Notes on Linear Control Systems: Module III

Stefano Battilotti

Abstract—Laplace (and inverse Laplace) transformation and
its properties. Differential models in Laplace domain. Modes,
eigenvalues and poles. Transfer functions. Residuals theorem and
decomposition of rational functions in simple fractional terms.
Calculus of forced and unforced state and output responses in
Laplace domain.

I. THE MATHEMATICAL MODEL IN LAPLACE DOMAIN

It is useful to consider a state space model, described by
differential equations, from a different perspective using the
so called Laplace transform (appendix A). The reasons for
this change of perspective is both for the technical advantages
the Laplace transform has over the time analysis and for
its relevance and direct application in an experimental setup,
which leads to the so called armonic or frequency analysis.
To this aim, we want to obtain the Laplace transform of the
system

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

In particular, on account of proposition A.2 and the linearity
property (see the appendix) of the Laplace transform

d
E[%

= AL[x(t)](s) + BL[u(t)](s)
Therefore
(sI — A)L[x(t)](s) = zo + BE[u(t)](s)
so that
Llx(t)](s) =

Recalling the form of the solution x(t), on account of propo-
sition A.3 and the linearity property of the Laplace transform

(sI — A) g + (sI — A)"'BLu(®)](s) (1)

Llx(1)](s) = ez + Jo A=) Bu,dr](s)

= £le™](s)zo + L[ B](s)Llu(t)](s)
= L[@B)](s)zo + L[H()](s) £[u(t)](s) 2)

By comparison of (1) and (2)

(sI — A) "tz + (sI — A" BL[u(t)](s)
= £[®(1)](s)xo + L[H(®)](s)L[u(®)](s)
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x(t)](s) = s£[x(t)](s) — w0 = L[Ax(t) + Bu(?)](s)

for all input functions u and zg € R™. It follows that

SH®)|(s) = (sI - A)™'B 3)

The matrix £[H(t)](s) is known as input-to-state (I/S) transfer
function matrix. Similarly, by linearity of the Laplace trans-
form and (2)

Lly®)](s) = £[Cx(#) + Du(#)](s)
= CS[X(t)](S) + DS[U(t)](S) = C(L[@()](s)zo
+E[H@®)](

and recalling the form of the output y(t)

E[ygt)](S)
+J (Ce*"=" B + D8, )u,dr](s)
0

= £[Ceay

= g[Ce|(s)zo + L[Ce™ B + D5 ()] (s)L[u(t)](s)
= L[¥(B)](s)xo + LW (1)](s)L[u(t)](s) (5)

By comparison of (4) and (5)

C(sI — A)lag + [C(sI — A)™'B + D]L[u(t)](s)
= L[¥(1)](s)xo + E[W(1)](s)L[u(t)](s)

for all all input functions u and xy € R™. It follows that

=C(sI —A)~!
=C(sI-A)'B+D (6)

The matrix £[W (¢)](s) is known as input-to-output (I/O)
transfer function matrix. Since

Lly®)](s) = £[®(B)](s)xo + LIW(#)](s) £[u(?)](s)
clearly
Ly (t, 20)](s) = L[T(D)](s)zo0
Ly, wl(s) = LWO)](s)Llu(®](s) (D
Similarly,



II. RESIDUALS METHOD FOR DECOMPOSITION OF
RATIONAL FUNCTIONS

As it results from (7) and (8) it is possible to calculate the
state and output responses in the Laplace domain by means of
the Laplace transforms £[®(t)](s), L[H(t)](s), L[¥(t)](s)
and £[W (t)](s) together with the Laplace transform of the
input function. The state and output responses in the time
domain are obtained as inverse Laplace transforms. For ex-

ercise, with an I/O transfer function £[W(t)](s) = sil the

forced output response to the unit step input u(t) = § ()
(appendix Al) is in Laplace domain

Lly™ (¢, w)](s) = LIW(1)](s)L[u(®)](s) = 5(571“)
and in the time domain is
0 - 6w, o

where (y(*)(t,u)), denotes the signal associated to y () (¢, u)
(appendix A7). The inverse Laplace transform of #ﬂ) can-
not be obtained from known transforms: we know the inverse
Laplace transform of % and ﬁ separately but not of their
product. We want to find a method for calculating the inverse
Laplace transform of rational functions, which are the most
common functions we have to deal with in the calculation of
an inverse Laplace transform.

