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Notes on Linear Control Systems: Module V
Stefano Battilotti

Abstract—Transient and steady-state response. Steady-state
responses to polynomial, sinusoidal, exponential inputs. Time
translation and linearity properties of steady-state response.

I. TRANSIENT AND STEADY-STATE RESPONSE

The aim of this section is to find for each input function u
a function xpssqpt,uq, whenever it exists, such that

9xpssqpt,uq ” Axpssqpt,uq `Buptq (1)

and for each x0 P Rn

lim
tÑ8

}xpt, x0,uq ´ xpssqpt,uq} “ 0 (2)

where xpt, x0,uq is the solution of

9xptq “ Axptq `Buptq (3)

ensuing from x0 at t “ 0 with input function u. The function
xpssqpt,uq represents the steady-state state response of (3),
the solution of (3) which any other state response tends to
whatever is its initial condition. The steady-state response
of (3) depends only on the input function u (and not on a
particular initial condition x0).

Let us investigate conditions for the existence of xpssqpt,uq
and how to compute xpssqpt,uq. To this aim, write the solution
xpt, t0, x0,uq of (3) at time t ensuing from x0 at time
t0 ă 0 with input function urt0,ts. The matrix eAt is invertible
for each t and its inverse is e´At: indeed, since A always
commutes with ´A

eAte´At “ eAt´At “ e0 “ I (4)

Set z “ e´Atx. We have

9zptq “ e´Atxptq ´ e´AtAxptq “ e´AtBuptq (5)

By integrating (5) over pt0, tq, it follows that the solution zptq
of (5) ensuing from z0 at t0 P R with input function u satisfies

zptq ´ z0 “

ż t

t0

e´AτBupτqdτ (6)

Since x “ eAtz then the solution xpt, x0,uq of (3) ensuing
from x0 at t0 P R with input function u is

xpt, t0, x0,urt0,tsq “ eApt´t0qx0 `

ż t

t0

eApt´τqBupτqdτ (7)

An important result states that the existence of a solution
xpssqpt,uq of (3) with the property (2) is guaranteed by the
asymptotic stability of (3).
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Theorem 1.1: Assume that (3) is asymptotically stable. For
each input function u such that for all t P R

}uptq} ď cekt
n
ÿ

i“0

|t|i (8)

for some k, c ě 0, the steady-state state response is given by

xpssqpt,uq “ lim
t0Ñ´8

xpt, t0, x0,urt0,tsq

“ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ (9)

Proof (OPTIONAL). Since the eigenvalues of A have negative
real parts, there exist a positive real b such that for all t ě 0

}eAt} ď be´mt
n
ÿ

i“0

ti (10)

where m :“ ´maxiRepλiq and λ1, . . . , λn are the eigenval-
ues of A. Therefore, on account of (8) for t0 ă 0

}

ż 0

t0

e´AτBupτqdτ} “ }

ż ´t0

0

eAτBup´τqdτ}

ď cb}B}

ż ´t0

0

e´pm`kqτ
n
ÿ

i“0

n
ÿ

j“0

τ i`jdτ

ď cb}B}
n
ÿ

i“0

n
ÿ

j“0

ż ´t0

0

e´pm`kqττ i`jdτ (11)

But integrating by parts for each h ě 0

ż ´t0

0

e´pm`kqττhdτ “ ´
h
ÿ

l“0

h!

l!

e´pm`kqττ l

pm` kqh´l`1

ˇ

ˇ

ˇ

´t0

0

“

h
ÿ

l“0

p´1ql`1 l!

h!

epm`kqt0tl0
pm` kqh´l`1

`
h!

pm` kqh`1
(12)

Therefore, from (11) and (12)

lim
t0Ñ´8

}

ż 0

t0

e´AτBupτqdτ} ď cb}B}
n
ÿ

i“0

n
ÿ

j“0

pi` jq!

pm` kqi`j`1

(13)

We conclude from (10) that for each t ě 0

lim
t0Ñ´8

}

ż t

t0

eApt´τqBupτqdτ}

ď }eAt} lim
t0Ñ´8

}

ż 0

t0

e´AτBupτqdτ}

`}

ż t

0

eApt´τqBupτqdτ} “ }

ż t

0

eApt´τqBupτqdτ} (14)
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which implies that limt0Ñ´8

