Notes on Linear Control Systems: Module V

Stefano Battilotti

Abstract—Transient and steady-state response. Steady-state
responses to polynomial, sinusoidal, exponential inputs. Time
translation and linearity properties of steady-state response.

I. TRANSIENT AND STEADY-STATE RESPONSE

The aim of this section is to find for each input function u
a function x(¢¢) (t,u), whenever it exists, such that

%9 (¢, u) = AxC¥ (t,u) + Bu(t) (1)
and for each xy € R"

i x(55) —
tlgrolo |x(t, 2o, u) — (t,u)| =0 (2)

where x(¢, zo,u) is the solution of
x(t) = Ax(t) + Bu(t) 3)

ensuing from x( at ¢ = 0 with input function u. The function
X(SS)(t,u) represents the steady-state state response of (3),
the solution of (3) which any other state response tends to
whatever is its initial condition. The steady-state response
of (3) depends only on the input function u (and not on a
particular initial condition x).

Let us investigate conditions for the existence of x(**) (¢, u)
and how to compute x(**) (¢, u). To this aim, write the solution

x(t,to, zg,u) of (3) at time ¢ ensuing from z, at time
to < 0 with input function Utg,1]- The matrix e“* is invertible
for each ¢ and its inverse is e~ “%: indeed, since A always
commutes with —A

eAte—At _ eAt—At _ 60 =7 (4)
Set z = e~“z. We have
7(t) = e Mx(t) — e M Ax(t) = e ' Bu(t) )

By integrating (5) over (to, t), it follows that the solution z(t)
of (5) ensuing from z; at ¢y € R with input function u satisfies

z(t) — 2o = LZ

Since x = ez then the solution x(¢,zo,u) of (3) ensuing
from xzg at tg € R with input function u is

e AT Bu(r)dr (6)

t

X(t, to, T, Ufyy4]) = eAlt—to) g 4 J eA(t_T)Bll(T)dT @)
to

An important result states that the existence of a solution

x(5%) (¢, u) of (3) with the property (2) is guaranteed by the

asymptotic stability of (3).
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Theorem /.7/: Assume that (3) is asymptotically stable. For
each input function u such that for allt € R

Ju(t)] < ce® Y |tf* ®)
=0

for some k, c > 0, the steady-state state response is given by

X(SS) (t7 u) = tolirgoo X(t, to, To, u[to,t])
= lim | e** D Bu(r)dr )
to——00 to

Proof (OPTIONAL). Since the eigenvalues of A have negative
real parts, there exist a positive real b such that for all £ > 0

HeAtH < be—mt Z ti (10)
1=0

where m := —max; Re()\;) and Aq,..., A, are the eigenval-
ues of A. Therefore, on account of (8) for tg < 0

0 —to
|| f =47 Bu(r)dr| — Hf A" Bu(—7)dr|
to 0
—to n n o
< cb| B|| J e~ (m+k)T Z Z T Hdr

i=05=0
< cb| B Z Z J —(mAR) T g (11)
i=075=0
But integrating by parts for each h > 0
—to hopy —(m+k)T 1 —¢
J 67(m+k)77’hd7’ _ hileih_l/];l 0
0 & (m+ k) 0
h l+1 Al (m+k)t0tl h! .
= L e e 2
Therefore, from (11) and (12)
tm || ’ATBu )dr|| < cb|B| Z i i+ )"
fo=>=o0 i=0j= o (m+Fk) (m + k)it
13)

We conclude from (10) that for each ¢t > 0

lim
to——00

t
|| et Butrydn|
to
0
<||eAtH lim | e_ATBu(T)dTH
to——00 to

t t
+HL6A<H>Bu(T)dT|| = L A7) Bu(r)dr| (14)



which implies that limg, , o g A7) Bu(r)dr is well-
defined for each ¢t > 0. Also, usmg (10) and (13)