Let G(s) be a (n x m) matrix of proper rational functions.
We recall that a rational function g(s) has the form

a(s)
where a(s) and b(s) are polynomials and deg[a] and deg [b]
denote the degree of a(s) and, respectively, b(s). The rational
function G(s) is strictly proper if deg[a] < deg[a], proper if
deg(a) < deg[b] and improper if deg[a] > deg[b]. We want
to study a method for finding a (n x m) matrix Q(¢) such that

Q(t) = L7 [G(9)](). (10)

First of all, we can always find a constant (n x m) matrix Gg
such that G(s) = Gy + G1(s) and G1(s) is a (n x m) matrix
of strictly proper rational functions (either use the comparison
method or divide the numerator of each element of G(s) by
its denominator). For instance, the function

s+ 2
11
s+1 (i
can be decomposed as
s+2 1
=1 12
s+1 +s—l—l (12)

This can be done by using a comparison method or, alterna-
tively, Ruffini’s method. With a comparison method, for some
reals «, 3 to be determined we have

s+ 2 B
=a+ 13
s+1 @ s+1 (3)
Therefore,
2
s+ Cas I5] :a5+a+ﬂ (14)
s+1 s+1 s+ 1

and by comparing the coefficients of the corresponding powers
of s in the right and left-hand polynomials of (14) we obtain
the equations in the unknowns «, 3

1=«

2=a+p 15)

ie.a=1and g =1.
It is easy to see that any strictly proper G(s) can be always
written as

(16)

where G(s) is a (n x m) matrix of polynomial functions
and m(s) is the m.c.m. of all the polynomials b, ;(s), where
b; j(s) is the denominator of [G(s)];; 1= ;;8, the (i,7)
element of the matrix G(s). We can assume that m(s) has
the form

m(s) = (s — A a7
j=1

where A1, ..., A, are the distinct roots of m(s) and p; denotes
the multiplicity of A;. The numbers A(,..., A, are the poles
of G(s). We want to prove the following result.

Proposition 2./: (Residuals theorem). Let G(s) be a (nxm)

matrix of strictly proper rational functions and let \1, . . ., A, be
its distinct poles with multiplicity p1, . . ., it,. Then
L) R: .
G(s) = —d 18
(8) Z Z (S — )\Z)j ( )
i=175=1

where R; ; is the so-called residual of order j associated to the
pole \; of G(s) defined as

1 ) dri—i

Rij = :
S (g — 9)! oo, dsti—d

[G(s)(s — A:)*'](19)

Proof (can be omitted). The decomposition (18) for some
matrices R; ; to be determined follows from the fact that A;
is a pole of G(s) with multiplicity p;. We have

Hh

Gla)(a =0 = 3] 3] (s = 0

h=1k=1
Moreover, since
dHti—I (5 _ )\i),uz‘

- =0
s—>H/\11 dsti—I (8 - )\h)k

forall h #4, hyi=1,...,7rand j =1,..., 1

dri—i

; WAV
T PG s) s - 0]
T Hh dHi—3d (Sf)w),uz‘
= lim By —
s A hzl l§1 dsti=i (s — Ap)¥
Hi P
d.“fl J _
=l 21 ok s (0 = 20"
and ,
dri—a

(S — )\i)“i_k

lim -
s>\ dsﬂ'i —J



forall k# jand j,k=1,..., 1,
1223 pa—"
. dlh J

8, 2 ik g

(S - )\Z‘)#iik

Hi
= lim ;lRi,k(Mz' —k)(pi —k—1)---

(kg 1) (s = N) TR
= Rij(pi =) (i =g —1)---2- 1 = Ry j(pi — j)!
which proves formula (19). O
Recall that (appendix A4)
7 1
Sl = 5 e
and (frequency translation property in appendix A7)
/\ ttJ 1 1
£ = — (22)
G0 = 5
Therefore, in view of (18)
T M j—1
=ZER,J+ T (23)

j=1

=1
is such that G(s) = £[Q(¢)](s) and therefore Q(¢) solves our
problem (10).
Exercize 2.1: Find Q(t) such that Q(t)
where G (s) := -2

s(s+1)°
We have from (18)