şt

t0
eApt´τqBupτqdτ is well-

defined for each t ě 0. Also, using (10) and (13)

lim
tÑ`8

lim
t0Ñ´8

}

ż t

t0

eApt´τqBupτqdτ ´

ż t

0

eApt´τqBupτqdτ}

“ lim
tÑ`8

lim
t0Ñ´8

}

ż 0

t0

eApt´τqBupτqdτ}

ď lim
tÑ`8

}eAt} lim
t0Ñ´8

}

ż 0

t0

e´AτBupτqdτ} “ 0. (15)

By (10)

lim
tÑ`8

}eAtx0} ď }x0}e
´mt

n
ÿ

i“0

ti (16)

for all x0 P Rn and t ě 0 so that

lim
tÑ8

}eAtx0} “ 0 (17)

for all x0 P Rn. Using this and (15), we obtain for all x0 P Rn

lim
tÑ8

}xpt, x0,uq ´ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ}

“ lim
tÑ8

}eAtx0 `

ż t

0

eApt´τqBupτqdτ

´ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ}

ď lim
tÑ8

}eAtx0} ` lim
tÑ8

lim
t0Ñ´8

}

ż t

t0

eApt´τqBupτqdτ

´

ż t

0

eApt´τqBupτqdτ} “ 0

which proves the claim (9). Moreover as it can be easily seen
xsspt,uq is a solution of (3), i.e. satisfies (1),

9xsspt,uq “ A lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ `Buptq

“ Axsspt,uq `Buptq.� (18)

The difference

xptrqpt, x0,uq :“ xpt, x0,uq ´ xpssqpt,uq (19)

is called the transient state response.
A similar result can be proved for the steady-state output

response ypssqptqpuq. Taking into account that the output
response ypt, x0,uq of (3) ensuing from x0 at t “ 0 with
input function u is Cxpt, x0,uq ` Duptq, for each x0 P Rn
we have

lim
tÑ8

}ypt, x0,uq ´ pCx
pssqpt,uq `Duptqq}

“ lim
tÑ8

}Cxpt, x0,uq ´ Cx
pssqpt,uq}

ď lim
tÑ8

}C}}xpt, x0,uq ´ xpssqpt,uq} “ 0 (20)

Therefore, ypssqpt,uq :“ Cxpssqpt,uq `Duptq is the steady-
state output response.

The difference

yptrqpt, x0,uq :“ ypt, x0,uq ´ ypssqpt,uq (21)

is called the transient output response.

II. STEADY STATE RESPONSE TO POLYNOMIAL INPUTS

In this section we calculate the steady-state response to
polynomial inputs uptq “ tk

k! . This class of inputs satisfies
the conditions of theorem 1.1 since for all t P R

|uptq| ď
1

k!
|t|k (22)

with ck :“ 1
k! . The steady-state state response is by virtue of

theorem 1.1

xpssqpt,uq “ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ (23)

Recall that A is nonsingular since A has eigenvalues with
negative real part (it is known that a matrix A is singular if
and only if has at least one null real eigenvalue) and d

dte
At “

AeAt “ eAtA. Also remember that

lim
t0Ñ´8

eApt´t0q
ti0
i!
“ 0 (24)

for each t and i, since A has eigenvalues with negative real
part.

Integrating by parts

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ “ lim
t0Ñ´8

ż t

t0

eApt´τqB
τk

k!
dτ

“ lim
t0Ñ´8

A´1
´

´ eApt´τqB
τk

k!

ˇ

ˇ

ˇ

t

t0
`

ż t

t0

eApt´τqB
τk´1

pk ´ 1q!
dτ

¯

“ A´1
´

´B
tk

k!
` lim
t0Ñ´8

ż t

t0

eApt´τqB
τk´1

pk ´ 1q!
dτ

¯

(25)

Assume that for some i ă k

lim
t0Ñ´8

ż t

t0

eApt´τqB
τ i

i!
dτ “ ´

i
ÿ

j“0

pA´1qj`1B
ti´j

pi´ jq!
(26)

From (24) it follows that

lim
t0Ñ´8

ż t

t0

eApt´τqB
τ i`1

pi` 1q!
dτ

“ A´1
´

´B
ti`1

i` 1!
` lim
t0Ñ´8

ż t

t0

eApt´τqB
τ i

i!
dτ

¯

“ A´1
´

´B
ti`1

i` 1!
´

i
ÿ

j“0

pA´1qj`1B
ti´j

pi´ jq!

