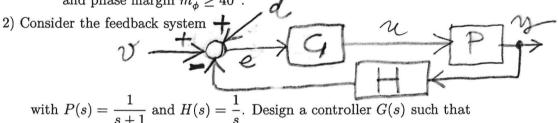
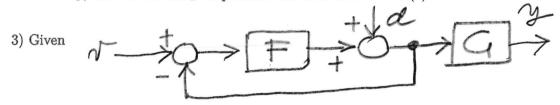

NAME, SURNAME AND STUDENT NUMBER (* mandatory fields):


' CONTROL SYSTEMS - 4/2/2020 (B)

[time 3 hours; no textbooks; no programmable calculators]


with input v, error e, output y, disturbance d and $P(s) = \frac{0.5 - s}{s^2 + 12s + 20}$. Design a controller G(s) such that

- (i) the closed-loop system is asymptotically stable (use Nyquist criterion with approximate Bode plots) and steady state output response y_{ss} to disturbances $d(t) = \delta_{-1}(t)$ such that $|y_{ss}| \leq 0.04$,
- (ii) the open loop system PG(s) has crossover frequency $\omega_t^* \geq 10$ rad/sec and phase margin $m_{\phi}^* \geq 40^{\circ}$.

- (i) the closed-loop system is asymptotically stable
- (ii) its steady state error $e_{ss}(t)$ to inputs v(t) = t is 0,
- (iii) its steady state output $y_{ss}(t)$ to both constant disturbances d(t) and sinusoidal disturbances $d(t) = \sin t$ is 0,
- (iv) G(s) has minimal dimension.

Finally, draw as precisely as possible the root locus of PG(s).

with $F(s) = \frac{s+1}{s+2}$ and $G(s) = \frac{1}{s+2}$ find the transfer functions from d to y and from v to y. Finally, calculate the output response y(t) to $d(t) = (\cos(3t) - 2)\delta_{-1}(t)$.