= £7G(s)](t)

G(s) = ﬁ = }? 5?1 (24)
and

R, = lli% G(s)s =10

Ry = sl_i)rgG(s)(s +1) = —10.
Therefore,

and using the linearity property of the Laplace transform and
the frequency translation property (appendix A7)

Q(t) = £~
=106V (t) — 10¢, = 106V (1)1 + €', ].<
Exercize 2.2: Find Q(t) such that Q(t) = £71[G(s)](t)

where G(s) := e
We have from (18)

i S B R1 R2
CO =Gy s oo @
and
Ry = hrr% G(s)(s—1)*=1
d
Ry = lim —(G(s)(s — X)") =1
Therefore,
G- — L, 1 (28)
§ (s—1)2 s—1 (s—1)

e[V ()]s — DI(t) + £ Lt (s + D)](2)
(26)

and using the linearity property of the Laplace transform and
the frequency translation property (appendix A7)

Q(t) = £V ()]s — D) + £ [L[t+1(s — D](2)
=e' +elty = [l+1t]< (29)
Exercize 2.3: Find the function Q(t) such that Q(t) =
£7G(s)](t) where G(s) := 325-:;1“'
We have from (18)
s+1 Ry Rs
G(s) = = +
R R L IRy
and
1 3
Riz  lim [G(s)s+ L4 Y0
s} f 2 "2
— % \/g 1 + ]ﬁ
*J\/§ 2 76
1 3
= li G - —j—
Ry ﬁfﬁjf[ (5)(s+5 =75 )]
1 V3,
PR
Therefore,
s+1 3+ 3 -0
GO - i~ 1. 1 .&
s $ s+ 5 + ]7 s+ 5 ]7

and using the linearity and frequency translation properties of
the Laplace transform

Q) = £ 2y eI
8+%+j§ s—l—%—j?
L - () [ e I
R IO CR AL 1)
L VB 4=y 1 VB (4
(5 +J?)e+ (§ ?)e i
=t 4 e E R
(5 o, (020 — in (L)
(3 = eos (L21) + jsin (L)

: V3. V3 V3

=e72 (cos+(7t) + 58 1n+(7t)) (30)

Note that for obtaining the inverse transform of second order
functions G(s) with complex conjugate poles, alternatively it



is possible to proceed as follows. Rewrite and the linearity and frequency translation properties of the

transform
G(s) - 2s+1 _ s+1§+§3 <§1 1§> (?1 13)
T g Q) = e a4 e B
SEE s R - (5 ) e w90
=G f f)i it % G f) 3 + (gé f) LY @] + 2)](1)
- Sleos (P00 + 3+ g (ol = (s et (B ) ere (35)

2 -1
i - (0) i =
Therefore, using the inverse transforms of sinus and cosinus Exercize 2.5: Calculate x'7(t, o) with A < )

-2 3
and the frequency translation property of the Laplace trans- 1
form and zo = 1)’
We have
-1
_ o1 s +% 1 @ e[®(t)](s) = (s — A) ' = (S —2 1 )
Q(t)—ﬂ [(S+%>2+%](t)+£ [ 3(8-}—%)24—%]@) 2 5—3
. 1 s—3 -1
e S%+3 L ¥ =254<2 2) (36)
=g [(s+%)2+%](t)+\@£ [(8_'_%)2_'_%](1‘) | 2 s s+ s
V3 ) Since s —5s+4 = (s —4)(s — 1) from (18)
= £7[gfeos (S50)](s + H)I) T R
1 irare V3 1 s—Ds—1\ -2 s-2
8 gl (0 + 10 Y -
- e;%[cos(ét) + ?sin(?t)].< 31) and
1 _1
Ry = lirr}l((sl —A) (s —4)) = <_32 23>
Exercize 2.4: Find a function Q(t) such that Q(t) = ’ 9 3 1 3
£71G(s)](t) where Ry = lim ((sI — A) (s 1)) = (5 %) (38)
. 3 3
Therefore,
G(s):_l(sl2 41) 11 2 1
(s =3)(s+2) s+ (_32 23> (3 i*)
-1 _ 3 3 3 3
(s —A)~" = 4 + 1 (39)
We have from (18) and the linearity and frequency translation properties of the
transform
1 s—2 4 et = L7 (sI — A)7H(1)
G(s) (s—3)(s+2)( 1 s+1> v Lo 2 1
= R + Ry (32) _ 2—1[(_3 % >](t) +£—1[<§ §>](t)
s—3  s+2 B s—4 s—1
1 _1
and (3 ) s - 1o
3 3
2 1
14 3 7) e e @) — D)t
e - () (1 1) e 016 - Dl
53 5 5 I N2 A 20
4 4 —( 3 3
Ry = lim (G(s)(s +2)) = ( 5, —15> 33) <—§ : >6+ i (g 3) o 40
s 5 5

