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Notes on Linear Control Systems: Module VIII
Stefano Battilotti

Abstract—Realizations. Interconnections. Zero-pole cancella-
tion.

I. REALIZATIONS

A system

9xptq “ Axptq `Buptq

yptq “ Cxptq `Duptq (1)

has an I/O transfer function Wpsq “ CpsI ´Aq´1B `D. In
this module, we want to study the inverse problem:

Definition 1.1: (State Space Realization problem). Given a
proper rational function Wpsq, find matrices Apnˆ nq, Bpnˆ
1q, Cp1ˆ nq and Dp1ˆ 1q such that

Wpsq “ CpsI ´Aq´1B `D (2)

We also say that pA,B,C,Dq is a (state space) realization of
Wpsq. If Wpsq is proper but not strictly proper, it is always
possible to find Dp1ˆ 1q such that

Wpsq “W0psq `D (3)

where W0psq is strictly proper. If

Wpsq :“
b0 ` b1s` ¨ ¨ ¨ ` bn´1s

n´1 ` bns
n

a0 ` a1s` ¨ ¨ ¨ ` an´1sn´1 ` sn
(4)

then it is possible to find reals D and b10, . . . , b
1
n´1 such that

Wpsq “
b0 ` b1s` ¨ ¨ ¨ ` bn´1s

n´1 ` bns
n

a0 ` a1s` ¨ ¨ ¨ ` an´1sn´1 ` sn

“
b10 ` b

1
1s` ¨ ¨ ¨ ` b

1
n´1s

n´1

a0 ` a1s` ¨ ¨ ¨ ` an´1sn´1 ` sn
`D

“ W0psq `D. (5)

Indeed, by multiplying both parts of the above equality by
a0 ` a1s` ¨ ¨ ¨ ` an´1s

n´1 ` sn

b0 ´Da0 ` pb1 ´Da1qs` ¨ ¨ ¨ ` pbn´1 ´Dan´1qs
n´1

`pbn ´Dqs
n “ b10 ` b

1
1s` ¨ ¨ ¨ ` b

1
n´1s

n´1 (6)

and equating the coefficients of the similar monomials, we
obtain a bunch of linear equations in the unknowns D and
b10, . . . , b

1
n´1:

D “ bn, b
1
0 “ b0 ´Da0 “, b

1
1 “ b1 ´Da0, . . .

b1n´1 “ bn´1 ´Dan´1. (7)

S. Battilotti is with Department of Computer, Control, and Management
Engineering “Antonio Ruberti”, Sapienza University of Rome, Via Ariosto
25, Italy.

These notes are directed to MS Degrees in Aeronautical Engineering and
Space and Astronautical Engineering. Last update 22/11/2023

It can be directly checked that a set of matrices Apn ˆ nq,
Bpnˆ 1q, Cp1ˆ nq such that

W0psq “ CpsI ´Aq´1B (8)

is given by

A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 1 0
0 0 0 ¨ ¨ ¨ 0 1
´a0 ´a1 ´a2 ¨ ¨ ¨ ´an´2 ´an´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

B “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
0
...
0
0
1

˛

‹

‹

‹

‹

‹

‹

‹

‚

, C “
`

b10 b11 ¨ ¨ ¨ b1n´3 b1n´2 b1n´1

˘

(9)

Therefore, pA,B,C,Dq, with pA,B,Cq in (9) and D in (7),
is a (state space) realization of Wpsq.

Proposition 1.1: The state space realization pA,B,C,Dq,
with pA,B,Cq in (9) and D in (7), is a controllable and
observable system.
It can be directly checked that

R “
`

B AB A2B ¨ ¨ ¨ An´1B
˘

“

¨

˚

˚

˚

˚

˚

˝

0 0 0 ¨ ¨ ¨ 0 1
0 0 0 ¨ ¨ ¨ 1 ˚

...
...

... ¨ ¨ ¨
...