t t

eA=7) Bu(r)dr — f e

0

lim lim |
t—+00 tg——00

(t_T)Bu(T)dTH
to

0
n f A=) Bu(r)dr]
to

= lim lim
t—+00 tg——0

0
< lim [le?]| lim HJ e~ A" Bu(r)dr| = 0. (15)
t—+00 to——wo J;
By (10)
n
. At < —mt 7
Jim e o] < fwofle™™ D)t (16)
for all o € R™ and ¢ > 0 so that
lim [e?zo| = 0 (17)

t—o0

for all zy € R™. Using this and (15), we obtain for all 5 € R"”
t

eAlt—T Bu( )dr||

hm

lim [x(t,0,u) —  lim

to
¢
= lim [e?z +J A=) Bu(r)dr
t—00 0
¢

eAlt=T Bu( )dr||

to

lim
to——00

t
eA(t_T)Bll(T)dT

0

< lim |ezo] + lim  lim HJ
t—0o0 t—00 tp—>—0 t

_ﬂ

which proves the claim (9). Moreover as it can be easily seen
Xss(t, u) is a solution of (3), i.e. satisfies (1),

At—r Bu( Ydr|| =0

t

A lim eAt=") Bu(r)dr + Bu(t)

Xss(t,u) = o
to

= Ax,4(t,u) + Bu(t).0 (18)
The difference
xU) (¢, 20, u) 1= x(t, 2, u) — x5 (¢, ) (19)

is called the transient state response.

A similar result can be proved for the steady-state output
response y(**)(¢)(u). Taking into account that the output
response y (¢, zg,u) of (3) ensuing from zy at ¢ = 0 with
input function u is Cx(t,xg,u) + Du(t), for each xg € R"
we have

(Cx9)(t,u) + Du(t))|
Ox©9) (¢, u)|
< lim O] Ix(t, 2o, ) = x9)(t,w)| = 0

tli>nolo HY(t7 Zo, u) -
= lim [Cx(t, z0,u) —
(20)

Therefore, y(**) (¢, u) := Cx**)(t,u) +
state output response.
The difference

Du(t) is the steady-

vy (t, 9, 1) := y(t, 20, u) — y©*I (¢, u) 1)

is called the transient output response.

II. STEADY STATE RESPONSE TO POLYNOMIAL INPUTS

In this section we calculate the steady-state response to
polynomial inputs u(t) = %;. This class of inputs satisfies
the conditions of theorem 1.1 since for all ¢ € R

1
[u()] < 5" (22)
with ¢ := ki The steady-state state response is by virtue of
theorem 1.1
t
x(3) (¢, u) = im A7) Bu(r)dr (23)
0—>—00

to
Recall that A is nonsingular since A has eigenvalues with
negative real part (it is known that a matrix A is singular if

and only if has at least one null real eigenvalue) and eAt =
AeAt = eAt A, Also remember that
ti
lim eA(tt)0 — 9 (24)
to——00 7!

for each ¢ and 4, since A has eigenvalues with negative real
part.
Integrating by parts

k
lim A= Bu(r)dr = lim At pT_gr
to——00 to to——00 to k'
k t k-1
= lim Ail(—eA(th)Blt +J A=) p T dT)
to——0 k! lto to (k — 1)'
tk:
_ A1 _np2 A(t T)
A ( B+, lim § B(l~€ AL dT) 25)
Assume that for some i < k
. Alt—m) 5 T _ QTR I
i [ XSy e

From (24) it follows that

t Litl
lim eAt-T) B - dr
to—>—0 Jp (Z + 1)'
i+l t i
e ( ~BYX 4 lim eA(t_T)B_—dT)
i+ 1 to>—o )y i!
i+l i ] ti—d
_ A—l ( _ _ A—l j+1B )
i+ 1! Z( ) (i —j)!
7=0
i+l +1 ti+1—j
= — ) —_— 27
Z ) 27)

which proves (25) with ¢ replaced by ¢ + 1. Since on account
of (23)

t
A=) Bdr

to

=-A"'B4+A7!

lim
to——00

lim eAt—t)p = A~

to—>—0

1B (28)

we have proved by induction that

t k
lim | At Bu(r)dr = lm | At"BT 47
to——00 to to——00 to k!
tk*j
=- Z DB — (29)
—Jj)!