Therefore, xO (¢, z0) = ety

= (}) ei.<1 41




Exercize 2.6: Calculate the forced output response with

24+ 7s+1
524+ 5546

W(s) =

and input functionu(t) := (1 + 2sin(2t))5(_1)(t). Using the
linearity and time translation properties of the transform

1 4 52 +4s+4
Llu(t = - = 42
[(®)}(s) s * s2+4 s(s?2+4) (42)
Therefore,
s24+T7s+1s2+4s+4
=W = 43
y(s) (s)uls) s2+55+6 s(s2+4) 43)
Using the residuals theorem
24+ T7s+1s%>+4s+4
G(s) = 2 2
s24+55+6 s(s2+4)
Ry Ry Ry Ds+E
= = 44
5+3+5+2+$+52+4 4

where R, Ry and R3s can be computed with the residuals’
formula and D and E can be computed with comparison
method (see exercize 2.3). By the linearity and frequency
translation properties of the transform

£7G(s)](t) = Rie; + Roe? + R8TV (1)
+Dcosy (2t) + Esing (2t).<

The method of residuals for calculating the inverse Laplace
transform of rational function can be extended to products of
rational functions with exponentials e~?°, which correspond
to time translations in the time domain. Let G(s), A1,..., Ar
and p1, ..., u, be as above. In what follows, we point out the
method for finding a (n x m) matrix Q(t) such that

N
$) Y e

where N € N and a1,...,ayN are positive reals. In this case
the above residual method cannot be applied since e~%° is
not a rational function. We can proceed as follows. In view of
(18)

Q(t) = (45)

T Mg 71

SIS

1=179=1

(46)

where R; ; are determined as in (19), has Laplace transform
G(s). On account of the time translation property (appendix
A7),

(47)

N
Z t—aj

has Laplace transform G(s) Zjvzl e~

solves our problem (45).
Exercize 2.7: Calculate the forced output response with

¢ and therefore Q(t)

and input function
t for0<t<1
u(t) := {—t—l—? forl<t<2 (48)
0 otherwise
The input function can be written as
u(t) V@) =20t — 18P —1)
+ (t=3)8"V(t-23) (49)

Using the linearity and time translation properties of the
transform

Llu(?)](s)
1

B s2(s+ 2)

We cannot apply the residual method to £[y (t)(reed](s) for
the presence of the irrational functions e~* and e~2°. We use

the residual method to get the inverse transform of the rational
of L[y(t)Fereed)](s). If

= L[t+1(s) = 2L[(t = 1+ 1(s) + £[(t = 2)+1(s)

(1—2e* 4 e 2%) (50)

component m
1 Ri1  Rip Ry
G(s) := = —= :
() s2(s+2) s 2 ' s+2
and
Rus — lim (G(s)s?) = =
1,2 s—0 2
d o1
Ry = h_{% g(G(S)S ) = 1
1
Ry = limQ(G(s)(s +2)) = 1
Therefore,
11 11 1 1
G(s)=—-"+=-=+- 51
O =15t 29 T ise2 G

and by the linearity and frequency translation properties of the
transform

1 1 1

SN0 =~ 0 + 527 510
18 510 = 380 + gt + e

(52)
It follows that
y®@(t,u) = £7HG(s)(1 — 2~ +
= £7HG(s)](t) — 2&~
+£7G(s)](t - 2).=
Exercize 2.8: Calculate the forced output response with
-1 -1 0 1
2 o) s fo)e- (2 00)
1 1 -1 0

e2)]()
NGt —1)