...
0 1 ˚ ¨ ¨ ¨ ˚ ˚

1 ˚ ˚ ¨ ¨ ¨ ˚ ˚

˛

‹

‹

‹

‹

‹

‚

where the asterisks denote some unspecified quantities. R is
nonsingular and, therefore, the realization (9) is a controllable
system. Moreover, assume by absurd that the system described
by the realization (9) is not observable. As we have seen, in
this case there exists a coordinate transformation z “ Sx such
that Apnˆ nq, Bpnˆ 1q, Cp1ˆ nq and Dp1ˆ 1q in the new
coordinates are

rA “ SAS´1 “

˜

rA11 0
rA12

rA22

¸

, rB “ SB “
´

rB1
rB2

¯

rC “ CS´1 “

´

rC1 0
¯

, rD “ D (10)
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with rA11ppn´sqˆpn´sqq, rB1ppn´sqˆ1q, rC1p1ˆpn´sqq
and n ą s :“ ranktOu. But

Wpsq “ CpsI ´Aq´1B `D

“ CS´1SpsI ´Aq´1S´1TB `D

“ CS´1psI ´ SAS´1q´1SB `D “ rCpsI ´ rAq´1
rB ` rD

“

´

rC1 0
¯

psI ´

˜

rA11 0
rA12

rA22

¸

q´1
´

rB1
rB2

¯

` rD

“ rC1psI ´ rA11q
´1

rB1 ` rD :“ ĂWpsq (11)

But this gives a contradiction since Wpsq, which has a de-
nominator polynomial with degree n, is equal to some ĂWpsq,
which has a denominator polynomial with degree n´ s ă n.
This is not possible if zero-pole cancellations are ruled out.
Therefore, the system described by the realization (9) is also
observable.

Notice that if Apnˆnq, Bpnˆ 1q, Cp1ˆnq and Dp1ˆ 1q
is a state space realization of Wpsq any other set of matrices
rApn ˆ nq, rBpn ˆ 1q, rCp1 ˆ nq and rDp1 ˆ 1q such that for
some nonsingular T pnˆ nq

rA “ TAT´1, rB “ TB, rC “ CT´1, rD “ D

is a state space realization of Wpsq . Indeed, if Apn ˆ nq,
Bpnˆ1q, Cp1ˆnq and Dp1ˆ1q is is a state space realization
of Wpsq

Wpsq “ CpsI ´Aq´1B `D

“ CT´1T psI ´Aq´1T´1TB `D

“ CT´1psI ´ TAT´1q´1TB `D

“ rCpsI ´ rAq´1
rB ` rD

Notice also that if Apnˆnq, Bpnˆ1q, Cp1ˆnq and Dp1ˆ1q is
a state space realization of Wpsq then AT pnˆnq, CT pnˆ1q,
BT p1ˆ nq and Dp1ˆ 1q is another state space realization of
Wpsq . Indeed, if Apnˆnq, Bpnˆ1q, Cp1ˆnq and Dp1ˆ1q
is a state space realization of Wpsq

BT psI ´AT q´1CT `D “ pBT psI ´AT q´1CT `DqT

“ CppsI ´AT q´1qTB `D “ CppsI ´AT qT q´1B `D

“ CpsI ´Aq´1B `D “Wpsq

II. INTERCONNECTIONS

In this section we will study how the interconnection of two
or more systems change the input/output transfer function and
the state space equations. Moreover, the interconnection may
alter the controllability and observability properties of each
system. We discuss in details the following three interconnec-
tions: series, parallel and feedback interconnection.

A. Series interconnection
The series interconnection of two systems described by

state-space models

Σ1 :
!

9x1ptq “ A1x1ptq `B1u1ptq
y1ptq “ C1x1ptq

Σ2 :
!

9x2ptq “ A2x2ptq `B2u2ptq
y2ptq “ C2x2ptq

is defined through the following input/output constraints:

u “ u1, y “ y2, u2 “ y1 (12)

where u and y denote the input and, respectively, the output of
the interconnection (see Figure 1). The series interconnection
is a system with state x “

`

xJ1 xJ2
˘J

. In view of (12) the
state space interconnection of Σ1 and Σ2 is given by

Σ :
!

