Notes on Linear Control Systems: Module VIII

Stefano Battilotti

Abstract—Realizations. Interconnections. Zero-pole cancella-
tion.

I. REALIZATIONS
A system

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (1)
has an /O transfer function W(s) = C(sI — A)"!B+ D. In
this module, we want to study the inverse problem:

Definition /.1: (State Space Realization problem). Given a

proper rational function W (s), find matrices A(n x n), B(n x
1), C(1 x n) and D(1 x 1) such that

W(s) =C(sI — A)™'B+D (2)

We also say that (A, B,C, D) is a (state space) realization of
W (s). If W(s) is proper but not strictly proper, it is always
possible to find D(1 x 1) such that

W(s) = Wy(s) + D 3)
where W (s) is strictly proper. If

Cbo+bis+ oAby 4 bys™

W(s):
() ag+a1s+ -+ ap_15" L+ 5"

“4)

then it is possible to find reals D and bj, ..., b,,_; such that

bo+bis+ -+ bn_lsn_l + b, s™

ag+ais+ -+ ap_18" 1+ 5"

B by + bis+ -+, _ys"!

= +D
ag+ais+---+ap_15"" 1+ 5"

— Wo(s) + D. (5)

W(s) =

Indeed, by multiplying both parts of the above equality by
ap+a1s+ -+ ap_1s" T+ 8"

bo — Dag + (b1 - Dal)s 4+ e+ (bn—l _ Dan_1)$n71
+(bn—D)5" = b{)+b/15+"‘+bfn_1snil ©)

and equating the coefficients of the similar monomials, we
obtain a bunch of linear equations in the unknowns D and
bl . b1t

Dzbn, E):bo—DaQ =, bll =b1—Da0,
b;l71 = bnfl - Danfl- (7)
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It can be directly checked that a set of matrices A(n x n),
B(n x 1), C(1 x n) such that

Wy(s) =C(sI — A)7'B ®)
is given by
0 1 0 0 0
0 1 0 0
A= :
0 0 0 1 0
0 0 0 0 1
—ap —aip —a2 —Gp—2 —0Gp-—1
0
0
B=|:|,c=@ ¥ Vg Yoo Yyy)
0
0
1

9

Therefore, (A, B,C, D), with (A, B,C) in (9) and D in (7),
is a (state space) realization of W (s).

Proposition /.1: The state space realization (A, B,C, D),
with (A,B,C) in (9) and D in (7), is a controllable and
observable system.

It can be directly checked that

R=(B AB A’B A"-1B)
o0 o0 --- 01
o0 o0 --- 1 =
001 * o # =
1 %= = -k %

where the asterisks denote some unspecified quantities. R is
nonsingular and, therefore, the realization (9) is a controllable
system. Moreover, assume by absurd that the system described
by the realization (9) is not observable. As we have seen, in
this case there exists a coordinate transformation z = Sx such
that A(n x n), B(n x 1), C(1 x n) and D(1 x 1) in the new
coordinates are

~ A 0 ~ ~ o~
A=8A8t= (M 2 ) B=SB-=
<A12 Jas (B )
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with Ay ((n—s) x (n—s)), By((n—s) x 1), C1(1 x (n—s))
and n > s := rank{O}. But

W(s)=C(sI - A)'B+D

=CS™'S(sI —A)'ST'TB+ D

= CS YsI—SAS™ ) 'SB+D=C(sI —A)'B+D

~ A’le O —1 ~

= I—1"~ ~
CROL Qm @J>(&
= Cy(sI — A1) 'By + D := W(s) (11)

But this gives a contradiction since W (s), which has a de-
nominator polynomial with degree n, is equal to some W (s),
which has a denominator polynomial with degree n — s < n.
This is not possible if zero-pole cancellations are ruled out.
Therefore, the system described by the realization (9) is also
observable.