A=

and input function

1
u(t) := {
0

forl1<t<3
(53)

otherwise



The input function can be written as
u(t) =8V —1) -8 -3) (54)

Using the linearity and time translation properties of the
transform

2[1;<t>]<s> = g[8Vt

— g(e—s _ 6_35)

—1)](s) - £[8 V(¢ - 3)](s)

Moreover
L[W(t)](s) = C(sI — A)~*
-1
s+1 1 0 1
= ((1) (1) (1)) 2 s+ 2 0 0
-1 -1 s+1 0

1
s(s+1)(s+3) .

s+ D(s+3)+3(s+1)s
x(%@+1ﬂs+$+s@+3) @+1p)

and

C(sI — A)~'BLu(t)](s)

bs)

(56)

Ly (t)Freed](s) =

e 5 — 6—33

T2+ 1(5+3)
Z(s+1)(s+3)+ (s + 1)s
X <—(s+1)(5+3)+ s(s+3) (s +

We cannot apply the residual method to €[y (¢)(freed)](s) for
the presence of the irrational functions e~ and e~3°. We use

the residual method to get the inverse transform of the rational
component of S[y(t)(f"rced)](s). If

G = TG
2(s )(5+3) (3+ 1)3
“\=2(s+1)(s+3)+ 2 S(s 1 3) + s+ 1)s
from (18)
R1,1 Ry R R
Gls) = s 52 +s—|—3 s+1
and
Rio= lim(G(s)sg) = < §2>
s—0 -3
R lim - (G (s)5?) = 5
1,1 _SLI%%( (s)s%) = 7%
Ry = lim (G(s)(s +3)) = (‘é)
s —1is
Ry = lim (G(s)(s + 1)) = (_03> 57)
s 2
Therefore,
1 2 1
() () (DG
G(s) = 89 + 523 + = +183 +- +21 (58)

LG()N(

_|_
(55)

and by the linearity and frequency translation properties of the

transform
) = £1[(—9194) (t)+ £1[<‘3§>]<t>

52

~

(59)
It follows from (47) that
y ™ (tu) = £7G(s)(e™* — e ?)](t)
=Gt - 1) - £ [G(9)](t - 3).=

APPENDIX
A. Laplace transform

Let I be an interval containing [0, +00) and let £ : [ — C
be a real or complex-valued function.

Definition A./: The function f : I — C has a £-transform
if 3s € C such that ¢ : t — ¢(t) := e 5'f(t) is absolutely
integrable over [0, +00), i.e

+00
J,
0

If the integral on the left of (60) exists for s = s¢ then it exists
for all s € C such that Re(s) > Re(sp). Indeed, for all s C
such that Re(s) > Re(sg)
|7 (t)] = e RHE(E)] < TR £(1)]
— ()

TS |dt < oo (60)

(61)

since |e~7Mm(s0)t| — |e=7Im(s)t| — 1. Therefore, |e=*!f(t)]| is
majorized by an integrable function |e™*0!f(¢)| for all s € C
such that Re(s) > Re(so) and it is integrable for all such s.
We conclude that, if the set of s € C for which the integral
on the left of (60) exists is not empty, it is an open half-plane in
the complex plane, in particular the set {s € C : Re(s) > o[f]}
where o[f] is the infimum of the real parts of the points s € C
for which the integral on the left of (60) exists.
Definition A.2: Letf : I — C have a £-transform. If
+00
o[f] := inf[Re(s) : J le™*'f(t)|dt < +o0], (62)
0
foreach s € C : Re(s) >
of f as

o[f] we define the Laplace transform

L[f](s) = Lm le=StE ()| dt (63)



and o[f] is called the convergence abscissa of f. Note that if
£(1)] < Me*! (64)

for some M > 0, real o and for all ¢ > 0, then f has a
L-transform and o[f] < «. Indeed, for all s € C: Re(s) > «

|€75tf(t)| _ efRe(s)t|f(t)| < efRe(s)tMeat
— Me(afRC(S))t (65)

and since Me(@—Re(s)t

e St (t) is.
1) Laplace transform of the Heaviside (or unit step) func-
tion: The Heaviside (or unit step function is

1
V@) = {

0 otherwise

is integrable over [0,-+o0), also

fort >0
(66)

