NAME, SURNAME AND STUDENT NUMBER (* required fields):

CONTROL SYSTEMS - 8/1/2019 (B)

[time 2 hours; no textbooks; no programmable calculator]

with $P_1(s) = \frac{1}{s+2}$, $P_2(s) = \frac{s+1}{s+0.1}$, design one-dimensional controller $G_1(s)$ and two-dimensional controller $G_2(s)$ such that the feedback system (from v, d_1, d_2 to y) has the following properties:

- (i) asymptotic stability (use the Nyquist criterion)
- (ii) zero steady state error to constant inputs v,
- (iii) zero steady state output to constant disturbances d_1,d_2 and zero steady state output to unit ramp disturbances $d_1(t)=t$

and the open loop system (from e to y) has the largest possible crossover frequency ω_t^* .

- 2) Given $P(s) = \frac{s+2}{s(s-2)(s+10)^2}$:
 - a) Draw the root locus of P(s) using the Routh criterion to determine the exact picture on the imaginary axis
 - b) Determine, if any, a controller G(s) = K such that the feedback system $W(s) = \frac{PG(s)}{1 + PG(s)}$ is asymptotically stable.
 - c) Determine a one-dimensional controller G(s) such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable with poles having negative real part ≤ -1 and the absolute value of the steady state error to unit ramp inputs (v(t) = t) is ≤ 0.2 .
 - d) Determine a controller G(s) such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable and the 5%-settling time of the step output response is $\leq 2 \cdot 10^{-2}$ sec.

with $P(s) = \frac{1}{s+3}$ find, if possible, K_r and K_d such that the steady state output response $y_{ss}(t)$ of the closed-loop system with input $v(t) = \sin t$ is $y_{ss}(t) = 2(\cos \frac{\pi}{3} \sin t + \sin \frac{\pi}{3} \cos t)$.