Therefore,
k k—i
t J
x(*3) (¢, ) Z 1i+iB ‘ (30)
— =)
Recalling that H(s) = (s — A)™'B,
. 1 & 1 &
—(ATYHB= - (sI-A)"' B=-—
( ) jldsi (s ) 5=0 jldsi ls=o
(31)
so that equivalently
k k—
k=i
x*9) (¢, u) - (32)
Z‘ — )i
The steady -state output response is
( ) k o th—i tk
ss ] R
(t,u) ; B 7j)!+Dk! (33)

or equivalently, recalling that W(s) = C(sI — A)~'B + D

and using (30),

k . ki

AW thJ
(55) (¢ _

yrtw ; ds? ls=o0(k — j)!j!

J

(34)

Theorem 2.7/: Assume tllat (3) is asymptotically stable. For
an input function u(t) = % the steady-state state and output
responses are

k . _
d'H th—i
(55) (¢ 1) = : 35
Xt ) - T Y ey TR
dJW t’f—j
(99) o
=y oW
7=0
(36)

We remark that the function x(**)(¢,u) could have be

computed as the function of the form x(**) (¢, u) = Z?:o ¢; E—J,,

for some co, ..., c; € R™, such that
%) (¢, u) = AxC¥ (t,u) + Bu(t) (37)
for all ¢ > 0 with u(t) = %k, The coefficients ¢y, ..., c; € R"

are calculated from the identity (36). Therefore, x(**) (¢, u) is
the solution x(¢, xg,u) of

x(1)

. k . ., . ..
with u(t) = %5 and initial condition o = co.

= Ax(t) + Bu(t), (38)

III. STEADY-STATE RESPONSE TO SINUSOIDAL AND
COSINUSOIDAL INPUTS

In this section we calculate the steady-state state response to
sinusoidal inputs u(t) = sinwt. This class of inputs satisfies
the conditions of theorem 1.1 since for all £ € R

lu(t) <1 (39)

The steady-state state response x(*%)(t,u) is by virtue of
theorem 1.1

t

x@)(tu) = lim | A" Bu(r)dr (40)
to——00 to

Recall that 4eA! = Aet = €A and

limy, o e Beoswty = 0 for each t > 0, since

A has eigenvalues with negative real part.
By iterated integration by parts

¢
eAlt—T Bu( )dT_J

to
t

A=) Bsin wrdr

—eA0t=T) B coswr

to

- J eAt=7) B coswrdr
to

t

eA(tff‘r)

A
= ——coswt — — lim B coswrdr
w

w to——0 to

A
+— lim

w to——0

eAt=7) Bsin (.UTdT)

to

Therefore,

(1+(2)) i,
B

= —— coswt — —QSinwt
w w

eA(t_T)BII(T)dT
to

and finally

t
eA=7) Bu(r)dr
to

= _<I+ (é)2)71§coswt— I+ (é)Q)fli—lj sin wt

w w

lim
to——00

Recalling that H(s) = (sI — A)~!B, note that since

H(jw) = (1 - 22 =T+ D)+ (£)) 72

A AN2 g: +A; -1B
=S () S

then
e -1+ (2)')”1 25
m@EGe) = -(1+(2)) 72 @
and
x9) (¢, u) = Im(H(jw)) cos wt + Re(H(jw)) sinwt  (43)

On account of

Re(H;(jw)) = [Hi(jw)| cos(Arg(H;(jw)))
Im(H;(jw)) = [H;(jw)|sin(Arg(H; (jw)))



foreachi=1,...,n (H;(jw) denotes the i-th element of the
vector H(jw)), we obtain

B ) int-+ Ars(E 1)
K = L)
jw

|H,, (jw)| sm(wt + Arg(
(sI — A)~1B + D, note also that

(44)

Recalling that W (s) =

CRe(H(jw)) + D = Re(CH(jw) + D) = Re(W(jw))
= |W(jw)|cos(Arg(W (jw)))
CIm(H(jw)) = Im(CH(jw) + D) =
= |W(jw)|sin(Arg(W (jw)))