9x1ptq “ A1x1ptq `B1uptq
9x2ptq “ A2x2ptq `B2y1ptq
yptq “ y2ptq

Therefore,

Σ :
!

9xptq “ Axptq `Buptq
yptq “ Cxptq

with

A :“

ˆ

A1 0
B2C1 A2

˙

, B :“

ˆ

B1

0

˙

, C :“
`

0 C2

˘

Note that σpAq “ σpA1q Y σpA2q. Moreover, if we assume
that Ajpnj ˆ njq, Bjpnj ˆ 1q and Cjp1 ˆ njq, j “ 1, 2, the
controllability matrix of Σ is with n :“ n1 ` n2

R :“
`

B AB ¨ ¨ ¨ An´1B
˘

“

ˆ

B1

0
A1B1

B2C1B1
¨ ¨ ¨

An´1
1 B1

řn´1
j“1 A

j´1
2 B2C1A

n´1´j
1 B1

˙

while its observability matrix is

O :“

¨

˚

˚

˝

C
CA
¨ ¨ ¨

CAn1`n2´1

˛

‹

‹

‚

“

¨

˚

˚

˚

˝

0
C2B2C1

...
řn´1

j“1 C1A
j´1
1 C2A

n´1´j
2 B2

C2

C2A2

...
C2A

n´1
2

˛

‹

‹

‹

‚

The transfer functions of Σ1 and Σ2 are

Lryjptqspsq

Lrujptqspsq
“ Pjpsq “ CjpsI ´Ajq

´1Bj , j “ 1, 2. (13)

(yjptq denotes the forced output response of Σj to the input
ujptq). In view of (12) the transfer function of the series
interconnection of Σ1 and Σ2 is

Wpsq “
Lryptqspsq

Lruptqspsq
“

Lry2ptqspsq

Lru1ptqspsq

“
Lry2ptqspsq

Lru1ptqspsq

Lru2ptqspsq

Lru2ptqspsq

“
Lry2ptqspsq

Lru2ptqspsq

Lru2ptqspsq

Lru1ptqspsq

“
Lry2ptqspsq

Lru2ptqspsq

Lry1ptqspsq

Lru1ptqspsq
“ P2psqP1psq (14)

(yptq denotes the forced output response of the interconnection
of Σ1 and Σ2 to the input uptq).

Proposition 2.1: The transfer functions of the series inter-
connection of two systems Σj , j “ 1, 2, with transfer function
Pjpsq is Wpsq “ P1psqP2psq.
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Figure 1. Series interconnection.

Since σpAq “ σpA1q Y σpA2q the stability of a series inter-
connection is guaranteed by the stability of the two systems
Σ1 and Σ2.

The series interconnection of two systems may lead to a
system which is either not controllable or not observable. This
happens when a zero of P1psq (resp. P2psq) cancels a pole
of P2psq (resp. P1psq).

Exercize 2.1: Consider the series interconnection of the two
systems described by state-space models

Σ1 :
!

9x1ptq “ ´x1ptq ` u1ptq
y1ptq “ x1ptq

Σ2 :
!

9x2ptq “

ˆ

0 1
0 ´2

˙

x2ptq `

ˆ

0
1

˙

u2ptq

y2ptq “
`

1 1
˘

x2ptq

The series interconnection in the state space is

Σ :
!

9xptq “ Axptq `Buptq
yptq “ Cxptq

with

A :“

¨

˝

´1 0 0
0 0 1
1 0 ´2

˛

‚, B :“

¨

˝

1
0
0

˛

‚, C :“
`

0 1 1
˘

Note that Σ is controllable since

R “
`

B AB A2B
˘

“

¨

˝

1 ´1 1
0 0 1
0 1 ´3

˛

‚

but not observable since

O “

¨

˝

C
CA
CA2

˛

‚“

¨

˝

0 1 1
1 0 ´1
´2 0 2

˛

‚

which has rank 2. Since Σ is not observable we can apply
the PBH observability test (see module VI) to determine the
invariant spectrum FO of A ´ KC: the spectrum of A is

t´1,´2, 0u and

rankR

!