The function ¢t — 5(71)(75)6_‘% is integrable over [0, +o0) for
all s € C: Re(s) > 0. Indeed,

|€_St6(_1) (t)| _ e—Re(s)t (67)

which is integrable over [0, +0o0) if and only if Re(s) > 0.
Therefore, o[f] = 0 and the Laplace transform of f is

+o0

I (0)](s) = f

+00
1
= J le™s!|dt = —
0 S

le=5t6 ) ()|t

(68)

2) Laplace transform of exponential functions: As further

exercise, consider the function
f(t) ;= e (69)

with a = a+ j3. The function ¢ — f(¢)e™*" is integrable over

[0, 4+00) for all s € C: Re(s) > «. Indeed,
|€_Stf(t>| _ e—(Rc(s)—a)t (70)

which is integrable over [0, +00) if and only if Re(s) > .
Therefore, o[f] = « and the Laplace transform of f is

S[E(H)](s) = L st ()|t

+o0 1
= J le=(—0gp = ——
0 S—a

3) Laplace transform of impulsive functions: Consider the
impulse function with duration 7" > 0

{1 forO<t<T
0

sV -6V —1)

(71)

f(t) =
otherwise
(72)

The function ¢t — f(t)e 5" is absolutely integrable over
[0, +00) for all s € C. Indeed, for all s # 0

+0o0 T 1— e—sT
J le™s'F(t)|dt = f le™s!|dt = ———— (73)
0 0 s
This function has a singularity at s = 0 but
o 1—e5T o 1—e5T
=l 7T 09

Therefore, for all s

CEOI) = f "ot - f je—stlat = 12

0 0 S
and o[f] = —oo. This is a general fact: if f is null outside a
compact set of R, then o[f] = —o0.
Next, consider the impulse function with duration 7" > 0
% for0<t<T
f(t) := {
0 otherwise

1

= F6V0-8Ve-11 a9)

This impulse is called normalized since

F: £(t)dt = L M £(t)dt = 1

Reasoning as in the former exercise, we find out that the
function f has a Laplace transform

(76)

SlE](s) = Lo 77
O)s) = - )
with o[f] = —oo. Moreover, for each s
_ ,—sT
lim S[E(0)](s) = lim ——— — 1 (78)

T—0 T—0 Ts

If we choose T' = %, n € N, we obtain the family of functions
{£,(t)} defined as t — £, (t) := N[§""V (1) =61 (1) (t—1)].
Note that

lim f£,(t) =8%(t) :=

n—+0o0

0 fort #0
{ (79)

400 t=20

where 6 is the Dirac impulse function and, on account of
(78) we define the Laplace transform of & ©) as

eV )](s) = lim L[f.(1)](s) = 1

4) Laplace transform of polynomial functions: As a final
exercise, consider the function

tk'

with & € N. Select ¥ = 0 and note that in this case f(t) =

sV (t) over [0, +00). As we have already seen, the function

f(t) is integrable over [0, +00) for all s € C: Re(s) > 0 and

SF1)(s) = ©

with o[f] = 0. On the other hand, for all k¥ € N\[0] and for
all se C:Re(s) >0

k +0o0 k
el (s) = f et

(80)

(81)

(82)

AR k!
e—st tk t=+00 1 +o0 . tk—l

h [_ s E]t:o EJ e (k— 1)!|dt

1 tk71
= - 83

Sl )

Therefore
tk 1

with o[£] = 0.



5) Properties of Laplace transform: The Laplace transform
is alinear operator, i.e. for all pairs of ¢1,co € C and f, f;
with Laplace transforms and convergence abscissa o[f1] and,
respectively, o[fs]

o (LINEARITY): £[c1f1 (t)+c2f2()](s) = c1 £[f1(8)](s)+

2 £[f2(2)](s)

with O'[lel + Cgfg] = max[o[fl], O'[fg]]

6) Laplace transform of sinusoidal and cosinusoidal func-
tions: As we have already seen, for each real w

L™ (s) = e Llfi(1)](s) + c2Llfa(1)](5)

for all s such that Re (s) > 0. By the linearity of the Laplace
transform

(85)

eJwt _

25
= g 2le](s) — Lle™'](s)]

1 1 1 w
- ?[ o —l==5
] S —Jw S+ Jw §4 4+ w
for all s such that Re (s) > 0. Likewise,

e—jwt

Llsin(wt)](s) = £[
1

1(s)

(86)

gfeos(wi)](s) = L[5 (s)
1 1 1 ]

=3l =5 @7

s—jw S+ jw
for all s such that Re (s) > 0.