Im(W(jw))

and from (42)

y¥) (t,u) = CIm(H(jw)) cos wt + CRe(H(jw)) sin wt
+Dsinwt = [W(jw)]|sin(Arg(W (jw))) coswt
+|W (jw)| cos(Arg(W (jw))) sinwt

= [W(jw)|sin(wt + Arg(W (jw))) (45)

Theorem 3.7/: Assume that (3) is asymptotically stable. For
an input function u(t) = sinwt the steady-state state and output
responses to the input u(t) are

H, (jw)| bln(wt + Arg(H, (jw)))

[H, (Jw)lsm(wHArg( n(jw)))
|W (jw)|sin(wt + Arg(W (jw)))

x(9) (¢ u) = (46)

y©9(t,u) = (47)

We remark that the function x(**)(¢,u) could have be
computed as the function of the form x(5%) (¢, u) = ccoswt +
dsinwt, for some ¢,d € R™ , such that

%09 (¢, u)

for all ¢ > 0 with u(t) = sinwt. The coefficients ¢, d are
calculated from the identity (47). Therefore, x(*%) (¢, u) is the
solution of

= AxB9)(t,u) + Bu(t) (48)

x(t) = Ax(t) + Bu(t) (49)

with u(t) = sinwt and initial condition zy = c.
We can prove a similar result for cosinusoidal inputs.
Theorem 3.2: Assume that (3) is asymptotically stable. For
an input function u(t) = coswt the steady-state state and
output responses are

[Hi (jw)| COS(wt + Arg(H; (jw)))
x(53) (¢, u) = (50)

H, (Jw)ICOb(wHArg( n(jw)))
)

y(ss)(t,u) = |W(jw)]| cos(wt + Arg(W (jw)) 51

IV. STEADY-STATE RESPONSE TO EXPONENTIAL INPUTS

In this section we calculate the steady-state response to
exponential inputs u(t) = e for some a € R. This class
of inputs satisfies the conditions of theorem 1.1 since form all
teR

lu(t)| < el (52)

The steady-state state response z(*%)(-) is by virtue of theorem
1.1
t

eA=7) Bu(r)dr

to

lim
to——00

x9) (¢, u) = (53)

If a ¢ 0(A) we have that (A — al) is nonsingular and

t
lim A(t_T)Bu(T)dT = J A7) BeaT 1
to——00 to to
t
= e lim e~ (A=aDT Bir)
to——00

— —eA lim e~ AT DT(A —al)”
to——0o0

= (A —al)"'B = ¢""H(a)

(54)

If a € o(A), since (3) is asymptotically stable then o(A) < C~
and a < 0. We will not consider this case, since for any input
u(t) = e with a < 0 it is easy to see that

lim x(*¥) (t,u) = 0.

t—0

(55)

Theorem 4.1: Assume that (3) is asymptotically stable. For
each input function u(t) = e for which a ¢ o(A) the steady-
state state and output responses

X(SS)(t, u) = ¢“"H(a)
y©9 (t,u) = e W (a)
We remark that the function x(**)(¢,u) could have be

computed as the function of the form x(**) (¢, u) = ce®, for
some ¢ € R™, such that

x(3) (¢, )

for all ¢ > 0 with u(t) = e*. The coefficient c is calculated
from the identity (56). Therefore, x(**)(t,u) is the solution
x(t, zp,u) of

(56)

= Ax®9)(t,u) + Bu(t) (57)

x(t) = Ax(t) + Bu(t) (58)

with u(t) = e and initial condition x¢ = c.

