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Exercise 1 We have in Laplace domain
P(s) L(s)
Y(s) = ———— — L(s) = P
()= Ty 59 T4 £y L) = Ga)P(s),
so that Wy(s) = H_LLS()S) (disturbance-to-output transfer function) and We(s) = ﬁ(s) (input-

to-error transfer function).

(i) Since there is no integral action before the entering point of d, we set G(s) = %é(s) SO
that the steady state response with constant disturbances is

Yo = Wd(()) =0

(ii),(iii) From (ii) we have the following constraint on G(s) : |G(jw)| < 36 dB for all w. The
Bode plots of P(s) = 1 P(s) are drawn in Fig. 1.

S

We have form the Bode plots in Fig. 1

(j5)|ap = —27.8dB, Arg(P(j5)) ~ —191°
|P(510)|45 =~ 40dB, Arg(P(j10)) ~ —180°

Let us place the new crossover frequency wy at 5 rad [ sec with the desired phase margin > 30°,
using G(s) and recalling that we must satisfy vertG(jw)| < 36 dB for all w. For doing this,
G(s) must be such that

|G(j5)|ap ~ 27.8dB, Arg(G(j5)) ~ 42°

Let

~ 1+ 745
G(s) = KR,(s) = K———
() = KRlo) = Ky 22

and choose (from the compensating functions Bode plots) m, = 6, wy = 2 rad/sec with
wf = 5. At wy = 2 rad/sec we have magnitude increase equal to 6 dB and phase increase
equal to 45°. For w} = 5 we obtain 2 = wy = w;T, = 574 = 74 = 2/5.

We have |R,(jw;)P(jw;)| = —27.8 4+ 6dB = —21.8dB and Arg() ~ —191° 4 45° = 146°
which would imply a phase margin ~ 34° > 30°(as required by (iii)). For having an overall
magnitude increase of 27.8dB at w; = 5 rad/sec we choose a proportional action K = 21.8dB
so that to have w; ~ 5 rad/sec. Our controller G(s) is finally

1—1—%3

l—i—%s

G(s) = 12.28
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Figure 2: Bode plots of G(s)P(s)

The Bode plots of G(s)P(s) and its Nyquist plot are drawn in Fig. 2 and 3. The Nyquist
plot shows that the closed-loop system is asymptotically stable (we have —1+ 1 = 0 counter-
clockwise tours around the point —1 + 07).

Exercise 2 We have in Laplace domain

Li(s) 1 Li(s) La(s)
Y(s) = —————d ———d
) = T LM P T e 2 P T e

where Li(s) = HL;()S) and Lo(s) = G(s)L1(s).
(ii) Since the d; to y transfer function is Wy, (s) = 13:7(28()5) we must have for unit ramp
disturbance d;

1 Li(s) NUM(G(8))]s—0

_— <0.1 <0.1

‘5 1+ La(s)ls=0 — = DEN(sG(8))|s=0 —
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Figure 3: Nyquist plot of G(s)P(s)

Kga

which implies that G(s) = —=Ga(s) with
|Kaa| > 10.
Choose |Kg,1| = 10.
iii) Since the dj to y transfer function is Wy, (s) = Lo L8 we must have for constant
2 P(s) 14+La(s)
disturbance dg
1 Ll(S)

=0

P(S) 1+ LQ(S) 5=0

which is true thanks to the pole at s = 0 in G(s).

(i) Recall that G(s) is required to be two-dimensional. Therefore, G(s) may have the form

2 ~
% so that G(s) = 1G(s) is indeed two dimensional and realizable (two pole-zero

actions plus a proportional action). The direct path transfer function is

s+2 -
Lo(s) = G(s)La(s) = IOWG(S)
the first zero of G(s) will decrease the zero-pole excess from 3 to 2 and the zero-pole action
will move the asymptote center to the left: the new asymptote center will be required to
satisfy

4—p+2z

< -1
2

sy =
Moreover, notice that the zeroes of La(s) must be all with real part < —1 (in such a way that
by increasing the gain the closed-loop poles will move to the left of Re(s) = —1). We choose
z =3 and p = 20. Next, we choose K¢, from the Routh table of NUM (1 + G(s)P(s))|s—1 =
s5 +13s* + (K — 10)s® + (5K + 235)s?(8K — 224)s + 4K + 76. We obtain as first column of
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Figure 4: Positive root locus of P(s) = %