7) Signals: The definition of Laplace transform depends
only on the values of the function f over [0, +0). Therefore

if

f£(t) fort >0
fi(t) := (88)

0 otherwise
then £, (t) = V(1)) and L[f,(1)](s) = L[F()](s).

Some remarkable properties of f, are:
o (TIME TRANSLATION): £[f (t — T)](s) =
e sTL[f, (t)](s), VT >0, Vs:Re(s) > o[f]

« (FREQUENCY TRANSLATION): £[e®f, (t)](s) =

Ll (t)](s—a), VaeC, Vs:
Consider f(t) = sint. Clearly

Re > o[f] + Re(a).

1
f = g[f = —
LEO)(s) = LEDNS) = 5 (89)
and from the time-translation property for all 7" > 0
—sT
s e
SE (¢ =T)(s) = e L[E (B)](s) = 3 3 (90)
Therefore,
1+e 57
Ll (1) + £4 (¢t —m)](s) = i1 91
and
sint for0<t<2rm
L)+ (t—7) = { 92)
0 otherwise

Note that since s = +j are at the same time poles and zeroes

of 1}1; then o[f, (¢) + £, (t — T)] = —o0.

Likewise, consider £(¢) = 6~ (¢). Clearly,

1
LlEL (1) = LED](s) = (93)
and from the time-translation property for all 7' > 0
—sT
LIf, (= T)](s) = e TL[f, (1)](5) = (94)
Therefore,
1 efsT
Lf (1) — £t = 1)](s) = L[E(t)](s) = (95)
and
1 forO0<t<T
£.00)—£.(t-T) = { (96)
0 otherwise

Note that also in this exercise since 2= has no singularity

at s = 0, since s = 0 is at the same tlme pole and zero, then
Finally, consider f(¢) = t. Clearly,

L[EL (0)](s) = L[E®)](s) = sig

and from the time-translation property

o7

1—2e 5 +e 2
SE (1) = 26 (¢ — 1) + £ (2= 2)](5) = —————
with
fot)—26,(t—1)+f.(t—2)
t for0<t<1
={2—t forl <t<?2
0 fort =2
8) Laplace transform of periodic functions: We can prove
the following result for the Laplace transform of periodic

functions f(t).
Proposition A.1: Let f be periodic with period T' > 0, i.e.

f(t+T) =£(t) forallt > 0. Iff is integrable over [0, T'], then
1 T
LIE)](s) = ———= | e “'f(t)dt 98
[FO1) = T—gmer | € ©8)
with o[f] = 0.
Consider the square wave
1 for2n<t<2n+1,neN
f(t) := {
0 otherwise
+
=DVt —5) -6Vt —j—1)] (99)
j=0

The function
tion A.1

f(t) is periodic with period T' = 2. By proposi-

LIE®)](s) = 1_72_23J e S (t)dt

0

1 ! 1
=— | etdt = ———
1—e"25 ), 1—e28




with o[f] = 0.
As a further exercise, consider the function

sint (2n+1)m, neN
f(t) := {

0 otherwise

for2nmr <t <

+
Z sing (t — jm) + sing (¢t — (5 + 1)7)] (100)

The function f is periodic with period 7" = 2. By proposition
Al

1 2m Cu
SIF(5) = s JO e (1)t
1 " —st[a: .
- mfo e *![sing (t) + sing (t — 7)]dt
1 1+e7°

T l-e % 241 (10

with o[f] = 0, where we used the fact that

T

e ! (siny () + sing (t — T))dt

J\ sm

= L(siny (¢) +sing (t —T))(s) =

S

(t) +sing (t —T))dt

1+e*

s2+1
Finally, consider f(¢) := | sin(¢)|. The function f(¢) is periodic
with period T' = 7. By proposition A.l

LlE@)](s) = ! fr e ' (t)dt

1—e™ms

:1—6”5,[6
:1—6”5L6
:1—6”5L

= 72(51n+ () +sing. (t—=T))(s)

SlIl

O

(sing (t) +sing (t —T))dt

(sing (t) +siny (t — T))dt

1—ems
_ 1 14¢e7°
Cl—e s s2 41
with o[f] = 0.