ˆ

p´1qI ´A
C

˙

)

“ rankR

!

¨

˚

˚

˝

0 0 0
0 ´1 ´1
´1 0 1
0 1 1

˛

‹

‹

‚

)

“ 2 ñ t´1u P FO

rankR

!

ˆ

p´2qI ´A
C

˙

)

“ rankR

!

¨

˚

˚

˝

´1 0 0
0 ´2 ´1
´1 0 0
0 1 1

˛

‹

‹

‚

)

“ 3 ñ t´1u R FO

rankR

!

ˆ

p0qI ´A
C

˙

)

“ rankR

!

¨

˚

˚

˝

1 0 0
0 0 ´1
´1 0 2
0 1 1

˛

‹

‹

‚

)

“ 3 ñ t0u R FO

This can be seen also by defining a coordinate transformation
z “ Sx with

S “

¨

˝

C
CA
wT

1

˛

‚

and

w1 :“

¨

˝

1
´1
1

˛

‚.

By direct calculations

S´1 “

¨

˝

0 1 1
1 0 ´1
1 ´1 1

˛

‚

´1

“

¨

˝

0.333 0.666 0.333
0.666 0.333 ´0.333
0.333 ´0.333 0.333

˛

‚

The matrices A,B and C in the new coordinates are

rA “

¨

˝

0 1 0
0 ´2 0
´1 1 ´1

˛

‚, rB “

¨

˝

0
1
1

˛

‚, rC “
`

1 0 0
˘

(15)

Since n´ s “ rankRtOu “ 2 with n “ 3 (hence, s “ 1),

rA11 “

ˆ

0 1
0 ´2

˙

, rA12 “
`

´1 1
˘

, rA22 “ ´1

rB1 “

ˆ

0
1

˙

, rB2 “ 1, rC1 “
`

1 0
˘

(16)
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and the invariant spectrum FO of A´KC is σp rA22q “ t´1u.
Note that the observable system of (15) is:

rA11 “

ˆ

0 1
0 ´2

˙

, rB1 “

ˆ

0
1

˙

, rC1 “
`

1 0
˘

(17)

The transfer functions of the two systems Σ1 and Σ2 are

P1psq “
1

s` 1

P2psq “
s` 1

sps` 2q

Therefore, the transfer function of the series interconnection
is

Wpsq “ P1psqP2psq “
1

sps` 2q

The invariant spectrum FO “ t´1u of A´KC is exactly the
pole s “ ´1 of P1psq which has been canceled by the zero
s “ ´1 of P2psq. Note also that Wpsq has a realization

ΣO :
!

9xptq “ AOxptq `BOuptq
yptq “ COxptq

(18)

where

AO :“

ˆ

0 1
0 ´2

˙

, BO :“

ˆ

0
1

˙

, CO :“
`

1 0
˘

The system (18) is equal to (17): therefore, ΣO is the observ-
able system of (15). Ÿ

B. Parallel interconnection

The parallel interconnection of two systems described by
state-space models

Σ1 :
!

9x1ptq “ A1x1ptq `B1u1ptq
y1ptq “ C1x1ptq

Σ2 :
!

9x2ptq “ A2x2ptq `B2u2ptq
y2ptq “ C2x2ptq

is defined through the following input/output constraints:

u “ u1 “ u2, y “ y1 ` y2 (19)

where u and y denote the input and, respectively, the output of
the interconnection (see Figure 2). The parallel interconnection
is a system with state x “

`

xJ1 xJ2
˘J

. In view of (19) the
state space interconnection of Σ1 and Σ2 is given by

Σ :
!

9x1ptq “ A1x1ptq `B1uptq,
9x2ptq “ A2x2ptq `B2uptq,
yptq “ y1ptq ` y2ptq

Therefore,

Σ :
!