¯

“ ´

i`1
ÿ

j“0

pA´1qj`1B
ti`1´j

pi` 1´ jq!
(27)

which proves (25) with i replaced by i` 1. Since on account
of (23)

lim
t0Ñ´8

ż t

t0

eApt´τqBdτ

“ ´A´1B `A´1 lim
t0Ñ´8

eApt´t0qB “ ´A´1B (28)

we have proved by induction that

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ “ lim
t0Ñ´8

ż t

t0

eApt´τqB
τk

k!
dτ

“ ´

k
ÿ

j“0

pA´1qj`1B
tk´j

pk ´ jq!
(29)
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Therefore,

xpssqpt,uq “ ´
k
ÿ

j“0

pA´1qj`1B
tk´j

pk ´ jq!
(30)

Recalling that Hpsq “ psI ´Aq´1B,

´pA´1qj`1B “
1

j!

dj

dsj
psI ´Aq´1

ˇ

ˇ

ˇ

s“0
B “

1

j!

dj

dsj
H
ˇ

ˇ

ˇ

s“0

(31)

so that equivalently

xpssqpt,uq “
k
ÿ

j“0

djH

dsj

ˇ

ˇ

ˇ

s“0

tk´j

pk ´ jq!j!
(32)

The steady -state output response is

ypssqpt,uq “ ´C
k
ÿ

j“0

pA´1qj`1B
tk´j

pk ´ jq!
`D

tk

k!
(33)

or equivalently, recalling that Wpsq “ CpsI ´ Aq´1B ` D
and using (30),

ypssqpt,uq “
k
ÿ

j“0

djW

dsj

ˇ

ˇ

ˇ

s“0

tk´j

pk ´ jq!j!

(34)

Theorem 2.1: Assume that (3) is asymptotically stable. For
an input function uptq “ tk

k! the steady-state state and output
responses are

xpssqpt,uq “
k
ÿ

j“0

djH

dsj

ˇ

ˇ

ˇ

s“0

tk´j

pk ´ jq!j!
(35)

ypssqpt,uq “
k
ÿ

j“0

djW

dsj

ˇ

ˇ

ˇ

s“0

tk´j

pk ´ jq!j!

(36)

We remark that the function xpssqpt,uq could have be
computed as the function of the form xpssqpt,uq “

řk
j“0 cj

tj

j! ,
for some c0, . . . , ck P Rn, such that

9xpssqpt,uq “ Axpssqpt,uq `Buptq (37)

for all t ě 0 with uptq “ tk

k! . The coefficients c0, . . . , ck P Rn
are calculated from the identity (36). Therefore, xpssqpt,uq is
the solution xpt, x0,uq of

9xptq “ Axptq `Buptq, (38)

with uptq “ tk

k! and initial condition x0 “ c0.

III. STEADY-STATE RESPONSE TO SINUSOIDAL AND
COSINUSOIDAL INPUTS

In this section we calculate the steady-state state response to
sinusoidal inputs uptq “ sinωt. This class of inputs satisfies
the conditions of theorem 1.1 since for all t P R

|uptq| ď 1 (39)

The steady-state state response xpssqpt,uq is by virtue of
theorem 1.1

xpssqpt,uq “ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ (40)

Recall that d
dte

At “ AeAt “ eAtA and
limt0Ñ´8 e

Apt´t0qB cosωt0 “ 0 for each t ě 0, since
A has eigenvalues with negative real part.