Notice that if A(n xn), B(nx 1), C(1xn)and D(1 x 1)
is a state space realization of W (s) any other set of matrices
A(n x n), B(n x 1), C(1 x n) and D(1 x 1) such that for
some nonsingular 7'(n x n)

A=TAT ', B=TB,C=CT ', D=D

E’Q) +D

is a state space realization of W(s) . Indeed, if A(n x n),
B(nx1),C(1xn)and D(1x1) is is a state space realization
of W(s)
W(s)=C(sI — A)"'B+D
=CT'T(sI —A)'T'TB+ D
=CT (s —TAT )" 'TB+ D
=C(sI—A)'B+D
Notice also that if A(nxn), B(nx1),C(1xn)and D(1x1)is

a state space realization of W (s) then A7 (n xn), CT(nx 1),
BT(1 xn) and D(1 x 1) is another state space realization of

W(s) . Indeed, if A(nxn), B(nx1), C(1xn)and D(1x1)
is a state space realization of W (s)
BT (sT — ATY'CT + D = (BT (sI — AT)~*'Cc* + D)T
=C((sI =A"Y""Y'B+D=C((sI - A")")"'B+ D
=C(sI —A)'B+D=W()

II. INTERCONNECTIONS

In this section we will study how the interconnection of two
or more systems change the input/output transfer function and
the state space equations. Moreover, the interconnection may
alter the controllability and observability properties of each
system. We discuss in details the following three interconnec-
tions: series, parallel and feedback interconnection.

A. Series interconnection

The series interconnection of two systems described by
state-space models

X1 (t) = A1X1 (t) + B1U1 (t)
% yi(t) = Crxa (1)

5(2 (t) = AQXQ (t) + B2u2 (t)
{7, (t) = Coxs(t)

is defined through the following input/output constraints:

u=up, y =Yz U2=Y1 (12)

where u and y denote the input and, respectively, the output of
the interconnection (see Figure 1). The series interconnection
is a system with state x = (x] XQT)T. In view of (12) the
state space interconnection of ¥; and ¥, is given by

X1 (t) = A1xq (t) + Blu(t)
¥4 Xo(t) = Aoxo(t) + Bayi(t)

y(t) = ya(t)
Therefore,
x(t) = Ax(t) + Bu(t)
= {0 < oxtt)
with

_( A4 0 _ (B .
A.—<B201 A2),B.—<0>,C.—(O Cy)

Note that 0(A) = o(A41) U 0(Az). Moreover, if we assume
that A;(n; x n;), Bj(n; x 1) and C;(1 x nj), j = 1,2, the
controllability matrix of X is with n :=n; + ng

R:= (B AB A1)
_ (B AiB 4A71"_1Bl 4
0 ByC1Bi ST AL BCL AT By

while its observability matrix is

C
O := CA
OAn1+n2—1
0 CQ

CyByCy ChAs

ST CLA]TICL AT By Co AT

j=1
The transfer functions of >; and X5 are

Lly; 1) _ Pi(s) = C;(sI — A;))™'B;, j=1,2. (13)

Llu; (1)](s)
(y;(t) denotes the forced output response of ; to the input
u;(t)). In view of (12) the transfer function of the series
interconnection of ¥; and o is

Sa)](s) ~ Slm()](s)
_ lya®)(s) Llua(t)](s)

2w (0](5) Llua(0)](5)
_ 2lya()](s) Slus(0)](s)
s

Lly2(t)](s) Lly1(t)](s

Ll 0)](3) Sm@)]() ~ L2Pi) (9

(y(t) denotes the forced output response of the interconnection
of X1 and %5 to the input u(t)).

Proposition 2.1: The transfer functions of the series inter-
connection of two systems X;, j = 1,2, with transfer function
P;(s) is W(s) = P1(s)P2a(s).



Figure 1. Series interconnection.

Since 0(A) = 0(A1) U o(As) the stability of a series inter-
connection is guaranteed by the stability of the two systems
Y1 and Xs.

The series interconnection of two systems may lead to a
system which is either not controllable or not observable. This
happens when a zero of P1(s) (resp. P2(s)) cancels a pole
of Py(s) (resp. P1(s)).