9xptq “ Axptq `Buptq
yptq “ Cxptq

with

A :“

ˆ

A1 0
0 A2

˙

, B :“

ˆ

B1

B2

˙

, C :“
`

C1 C2

˘

Note that σpAq “ σpA1q Y σpA2q. Moreover, if we assume
that Ajpnj ˆ njq, Bjpnj ˆ 1q and Cjp1 ˆ njq, j “ 1, 2, the
controllability matrix of Σ is

R :“
`

B AB ¨ ¨ ¨ An1`n2´1B
˘

“

ˆ

B1

B2

A1B1

A2B2
¨ ¨ ¨

An1`n2´1
1 B1

An1`n2´1
2 B2

˙

while its observability matrix is

O :“

¨

˚

˚

˝

C
CA
¨ ¨ ¨

CAn1`n2´1

˛

‹

‹

‚

“

¨

˚

˚

˚

˝

C1

C1A1

...
C1A

n1`n2´1
1

C2

C2A2

...
C2A

n1`n2´1
2

˛

‹

‹

‹

‚

The transfer functions of Σ1 and Σ2 are

Lryjptqspsq

Lrujptqspsq
“ Pjpsq “ CjpsI ´Ajq

´1Bj , j “ 1, 2. (20)

In view of (19) the transfer function of the parallel intercon-
nection of Σ1 and Σ2 is

Wpsq “
Lryptqspsq

Lruptqspsq

“
Lry1ptqspsq ` Lry2ptqspsq

Lruptqspsq

“
Lry1ptqspsq

Lruptqspsq
`

Lry2ptqspsq

Lruptqspsq

“
Lry1ptqspsq

Lru1ptqspsq
`

Lry2ptqspsq

Lru2ptqspsq
“ P2psq `P1psq

Proposition 2.2: The transfer functions of the parallel inter-
connection of two systems Σj , j “ 1, 2, with transfer functions
Pjpsq is Wpsq “ P1psq `P2psq.
Since σpAq “ σpA1q Y σpA2q the stability of a parallel
interconnection is guaranteed by the stability of the two
systems Σ1 and Σ2.

The parallel interconnection of two systems may lead to
a system which is not controllable and not observable. This
happens when a pole of P1psq (resp. P2psq) is a also a pole
of P2psq (resp. P1psq).

Exercize 2.2: Consider the series interconnection of the two
systems described by state-space models

Σ1 :
!

9x1ptq “ u1ptq
y1ptq “ x1ptq

Σ2 :
!

9x2ptq “ u2ptq
y2ptq “ x2ptq

The parallel interconnection in the state space is

Σ :
!

9xptq “ Axptq `Buptq
yptq “ Cxptq

with

A :“

ˆ

0 0
0 0

˙

, B :“

ˆ

1
1

˙

, C :“
`

1 1
˘

Note that Σ is not controllable since

R “
`

B AB
˘

“

ˆ

1 1
0 0

˙
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Figure 2. Parallel interconnection.

and not observable since

O “

ˆ

C
CA

˙

“

ˆ

1 1
0 0

˙

Since Σ is not observable we can apply the PBH observability
test to determine the invariant spectrum FO of A ´KC: the
spectrum of A is t0, 0u and

rankR

!

ˆ

p0qI ´A
C

˙

)

“ rankR

!

¨

˝

0 0
0 0
1 1

˛

‚

)

“ 1 ñ t0u P FO

Since Σ is also not controllable we can apply the PBH
controllability test to determine the invariant spectrum FR of
A`BF :

rankRt
`

p0qI ´A B
˘

u

“ rankR

!

ˆ

0 0 1
0 0 1

˙

)

“ 1 ñ t0u P FR

This can be seen also by defining a coordinate transformation
z “ Sx with

S :“

ˆ

C
wT

1

˙

where

w1 :“

ˆ

´1
1

˙

.