By iterated integration by parts

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ “

ż t

t0

eApt´τqB sinωτdτ

“ lim
t0Ñ´8

1

ω
p´eApt´τqB cosωτ

ˇ

ˇ

ˇ

t

t0

´
A

ω

ż t

t0

eApt´τqB cosωτdτ

“ ´
B

ω
cosωt´

A

ω
lim

t0Ñ´8

ż t

t0

eApt´τqB cosωτdτ

“ ´
B

ω
cosωt´

A

ω

´B

ω
sinωt

`
A

ω
lim

t0Ñ´8

ż t

t0

eApt´τqB sinωτdτ
¯

Therefore,
´

I `
´A

ω

¯2¯

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ

“ ´
B

ω
cosωt´

AB

ω2
sinωt

and finally

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ

“ ´

´

I `
´A

ω

¯2¯´1B

ω
cosωt´ pI `

´A

ω

¯2

q´1AB

ω2
sinωt

Recalling that Hpsq “ psI ´Aq´1B, note that since

Hpjωq “ pjI ´
A

ω
q´1B

ω
“ ´pjI `

A

ω
qpI `

´A

ω

¯2

q´1B

ω

“ ´
A

ω

´

I `
´A

ω

¯2

q´1B

ω
´ jpI `

´A

ω

¯2¯´1B

ω

“ ´pI `
´A

ω

¯2

q´1AB

ω2
´ jpI `

´A

ω

¯2

q´1B

ω
(41)

then

RepHpjωqq “ ´
´

I `
´A

ω

¯2¯´1AB

ω2

ImpHpjωqq “ ´
´

I `
´A

ω

¯2¯´1B

ω
(42)

and

xpssqpt,uq “ ImpHpjωqq cosωt` RepHpjωqq sinωt (43)

On account of

RepHipjωqq “ |Hipjωq| cospArgpHipjωqqq

ImpHipjωqq “ |Hipjωq| sinpArgpHipjωqqq
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for each i “ 1, . . . , n (Hipjωq denotes the i-th element of the
vector Hpjωq), we obtain

xpssqpt,uq “

¨

˝

|H1pjωq| sinpωt`ArgpH1pjωqqq
¨ ¨ ¨

|Hnpjωq| sinpωt`ArgpHnpjωqqq

˛

‚ (44)

Recalling that Wpsq “ psI ´Aq´1B `D, note also that

CRepHpjωqq `D “ RepCHpjωq `Dq “ RepWpjωqq

“ |Wpjωq| cospArgpWpjωqqq

CImpHpjωqq “ ImpCHpjωq `Dq “ ImpWpjωqq

“ |Wpjωq| sinpArgpWpjωqqq

and from (42)

ypssqpt,uq “ CImpHpjωqq cosωt` CRepHpjωqq sinωt

`D sinωt “ |Wpjωq| sinpArgpWpjωqqq cosωt

`|Wpjωq| cospArgpWpjωqqq sinωt

“ |Wpjωq| sinpωt`ArgpWpjωqqq (45)

Theorem 3.1: Assume that (3) is asymptotically stable. For
an input function uptq “ sinωt the steady-state state and output
responses to the input uptq are

xpssqpt,uq “

¨

˝

|H1pjωq| sinpωt`ArgpH1pjωqqq
¨ ¨ ¨

|Hnpjωq| sinpωt`ArgpHnpjωqqq

˛

‚ (46)

ypssqpt,uq “ |Wpjωq| sinpωt`ArgpWpjωqqq (47)

We remark that the function xpssqpt,uq could have be
computed as the function of the form xpssqpt,uq “ c cosωt`
d sinωt, for some c, d P Rn , such that

9xpssqpt,uq “ Axpssqpt,uq `Buptq (48)

for all t ě 0 with uptq “ sinωt. The coefficients c, d are
calculated from the identity (47). Therefore, xpssqpt,uq is the
solution of

9xptq “ Axptq `Buptq (49)

with uptq “ sinωt and initial condition x0 “ c.
We can prove a similar result for cosinusoidal inputs.
Theorem 3.2: Assume that (3) is asymptotically stable. For

an input function uptq “ cosωt the steady-state state and
output responses are

xpssqpt,uq “

¨

˝

|H1pjωq| cospωt`ArgpH1pjωqqq
¨ ¨ ¨

|Hnpjωq| cospωt`ArgpHnpjωqqq

˛

‚ (50)

ypssqpt,uq “ |Wpjωq| cospωt`ArgpWpjωqqq (51)

IV. STEADY-STATE RESPONSE TO EXPONENTIAL INPUTS

In this section we calculate the steady-state response to
exponential inputs uptq “ eat for some a P R. This class
of inputs satisfies the conditions of theorem 1.1 since form all
t P R

|uptq| ď e|a|t (52)