V. DELAYED INPUTS

In this section we calculate the steady-state response to
delayed inputs u(t) = ug(i)T with real T' > 0 and the function
u® (t) satisfy the assumptions of theorem 1.1. Also the inputs
u(t) satisfies the conditions of theorem 1.1. Indeed, for all
t=0

lu(t)] = [a{”

n n
< ceft=T) Z [t — T < epett Z |t]7
=0 =0

(59)

for some positive real ¢ (depending on T'). The steady-state
state response is by virtue of theorem 1.1

t

x9)(t,u) = lim eAt=7) Bu(r)dr (60)
to——00 to



We have
t
lim | e*"" Bu(r)dr = J A= pu O (r — T)dr
to—>—0 to to
t—T
— lim eAt=0=T) Bu(0)(9)dg
to—>—®© to—T
t—T
= lim eA(t_T_e)Bu(o)(Q)dG = x(550) (t—T, u(o))
to——00 to
(61)

where x(**:0) (¢,
input u(® (¢).

Theorem 5.1: Assume that (3) is asymptotically stable. For
an input function u(t) = ug(i)T, where u(®)(t) satisfy the
assumptions of theorem 1.1 and for which the steady-state state
and output responses are x**°)(t,u(®) and y(**:9 (¢, u(®),
the steady-state state and output responses are

x(9) (t,u) = T,u?),
y(SS) (tv u) =Y t— T7 u(O))'

u(®) is the steady-state state response to the

x(55,0) (t —

(ss,O)( (62)

V1. LINEAR COMBINATIONS OF INPUTS ADMITTING A
STEADY-STATE RESPONSE

In this section we calculate the steady-state state response
to linear combinations of inputs admitting each a steady-
state state response, i.e. u(t) = > _,c@u®(t) for some
9 ..., e R and input functions u®(t),..., ul ()
satisfying the assumptions of theorem 1.1, i.e. for all t e R

n®

la(t) ] < ekt Y |t (63)
=0
for some ¢ k(®) > 0 and integers n(), i = 0,...,r. Also

the input u(t) satisfies the conditions of theorem 1.1, as it can
be easily proved. We have

lim
to——00

x5 (t,u) = A=) Bu(r)dr

to

t s

AT B Z cDu® (r)dr
to i=0
t

A=) gy (

= lim
to——00

—Z

where x(55:%) (t, u(l)) is the steady-state response to the input

lim
to——00

T)dT = Z (:(i)x(ss"i)(t7 u(i))

ul®(t).

Theorem 6.1: Assume that (3) 1is asymptotically
stable. For an input function u(t) = Y. _,c@u®(t),
where ¢, ... c") e R and the input functions
u(t) @, ... u(t)") satisfy the assumptions of theorem
1.1, with steady-state state and output responses,
respectively, x50 (¢, u®), ... x5 (¢, ul) and
y£0 (£ u@), . yEsm) (¢ u), the steady-state state
and output responses are

x5 (t,u) = Z Dx 50 (£ @)
i=0
yCI(tu) = Y Dy u®).  (64)

0

-
Il

Exercize 6.1: Consider the model of the simple pendulum
withm = k and [ = g, linearized around null angular position
and velocity,

x1(t) = xa(t)
X2 (t) = —x1(t) — Xa(t)

Calculate the steady-state response to u(t) = sin(t — 1) and
u(t) =1t+2.

We first calculate the steady-state response to u(t) = sin(t—
1). Note that (64) and the input functions u(® (¢) = sin(t)
satisfy the assumptions of theorems 3.2 and 5.1. The steady-
state response of (64) to u(® (¢) = sin(t) is by theorem 3.1
(with w = 1)

(65)

(s5,0)(p 0y _ (H1(7)]sin(t + Arg(H,
x5, u) <H2(j)|sm(t+Arg(H2

. 0 1 0
Since A = (_1 _1> and B = (1),

- (58)- (7
Therefore,

(s5,0) (4 (0)y _ (sin(t—3F)) _ (—cost
x (t,u™™) ( sint sint

By theorem 5.1 (with T" = 1)
X710 = x0= 1u®) = (7o )

sin(t — 1)
We finally calculate the steady-state response to u(t) =
t + 2. Note that (64) and also the input functions u(®)(¢) = ¢
and uM(¢) = 1 satisfy the assumptions of theorems 3.2 and
6.1. The steady-state response of (64) to u(®)(t) = t is by
theorem 2.1