By direct calculations

S´1 “

ˆ

1 1
´1 1

˙´1

“
1

2

ˆ

1 ´1
1 1

˙

The matrices A,B and C in the new coordinates are

rA “

ˆ

0 0
0 0

˙

, rB “

ˆ

2
0

˙

, rC “
`

1 0
˘

(21)

Since n´ s “ dimpKertOuq “ 1 with n “ 2 (hence, s “ 1),

rA11 “ rA12 “ rA22 “ 0
rB1 “ 2, rB2 “ 0, rC1 “ 1 (22)

and the invariant spectrum FO of A´KC is σp rA22q “ t0u.
Note that the observable system of (21) is:

rA11 “ 0, rB1 “ 2, rC1 “ 1 (23)

The transfer functions of the two systems Σj , j “ 1, 2, are

P1psq “
1

s

P2psq “
1

s

Therefore, the transfer function of the parallel interconnection
is

Wpsq “ P1psq `P2psq “
2

s

The invariant spectrum FO “ t´1u of A´KC is exactly to
the common pole s “ 0 of P1psq and P2psq. Note also that
Wpsq has a realization

ΣO :
!

9xptq “ AOxptq `BOuptq
yptq “ COxptq

(24)

where
AO :“ 0, BO :“ 1, CO :“ 2

The system (24) is equivalent under coordinate transformation
to (23): i.e.

rA11 “ QAOQ
´1, rB1 “ QBO

rC1 “ COQ
´1

with Q :“ 2. Ÿ

C. Feedback interconnection

The feedback interconnection of two systems described by
state-space models

Σ1 :
!

9x1ptq “ A1x1ptq `B1u1ptq
y1ptq “ C1x1ptq

Σ2 :
!

9x2ptq “ A2x2ptq `B2u2ptq
y2ptq “ C2x2ptq

is defined through the following input/output constraints:

u1 “ u´ y2, y “ y1, u2 “ y1 (25)

where u and y denote the input and, respectively, the output
of the interconnection (see Figure 3). The feedback intercon-
nection is a system with state x “

`

xJ1 xJ2
˘J

. In view of
(25) the state space interconnection of Σ1 and Σ2 is given by

Σ :
!

9x1ptq “ A1x1ptq ´B1y2ptq `B1uptq,
9x2ptq “ A2x2ptq `B2y1ptq
yptq “ y1ptq

Therefore,
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Figure 3. Feedback interconnection.

Figure 4. Feedback control system.

Σ :
!

9xptq “ Axptq `Buptq
yptq “ Cxptq

with

A :“

ˆ

A1 ´B1C2

B2C1 A2

˙

, B :“

ˆ

B1

0

˙

, C :“
`

C1 0
˘

The transfer functions of Σ1 and Σ2 are
Lryjptqspsq

Lrujptqspsq
“ Pjpsq “ CjpsI ´Ajq

´1Bj , j “ 1, 2. (26)

In view of (25) the transfer function of the feedback intercon-
nection of Σ1 and Σ2 is

Wpsq “
Lryptqspsq

Lruptqspsq

“
Lry1ptqspsq

Lru1ptqspsq ` Lry2ptqspsq
“

Lry1ptqspsq
Lru1ptqspsq

1` Lry2ptqspsq
Lru1ptqspsq

“

Lry1ptqspsq
Lru1ptqspsq

1` Lry2ptqspsq
Lru2ptqspsq

Lru2ptqspsq
Lru1ptqspsq

“

Lry1ptqspsq
Ltu1ptqupsq

1` Lry2ptqspsq
Lru2ptqspsq

Lry1ptqspsq
Lru1ptqspsq

“
P1psq

1`P2psqP1psq

Proposition 2.3: The transfer functions of the feedback
interconnection of two systems Σj , j “ 1, 2, with transfer
functions Pjpsq is Wpsq “ P1psq

1`P2psqP1psq
.

The feedback interconnection of two systems may lead to a
system which is not controllable and not observable. Since the
feedback interconnection is a series interconnection of Σ1 and
Σ2 closed on itself, this happens when a pole of P1psq (resp.
P2psq) is a also a pole of P2psq (resp. P1psq).