The steady-state state response xpssqp¨q is by virtue of theorem
1.1

xpssqpt,uq “ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ (53)

If a R σpAq we have that pA´ aIq is nonsingular and

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ “

ż t

t0

eApt´τqBeaτdτ

“ eAt lim
t0Ñ´8

ż t

t0

e´pA´aIqτBdτq

“ ´eAt lim
t0Ñ´8

e´pA´aIqτ pA´ aIq´1B
ˇ

ˇ

ˇ

t

t0

“ ´eatpA´ aIq´1B “ eatHpaq (54)

If a P σpAq, since (3) is asymptotically stable then σpAq Ă C´
and a ă 0. We will not consider this case, since for any input
uptq “ eat with a ă 0 it is easy to see that

lim
tÑ8

xpssqpt,uq “ 0. (55)

Theorem 4.1: Assume that (3) is asymptotically stable. For
each input function uptq “ eat for which a R σpAq the steady-
state state and output responses

xpssqpt,uq “ eatHpaq

ypssqpt,uq “ eatWpaq (56)

We remark that the function xpssqpt,uq could have be
computed as the function of the form xpssqpt,uq “ ceat, for
some c P Rn, such that

9xpssqpt,uq “ Axpssqpt,uq `Buptq (57)

for all t ě 0 with uptq “ eat. The coefficient c is calculated
from the identity (56). Therefore, xpssqpt,uq is the solution
xpt, x0,uq of

9xptq “ Axptq `Buptq (58)

with uptq “ eat and initial condition x0 “ c.

V. DELAYED INPUTS

In this section we calculate the steady-state response to
delayed inputs uptq “ u

p0q
t´T with real T ą 0 and the function

up0qptq satisfy the assumptions of theorem 1.1. Also the inputs
uptq satisfies the conditions of theorem 1.1. Indeed, for all
t ě 0

|uptq| “ |u
p0q
t´T |

ď cekpt´T q
n
ÿ

j“0

|t´ T |j ď cT e
kt

n
ÿ

j“0

|t|j (59)

for some positive real cT (depending on T ). The steady-state
state response is by virtue of theorem 1.1

xpssqpt,uq “ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ (60)
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We have

lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ “

ż t

t0

eApt´τqBup0qpτ ´ T qdτ

“ lim
t0Ñ´8

ż t´T

t0´T

eApt´θ´T qBup0qpθqdθ

“ lim
t0Ñ´8

ż t´T

t0

eApt´T´θqBup0qpθqdθ “ xpss,0qpt´ T,up0qq

(61)

where xpss,0qpt,up0qq is the steady-state state response to the
input up0qptq.

Theorem 5.1: Assume that (3) is asymptotically stable. For
an input function uptq “ u

p0q
t´T , where up0qptq satisfy the

assumptions of theorem 1.1 and for which the steady-state state
and output responses are xpss,0qpt,up0qq and ypss,0qpt,up0qq,
the steady-state state and output responses are

xpssqpt,uq “ xpss,0qpt´ T,up0qq,

ypssqpt,uq “ ypss,0qpt´ T,up0qq. (62)

VI. LINEAR COMBINATIONS OF INPUTS ADMITTING A
STEADY-STATE RESPONSE

In this section we calculate the steady-state state response
to linear combinations of inputs admitting each a steady-
state state response, i.e. uptq “

řr
i“0 c

piqupiqptq for some
cp0q, . . . , cprq P R and input functions up0qptq, . . . ,uprqptq
satisfying the assumptions of theorem 1.1, i.e. for all t P R

|uptqpiq| ď cpiqekit
npiq
ÿ

j“0

|t|j (63)

for some cpiq, kpiq ą 0 and integers npiq, i “ 0, . . . , r. Also
the input uptq satisfies the conditions of theorem 1.1, as it can
be easily proved. We have

xpssqpt,uq “ lim
t0Ñ´8

ż t

t0

eApt´τqBupτqdτ

“ lim
t0Ñ´8

ż t

t0

eApt´τqB
r
ÿ

i“0

cpiqupiqpτqdτ

“

r
ÿ

i“0

cpiq lim
t0Ñ´8

ż t

t0

eApt´τqBupiqpτqdτ “
r
ÿ

i“0

cpiqxpss,iqpt,upiqq

where xpss,iqpt,upiqq is the steady-state response to the input
upiqptq.