Figure 5: Negative root locus of P(s) = %

the Routh table

1

13

2Kq, — 62

10K, — 165K, — 4859

2(Kg, — 31)

18K, — 839K, + 404Kq s + 256733
10K, — 165K, — 4859

4Kg, + 76

which gives Kq, > max{31,19,31.78} = 31.78 for having no sign variations.
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Figure 6: Positive root locus of P(s) = #@;1)

Exercise 3. (i) The zero-pole excess is n —m = 1, the asymptote center sp = 1 4+ 21 = 3 (it is not
useful for n — m = 1) and the singular points are determined by the equations:

p(s,k) = (s> +1)(s—1)+ K(s+1)?=0

%p(s,k):252*28+S2+1+2K(8+1):0

We obtain as solution s ~ —3.95. From the Routh table of NUM (1 + KP(s)) = s* + (K —
1)s? + (1 +2K)s + K — 1 we obtain as first column

1
K-1
2K
K -1

which implies K > 1 for having no sign variations. Therefore, the closed-loop system with
2

any G(s) = K > 1 is asymptotically stable. The root locuses of P(s) = % have been

drawn in Figg. 4 and 5.

(ii) The root locuses of P(s) = ﬁ% have been drawn in Figg. 4 and 5. Notice the

singular points s ~ 0.2 + 0.65 for K ~ 0.2 and s =~ 0.4 for K = 0.1 for the positive locus
(Fig. 6) and s &~ —2.4 for K ~ —28 for the negative locus (Fig. 7). From the Routh table of
NUM(1+ KP(s)) =s*— 53+ (K +1)s? 4+ (2K — 1)s + K we obtain as first column

1
~1

3K

2K (3K — 1)
K

which implies there is no G(s) = K for which the closed-loop system is asymptotically stable.
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Figure 7: Negative root locus of e

Exercise 4. Our process

&= Az + Bu+ Pd, y = Cx (1)

0 1 0 ~ 1
() s (O p=()ooma o,
We first check that (A, B) is stabilizable. Indeed, it is even controllable (R = (B 1A4B) =
0 1
(1 o)
We solve the problem with the output regulation procedure. Since d = Dsint we choose an
exosystem for d of the form

where

. 0 1
Wy = (_1 0) wq = Sqwq

and its solutions have the form

wal) = (ot ) w0

—sgint cost

so that the disturbance is generated as d(t) = (1 0)wgy(t) = Qqd(t) corresponding to the

D

Since v = d_1(t) we choose an exosystem for v of the form

initial conditions wg4(0) = <0 > :

Wy, = 0 = S,w,
whose solutions have the form

Wy = Wy (0)
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so that the reference input v is generated as v(t) = wy(t) = Quv(t) corresponding to the
initial conditions w,(0) = 1. In the overall, we have the exosystem

0

10
w:(%d So)w: 10 0w
v 0 0 0

and w = (wd>. The output of the exosystem ¢ = Quw for generating the vector (i)

v
(distrubances and reference inputs) will be

_(d\ _(Qa O (1 00

o= ()= ()= 0 1)
Finally the tracking error is defined as

e:y—U:Cx—va:(l 0):B—(0 0 1)w

The process (1) together with the exosystem becomes

&= Ax + Bu+ Pd,
w = Sw,
e =Czr+ Qu, (2)

with

P=PQw=<§) : 8>,Q=—QU=(0 0 -1).

The regulator equations to be solved foursome IT € R?*3 and " € R'*3 are

IIS = AIIl + BT + P
CIl=Q

From the second equation

00 1)=(1 0)(Zl>;»m:(o 0 1)

2

and using this in the first equation we get
m=(-1 0 0),l=(0 -1 0).

Therefore,

0 01
H:(_l 0 0>,r:(0 -1 0)
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and the (state feedback) regulator is given by
u=F(x —w) + Tw

where F' € R'? is any matrix for which 0(A + BF) € C~ (use Ackermann’s formula for
finding F: F = —yp*(A)). For example, with F' = (—1 —2) we assign the eigenvalues of
A+ BF both in —1.