The stability of a feedback interconnection when the process
P2psq on the feedback path is constant (i.e. P2psq “ K) can
be analyzed (parametrically with respect to K) by means of
the Routh criterion applied to the numerator polynomial of the
transfer function of the interconnection

Wpsq “
P1psq

1`KP1psq

or in other words, if P1psq :“ n1psq
d1psq

for suitable polynomials
n1psq and d1psq,

d1psq `Kn1psq

Clearly, the Routh criterion can be applied if we have the exact
knowledge of the polynomials n1psq and d1psq or, in other
words, the transfer function P1psq. A useful criterion for the
stability of the feedback interconnection with P2psq “ K will
be discussed in the next chapter and it requires the knowledge
of the (approximate) Bode diagrams of P1psq and the number
of the poles of P1psq with positive real part.
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D. General interconnections

The combination of series, parallel and feedback intercon-
nections gives rise to general interconnections. It is possible
to determine the transfer functions of these general intercon-
nections using the formulas for the I/O transfer functions of
series, parallel and feedback interconnections.

Exercize 2.3: Determine the transfer functions

Wv,ypsq “
Lryptqspsq

Lrvptqspsq
,

Wd1,ypsq “
Lryptqspsq

Lrd1ptqspsq

Wd2,ypsq “
Lryptqspsq

Lrd2ptqspsq
(27)

in the control scheme of Figure 4.
Notice that the control scheme has 3 input variables (v, d1

and d2) and one output variable y. The output ypsq is equal
to (by superposition)

ypsq “Wv,ypsqvpsq `Wd1,ypsqd1psq `Wd2,ypsqd2psq

(28)

Therefore, the Wv,ypsq can be obtained by setting d1 “ d2 “

0 in Figure 4, Wd1,ypsq is obtained by setting v “ d2 “ 0
and Wd2,ypsq is obtained by setting v “ d1 “ 0.

First, determine Wv,ypsq and set d1 “ d2 “ 0 in Figure 4.
The transfer function We,wpsq from e to w is resulting from
the series of G and P1:

We,wpsq “
Lrwptqspsq

Lreptqspsq
“ GpsqP1psq

The transfer function Wm,wpsq from m to w is resulting from
the negative feedback interconnection of We,wpsq in the direct
path and 1 in the feedback path:

Wm,wpsq “
Lrwptqspsq

Lrmptqspsq
“

We,wpsq

1`We,wpsq
“

GpsqP1psq

1`GpsqP1psq

The transfer function Wm,ypsq from m to y is resulting from
the series interconnection of Wm,w and P2:

Wm,ypsq “
Lryptqspsq

Lrmptqspsq

“Wm,wpsqP2psq “
GpsqP1psqP2psq

1`GpsqP1psq

The transfer function Wv,ypsq from v to y is resulting from
the negative feedback interconnection of Wm,w in the direct
path and Kpsq in the feedback path:

Wv,ypsq “
Lryptqspsq

Lrvptqspsq

“
Wm,ypsq

1`Wm,ypsqKpsq

“
GpsqP1psqP2psq

1`GpsqP1psq `KpsqGpsqP1psqP2psq

Next, determine Wd1,ypsq and set v “ d2 “ 0 in Figure
4. The transfer function Wd1,ypsq from d1 to y is resulting

from the negative feedback interconnection of Wm,ypsq in the
direct path and Kpsq in the feedback path:

Wd1,ypsq “
Lryptqspsq

Lrd1ptqspsq

“
Wm,ypsq

1`Wm,ypsqKpsq

“
GpsqP1psqP2psq

1`GpsqP1psq `KpsqGpsqP1psqP2psq
“Wv,ypsq

Finally, determine Wd2,ypsq and set v “ d1 “ 0 in Figure 4.
The transfer function Wd2,ypsq from d1 to y is resulting from
the negative feedback interconnection of ´KpsqWm,ypsq in
the direct path and ´1 in the feedback path:

Wd2,ypsq “
Lryptqspsq

Lrd2ptqspsq

“
Wm,ypsq

1`Wm,ypsqKpsq

“
´KpsqWd2,ypsq

1`KpsqWd2,ypsq

“ ´
KpsqGpsqP1psqP2psq

1`GpsqP1psq `KpsqGpsqP1psqP2psq
.