Theorem 6.1: Assume that (3) is asymptotically
stable. For an input function uptq “

řr
i“0 c

piqupiqptq,
where cp0q, . . . , cprq P R and the input functions
uptqp0q, . . . ,uptqprq satisfy the assumptions of theorem
1.1, with steady-state state and output responses,
respectively, xpss,0qpt,up0qq, . . . ,xpss,rqpt,uprqq and
ypss,0qpt,up0qq, . . . ,ypss,rqpt,uprqq, the steady-state state
and output responses are

xpssqpt,uq “
r
ÿ

i“0

cpiqxpss,iqpt,upiqq

ypssqpt,uq “
r
ÿ

i“0

cpiqypss,iqpt,upiqq. (64)

Exercize 6.1: Consider the model of the simple pendulum
with m “ k and l “ g, linearized around null angular position
and velocity,

9x1ptq “ x2ptq

9x2ptq “ ´x1ptq ´ x2ptq (65)

Calculate the steady-state response to uptq “ sinpt ´ 1q and
uptq “ t` 2.

We first calculate the steady-state response to uptq “ sinpt´
1q. Note that (64) and the input functions up0qptq “ sinptq
satisfy the assumptions of theorems 3.2 and 5.1. The steady-
state response of (64) to up0qptq “ sinptq is by theorem 3.1
(with ω “ 1)

xpss,0qpt,up0qq “

ˆ

|H1pjq| sinpt`ArgpH1pjqqq
|H2pjq| sinpt`ArgpH2pjqqq

˙

Since A “
ˆ

0 1
´1 ´1

˙

and B “
ˆ

0
1

˙

,

Hpsq “

ˆ

H1psq
H2psq

˙

“ psI ´Aq´1B “
1

s2 ` s` 1

ˆ

1
s

˙

and
Hpjq “

ˆ

H1pjq
H2pjq

˙

“

ˆ

´j
1

˙

Therefore,

xpss,0qpt,up0qq “

ˆ

sinpt´ π
2 q

sin t

˙

“

ˆ

´ cos t
sin t

˙

By theorem 5.1 (with T “ 1)

xpssqpt,uq “ xpss,0qpt´ 1,up0qq “

ˆ

´ cospt´ 1q
sinpt´ 1q

˙

We finally calculate the steady-state response to uptq “
t` 2. Note that (64) and also the input functions up0qptq “ t
and up1qptq “ 1 satisfy the assumptions of theorems 3.2 and
6.1. The steady-state response of (64) to up0qptq “ t is by
theorem 2.1

xpss,0qpt,up0qq “
1
ÿ

j“0

djH

dsj

ˇ

ˇ

ˇ

s“0

t1´j

p1´ jq!j!

Since

Hpsq “

ˆ

H1psq
H2psq

˙

“ psI ´Aq´1B “
1

s2 ` s` 1

ˆ

1
s

˙

d

ds
Hpsq “

ˆ

d
dsH1psq
d
dsH2psq

˙

“ ´
1

s2 ` s` 1

2ˆ2s` 1
s2 ´ 1

˙

(66)

Therefore,

xpss,0qpt,up0qq “ Hp0qt`
dH

ds

ˇ

ˇ

ˇ

s“0
“

ˆ

1
0

˙

t´

ˆ

1
´1

˙

“

ˆ

t´ 1
1

˙

Next, calculate the steady-state response of (64) to up1qptq “
2. The steady-state response of (64) to uptqp1,0q “ 1 is by
theorem 2.1

xpss,1,0qpt,up1,0qq “ Hp0q

Therefore, by theorem 6.1

xpss,1qpt,up1qq “ 2Hp0q “

ˆ

2
0

˙
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Finally, by theorem 6.1 (with r “ 2)

xpssqpt,uq “
1
ÿ

i“0

xpss,iqptqpupiqq

“

ˆ

t´ 1
1

˙

`

ˆ

2
0

˙

“

ˆ

t` 1
1

˙

.Ÿ (67)