Exercize 2.1: Consider the series interconnection of the two
systems described by state-space models

oo "
DI { 2(t) = _12) x2(t) + <(1)> uy ()

yg(t) = (1 1) Xg(t)

The series interconnection in the state space is

y(t) = Cx(t)
with
-1 0 0 1
A=[0 0 1 |,B:=|0],C:=(0 1 1)
1 0 —2 0

Note that X is controllable since

1 -1 1
R = (B AB A2B) =10 O 1
0 1 -3
but not observable since
C 0 1 1
O=|CA |= 1 0 -1
CA? -2 0 2

which has rank 2. Since X is not observable we can apply
the PBH observability test (see module VI) to determine the
invariant spectrum §o of A — KC: the spectrum of A is

u y
2 P 2
2 y
{—1,—2,0} and
rankg ( )
0
—rankR{ 11 } =2={-1}eJo
1
rankg < )
0
—rankR{ 1 O 01 } =3={-1}¢Jo
0 1 1
rank]R < (0) IC A)
1 0 0
= rankR{ 01 8 -1 } =3= {0} ¢ %o
1 1

This can be seen also by defining a coordinate transformation
z = Sz with

C

CA

T
wy

S =

and

1 1\"

0
Sl=(1 0 -1 =
1 -1 1

0.333
0.666
0.333

0.666
0.333
—0.333

0.333
—0.333
0.333

The matrices A, B and C' in the new coordinates are

(0 1 0o\ _ [o\ _
A=|0 -2 0|, B=(1],C=(1 0 0) (15
-1 1 -1 1

Since n — s = rankg{O} = 2 with n = 3 (hence, s = 1),

N 1 N N
Ay = (8 _2> J A= (=1 1), Ay = -1

(16)



and the invariant spectrum §o of A— KC' is 0(1122) ={-1}.
Note that the observable system of (15) is:

~ 0 1 ~ 0 ~
Ay = (0 2) B = <1> LGi=(1 0 an
The transfer functions of the two systems X7 and Yo are
1
P =
1(5) s+1
s+1
P —
2(5) s(s + 2)

Therefore, the transfer function of the series interconnection
is

1
W(s) = Py (s)Py(s) = —
(5) = Pa(sIPas) =
The invariant spectrum §o = {—1} of A — K C is exactly the
pole s = —1 of Py(s) which has been canceled by the zero
s = —1 of Py(s). Note also that W (s) has a realization
x(t) = Aox(t) + Boul(t)
So {X( 18
" Uy(t) = Cox(t) 4
where
0 1 0
Ap = (O _2>, Bo := (1>, Co = (1 O)

The system (18) is equal to (17): therefore, ¥ is the observ-
able system of (15). <

B. Parallel interconnection

The parallel interconnection of two systems described by
state-space models

C(xa(t) = Aixa(t) + Brua(t)
X { 1(75) xl(t)

. (t) 2X2 t) -+ B2u2 (t)
% 2(t) = Coxa(t)

is defined through the following input/output constraints:

u=u; =Uu, y=y1+y2 (19)

where u and y denote the input and, respectively, the output of
the interconnection (see Figure 2). The parallel interconnection
is a system with state x = (x{ xj) . In view of (19) the
state space interconnection of ¥; and ¥ is given by

Xl(t) = Alxl(t) + Blu(t),

DI { Xg(t) = A2X2(t) + Bgu(t),
y(t) = y1(t) + y2(t)
Therefore,
x(t) = Ax(t) + Bu(t)
ok y(t) = Cx(t)
with

Note that o(A) = o(A4;) U o(Az). Moreover, if we assume
that Aj(nj X ’I’Lj), Bj(nj X 1) and Ci(l X nj), 7 = 1,2, the
controllability matrix of ¥ is

R:= (B AB Amtna—lp)
_(B1 AiB AptreTip,
“\By AB, Aptremlpy
while its observability matrix is
C C Cs
CA Cr A, CaAs
O := L = . .
C A tna—1 01A71h+n2—1 C2A'§Ll+n2_1

The transfer functions of > and X, are
Lly;(1)](s)
Llu; ()](s)

In view of (19) the transfer function of the parallel intercon-
nection of Y; and Y5 is

=Pj(s) = Cj(sI — Aj)"'B;, j =1,2. (20)

u]s)
_ Snle) |

Llu(®)](s) — Llua(8)](s)

Proposition 2.2: The transfer functions of the parallel inter-
connection of two systems X, j = 1,2, with transfer functions
PJ(S) is W(S) = Pl(S) + PQ(S).
Since o(A) = o(A4;) U o(Ay) the stability of a parallel
interconnection is guaranteed by the stability of the two
systems X7 and Y.