As it can be seen from the above examples, the term
Sép e S (t)dt in (98) coincides with £[fy(¢)](s) where fy(t)
is a function which is zero outside [0,7"] and such that
(1) = Y7 (f0) - (t — jT).

9) Further results on Laplace transforms: For the deriva-
tive of a function f(¢) we have the following result.

Proposition A.2: (TIME DERIVATIVE):Let f be a signal,
continuous for all t > 0 and continuous from the right int = 0,
with piecewise continuous derivative with a Laplace transform.
Then for all s such that Re(s) > max[o[f], o[ 4]

dt
[T 0(s) = sSIED](5) — £(07)

where £(01) is the limit of £ at ¢ =
1imt4,()+ f(t)

(102)

0 from the right, i.e.

If f is once continuously differentiable and < dt is continuous
for all ¢ > 0 and continuous from the right in t = 0, with
piecewise continuous derivative with a Laplace transform, by
applying twice proposition A.2 we get

g[%(t)](s) = E[%%(t)]( ) = Q[jf( t)](s) — % t=0
df

= s[sSIED1(s) — FO)] = |

= ef(n)(s) - of(0) - | o

In general, if f is (k—1)-times continuously differentiable and
k—1 . . .

gtk—,f(t) is continuous for all ¢ > 0 and continuous from the

right in ¢ = 0, with piecewise continuous derivative with a

Laplace transform, by applying twice proposition A.2 we get

x k—1 k 1—j
o[ 0)(s) = et Z T b

The Laplace transform of the time convolution of two
signals is given by the following result. We recall that the time
convolution of two time functions f and g integrable over R
is defined as
+00

(F+g)(1) = J f(r)g(t — 1)dr  (104)
If f and g are signals
SO g(t —7)dr fort >0
(fg)(t) = { (105)
0 otherwise

Proposition A.3: (TIME CONVOLUTION): Let f and g be
two signals with Laplace transforms and convergence abscissa
o|f] and, respectively, o(g]. Then f g has a Laplace transform
for all s such that Re(s) > max[o[f], o[g]] and

L[(F =) ()](s) = LIED)](s)Ll&(B)](s)-

For exercise, the time convolution of a signal f, with
Laplace transforms and convergence abscissa o[f], and
sV is

(106)

0

(F86C) (1) = Ltf(T)J(_l)(t—T)dT = f f(r)dr

Moreover, £[8"(1)](s) = § with o[6CV] = 0.
application of proposition A.3

E[Lt

with o So 7)d7] = max|[o[f], 0].
We have already seen that the impulse function with dura-

tion T > 0
1
{T
0

= Z(6"V0) -8V -1))

By

E(7)dr)(s) = 1(F =57 )(1)](s) = - LIE](5107)

for0<t<T
f(t) =
otherwise

(108)



and
+00
f £(t)dt — 1 (109)
—00
Also, its Laplace transform is
1—e°T
LIf(t = — 110
[E()](5) = —- (110)
with o[f] = —oo. The primitive of f is
t 1 fort > T
J f(r)dr := {
0 % for0<t<T
1
= f(t+ —(t=T)4)
By application of (107)
’ 1 11—eT
f(r)d = —L[f(¢ =
of| £l = L2l = S

with O’[Sé f(r)dr] = —o0.

B. Inverse Laplace transform

It is possible, under certain conditions, to reconstruct a
signal f; from its Laplace transform, defining in some sense
an inverse Laplace transform. However, we are interested
in this kind of issues, except for the following important
remark. For any function f which has a Laplace transform
L[f(t)](s), we define as its inverse Laplace transform f (¢) :=
L7HL[F()](s)](), which is the signal of f(t). Indeed, we
identify all the inverse transforms of £[f(¢)](s) with the
signal of f(¢) (the inverse tranforms of £[f(¢)](s) form an
equivalence class).

On the other hand, any proper rational function F(s) can
be first decomposed into simple fractional terms using the
residuals theorem (theorem 2.1) and each fractional term can
be inverse transformed by obtaining as a final result the inverse
transform of F(s).