VII. STEADY STATE RESPONSES FROM FREQUENCY
DOMAIN

As an alternative procedure, it is possible to obtain the
steady state responses in Laplace domain and, using inverse
transformation, finally in time domain. Let Ppsq be the I/O
transfer function with all poles in C´ and of the form

Ppsq “
r
ÿ

i“1

µi
ÿ

j“1

ai,j
ps´ piqj

(68)

with distinct poles p1, . . . , pr P C´ and residuals ai,j . Mor-
ever, consider an input uptq such that its transform has the
form

Lruptqspsq “ upsq “
r1
ÿ

h“1

µ1
h

ÿ

l“1

a1h,l
ps´ p1hq

l
(69)

with distinct poles p11, . . . , p
1
r1 R C´ and residuals a1i,j . The

forced output response is

Lrypuqpt,uqspsq “ Ppsqupsq

“

r
ÿ

i“1

µi
ÿ

j“1

ai,j
ps´ piqj

r1
ÿ

h“1

µ1
h

ÿ

l“1

a1h,l
ps´ p1hq

l
(70)

According to the residuals theorem and since tp1, . . . , pru X
tp11, . . . , p

1
ru “ tHu

Lrypuqpt,uqspsq “
r
ÿ

i“1

µi
ÿ

j“1

Rj,i
ps´ piqj

`

r1
ÿ

i“1

µ1
i

ÿ

j“1

R1j,i
ps´ p1iq

j
(71)

with distinct poles p1, . . . , pr, p
1
1, . . . , p

1
r1 and residuals

ai,j , a
1
i,j . Since p1, . . . , pr P C´

L´1r

r
ÿ

i“1

µi
ÿ

j“1

Rj,i
ps´ piqj

sptq Ñ 0 (72)

as tÑ `8 and morever since the system Ppsq is asymptoti-
cally stable, the unforced response tends to 0

yp0qpt, x0q Ñ 0 (73)

as tÑ `8. It follows that

|ypuqpt,uq ´ L´1r

r1
ÿ

i“1

µ1
i

ÿ

j“1

R1j,i
ps´ p1iq

j
sptq| Ñ 0 (74)

so that

ypssqpt,uq “ L´1r

r1
ÿ

i“1

µ1
i

ÿ

j“1

R1j,i
ps´ p1iq

j
sptq (75)

Exercize 7.1: Given the system

9x1ptq “ x2ptq

9x2ptq “ uptq ´ a2x1ptq ´ 2ax2ptq

y1ptq “ x1ptq (76)

determine for which values of a P R it has a well-defined steady
state regime and calculate the output response to inputs uptq “
cosptq.

The state space representation of the system is

9xptq “ Axptq `Buptq

yptq “ Cxptq (77)

with

A “

ˆ

0 1
´a2 ´2a

˙

, B “

ˆ

0
1

˙

, C “
`

1 0
˘

(78)

The characteristic polynomial of A is ppλq “ ps`aq2 and its
eigenvalues are all equal to λ “ ´a. Therefore, the system has
a well-defined steady state regime for a ą 0. The I/O transfer
function is

Ppsq “ CpsI ´Aq´1B “
1

ps` aq2
(79)

The forced output response to uptq “ sinptq is

Lrypuqpt,uqspsq “ PpsqLrcosptqspsq “
1

ps` aq2
s

s2 ` 1
(80)

By the residuals theorem and comparison method

1

ps` aq2
s

s2 ` 1
“

R11

s` a
`

R12

ps` aq2
`
As`B

s2 ` 1
(81)

with

R11 “
1´ a2

p1` a2q2
, R12 “ ´

a

1` a2
,

A “
a2 ´ 1

p1` a2q2
, B “

2a

p1` a2q2
. (82)

Back to time domain

ypuqpt,uq “ R11e
´at
` `R12te

´at
` `A cos`ptq `B sin`ptq (83)

Since

R11e
´at
` `R12te

´at
` Ñ 0 (84)

as tÑ `8,

yptqpssq “ A cosptq `B sinptq

“
a2 ´ 1

p1` a2q2
cosptq `

2a

p1` a2q2
sinptq

“M cospt`Nq (85)

with

M “
1

1` a2
“ |Ppjq|,

N “ Atanp
´2a

a2 ´ 1
q “ ArgpPpjqq. (86)