The parallel interconnection of two systems may lead to
a system which is not controllable and not observable. This
happens when a pole of P1(s) (resp. Py(s)) is a also a pole
of Pa(s) (resp. P1(s)).

Exercize 2.2: Consider the series interconnection of the two
systems described by state-space models

= Py(s) + Pi(s)

Cxa(t) = ag(t)
21'{ 1(5) = x1 ()
2(t) = ua(t)

DI {
7 lya(t) = xa(t)
The parallel interconnection in the state space is

~(x(t) = Ax(t) + Bu(t)
= v(t) = Cx(t)

-3 9

Note that X is not controllable since

R=(5 a) - (5 o)

with



Figure 2. Parallel interconnection.

and not observable since

o~ ()= (6 o)

Since ¥ is not observable we can apply the PBH observability
test to determine the invariant spectrum §o of A — K C' the
spectrum of A is {0,0} and

rankR{ <(0)IC_ A> }
00
:rankR{ (1) (1) }:1:{0}63’0

Since ¥ is also not controllable we can apply the PBH
controllability test to determine the invariant spectrum §r of
A+ BF:

rankg{((0)] — A B)}

= ranks{ (g X 1)}—1@{o}esR

This can be seen also by defining a coordinate transformation

z = Sz with
C
5= (uf)

(1
wy = 1 .
By direct calculations

g (1 1y _1(1 -1
S\-1 1 21 1

The matrices A, B and C in the new coordinates are

Z_(g 8),§_(§>,5_(1 0)

Since n — s = dim(Ker{O}) = 1 with n = 2 (hence, s = 1),

where

21

Ay = Ay = Ay =0

B1=2 By=0,C =1 (22)

and the invariant spectrum Fo of A — KC is o(A3y) = {0}.
Note that the observable system of (21) is:

A1 =0,B,=2C =1 (23)

The transfer functions of the two systems >;, j = 1,2, are
Py(s) =

Pa(s) =

®|—=®» |~

Therefore, the transfer function of the parallel interconnection
is

W(S) = Pl(S) + PQ(S) = %

The invariant spectrum §o = {—1} of A — KC is exactly to
the common pole s = 0 of Py(s) and P(s). Note also that
W (s) has a realization

X(t) = on(t) + Bou(t)

y(t) = Cox(t) @)

20:{

where
Ap:=0, Bp:=1, Cp:=2

The system (24) is equivalent under coordinate transformation
to (23): i.e.

A1 = QAoQ™Y, By = QBo Cy = CoQ!
with Q := 2. <

C. Feedback interconnection

The feedback interconnection of two systems described by
state-space models

T, {Xl (t) = A1X1 (t) + Blul (t)
Uy = Cixa(t)
22 : Xz(t) = A2X2(t) + BQUQ(t)

{ ya(t) = Coxa(t)

is defined through the following input/output constraints:

U =u-—-Yys2, y=Yy1, U2=Yy1 (25)

where u and y denote the input and, respectively, the output

of the interconnection (see Figure 3). The feedback intercon-
L . T .

nection is a system with state x = (xlT XQT) . In view of

(25) the state space interconnection of 3; and X5 is given by
x1(t) = Aix1(t) — Biyz2(t) + Biu(?),
¥ X3 (t) = Aaxa(t) + Bayi(t)
y(t) = y1(t)

Therefore,



Figure 3. Feedback interconnection.

Figure 4. Feedback control system.

with

L Al _BICQ L Bl .
A._(B201 o ),B._(()),c._(q 0)

The transfer functions of »; and X, are
Lly; (#)](s)
£Llu;(1)](s)

In view of (25) the transfer function of the feedback intercon-

nection of X7 and X5 is

=P;(s) = C;(sI — A;)"'By, j = 1,2. (26)

Lly1()](s)
Llui ()](s)

£
S (O](s) + LyaO1s) 1+ Sl

_ Pl(s)
1+ Pg(s)Pl (S)

Proposition 2.3: The transfer functions of the feedback
interconnection of two systems Z(,—, 7 = 1,2, with transfer
1(s)

functions P;(s) is W(s) = TP, (5P

The feedback interconnection of two systems may lead to a
system which is not controllable and not observable. Since the
feedback interconnection is a series interconnection of 7 and
Y5 closed on itself, this happens when a pole of P1(s) (resp.
P5(s)) is a also a pole of Ps(s) (resp. P1(s)).