. -
(ssO 2eu()) :Zde )
= dsi ls=0 (1 —7)!j!
Since
1 1
H(s) = (s I-A)'B= ————
( Ha(s) ) (s 52+s+1 s
4 H, (s 1 25+ 1
(fH s>_ s?+s+1 <52—1) (00
Therefore,
dH 1 1 t—1
(ss,0) 0)y _ Pt — —_ =
X (t,u'”) = H(0)t+ 25 leso (0)13 (_1) ( 1 )

Next, calculate the steady-state response of (64) to u(®(¢) =
2. The steady-state response of (64) to u(t)1?) = 1 is by
theorem 2.1

X(ss,l,O) (t,

u>0) = H(0)

Therefore, by theorem 6.1

X(‘gs’l)(t,u(l)) =2H(0) = ((2)>



Finally, by theorem 6.1 (with r = 2)

Z X(ss i )

(3)-)- (’T) -

VII. STEADY STATE RESPONSES FROM FREQUENCY
DOMAIN

(ss) t Ll

(67)

As an alternative procedure, it is possible to obtain the
steady state responses in Laplace domain and, using inverse
transformation, finally in time domain. Let P(s) be the I/O
transfer function with all poles in C~ and of the form

D=2 Y

i=1j=1 (s = pi)?

(68)

with distinct poles pi,...,p, € C~ and residuals a; ;. Mor-
ever, consider an input u(¢) such that its transform has the
form

/

‘Ehoprgcre

Llu(t)](s) = (69)
h=11= 1
with distinct poles p,...,p;, ¢ C~ and residuals a; ;. The
forced output response is
Lly™ (¢, w)](s) = P(s)u(s)
r a: 7’ #Ih ;Ll
— Z Z Zv] Z s (70)
JPWAY]
i=1j= 1 h=11=1 (s = Ph)
According to the residuals theorem and since {pi,...,p,} N
{p1,.... 0} = {T}
i R o /
Ly (t, w](s) v (71
IPN ey I N emry:
with distinct poles pi,...,pr,p},...,p. and residuals
aij,a; ;. Since py,...,pr € C~
T Hi
-1
-0 72
[; g o (72)

as t — +oo and morever since the system P(s) is asymptoti-
cally stable, the unforced response tends to 0

y O (t, z0) = 0 (73)
as t — +oo. It follows that
o R/
PARIAYESIDYSY Gy 1@ —0 (74)
im1jo1 S TP
so that
(o) o R .
y(t,u) = £71 e LU (75)
52 G0
Exercize 7.1: Given the system
x1(t) = x2(t)
Xo(t) = u(t) — a’*xy(t) — 2axa(t)
yl(t) = X1 (t) (76)

determine for which values of a € R it has a well-defined steady
state regime and calculate the output response to inputs u(t) =
cos(t).

The state space representation of the system is

x(t) = Ax(t)+ Bu(¥)
y(t) = Cx(t) (17
with
A= (%2 12a> B = (?) ,C=(10) (78)

The characteristic polynomial of A is p(\) = (s +a)? and its
eigenvalues are all equal to A = —a. Therefore, the system has
a well-defined steady state regime for a > 0. The I/O transfer
function is

1
P(s)=C(sI-A) " 'B= ——~ 79
The forced output response to u(t) = sin(t) is
u 1 s
Lyt w(s) = Pls)Sleos®](s) = = a g @0
By the residuals theorem and comparison method
1 S Ri1 Ris As+ B
= 81
(s+a)?s?+1 s+a+(s+a)2 s2+1 @D
with
1—a? a
Ry = Rig=——
" (1+a?)?’ 12 14 a?’
a?—1 2a
A= —— = 82
Grae Pt ap (82)
Back to time domain
y (t,u) = Ruelat + ngtelat + Acosy (t) + Bsing (t) (83)
Since
Ri1ei™ + Rygtel™ — 0 (84)
as t — +o0,
y(t)%) = Acos(t) + Bsin(t)
a?—1 2a .
= m COS(t) + m Sll’l(t)
= M cos(t + N) (85)
with
1
= = |P(j
—— = [P,
N = Atan(——=) = Arg(P(j).  (86)