The stability of a feedback interconnection when the process
P4 (s) on the feedback path is constant (i.e. Po(s) = K) can
be analyzed (parametrically with respect to K) by means of
the Routh criterion applied to the numerator polynomial of the
transfer function of the interconnection

Pl(S)
W) = 5P

ni(s)

or in other words, if Py (s) := dy(s) for suitable polynomials

n;(s) and dq(s),

di(s) + Kny(s)

Clearly, the Routh criterion can be applied if we have the exact
knowledge of the polynomials n;(s) and di(s) or, in other
words, the transfer function P (s). A useful criterion for the
stability of the feedback interconnection with Py(s) = K will
be discussed in the next chapter and it requires the knowledge
of the (approximate) Bode diagrams of P (s) and the number
of the poles of P;(s) with positive real part.



D. General interconnections

The combination of series, parallel and feedback intercon-
nections gives rise to general interconnections. It is possible
to determine the transfer functions of these general intercon-
nections using the formulas for the I/O transfer functions of
series, parallel and feedback interconnections.

Exercize 2.3: Determine the transfer functions

MO
e g[x(tg ])(]S()’)
Lly(t)](s
Wi, y(s) = Sl[[cll((t))]]((s)
Lly(®)](s
W, y(s) = £[d2(t)](s)

27

in the control scheme of Figure 4.

Notice that the control scheme has 3 input variables (v, d;
and ds) and one output variable y. The output y(s) is equal
to (by superposition)

y(s) = Wy (8)v(s) + Way y(5)di(s) + Wa, , (s)da(s)
(28)

Therefore, the me(s) can be obtained by setting d; = d =
0 in Figure 4, Wy, ,(s) is obtained by setting v = ds = 0
and Wy, ,(s) is obtained by setting v =d; = 0.

First, determine va(s) and set d; = dy = 0 in Figure 4.
The transfer function W ,,(s) from e to w is resulting from
the series of G and Py:

W w(s) = M = G(s)P1(s)

Lle(®)](s)
The transfer function W, ,,(s) from m to w is resulting from
the negative feedback interconnection of W ,,(s) in the direct
path and 1 in the feedback path:
ewt](s)  Wewl(s) _ G(s)Pi(s)
Lm(t)](s) 14+ Weu(s) 1+ G(s)Pi(s)
The transfer function W, ,,(s) from m to y is resulting from
the series interconnection of W, ., and P:

Wonw(s) =

_ SOls)
Wons (%) = S ](s)
= W w(s)Pa(s) = G(5)P1(s)Pa(s)

1+ G(s)P1(s)

The transfer function W, ,,(s) from v to y is resulting from
the negative feedback interconnection of W, ,, in the direct
path and K(s) in the feedback path:

2ly(](s)
W”’y(s) EOI0)
W)
1+W (s) (s)

G(s)P, (5)Pa(s)

" 1+ G(s)P1(s) + K(s)G(s)Py(5)Pa(s)

Next, determine Wy, ,(s) and set v = dy = 0 in Figure
4. The transfer function Wy, ,(s) from d; to y is resulting

from the negative feedback interconnection of W, ,,(s) in the
direct path and K(s) in the feedback path:

Lly®)](s)

W) = 5ld )16

_ Wiy ()

1+ W, ,(s)K(s)

_ G(s)Py(s)P2(s)

14 G(s)P1(s) + K(s)G(5)P1(s)P2(s)
Finally, determine W, ,(s) and set v = d; = 0 in Figure 4.
The transfer function Wy, ,(s) from d; to y is resulting from

the negative feedback interconnection of —K(s)W,, ,(s) in
the direct path and —1 in the feedback path:

=W, ,(s)

_ Lly®)](s)
de,y(s) = W
Wy (5)

T 1+ W, (9)K(s)
_ K(s5)Wa, 4(s)
1+ K(S)Wdz,y(s)
B K(s)G (8)P1(8) (8)
1+ G(s)Pi(s) +




