Dynamic networks

Model

- Synchronous model
- Static vertex set V • $E: N_0 \rightarrow \begin{pmatrix} V \\ 2 \end{pmatrix}$, where $\begin{pmatrix} V \\ 2 \end{pmatrix}$ is the set of all distinct • pairs $(u, v) \in V \times V$
- So, E(r) is the set of edges in round r
- 1-Interval connectivity: G_r = (V, E(r)) is connected for every r
- Can be generalized to T-Interval connectivity

Algorithm and adversary

- Deterministic algorithms
- Nodes communicate by anonymous broadcast
 - At the beginning of round r each node decides which message to bcast based on internal state
 - Independently, the adversary decides E(r) → the adversary does not know which message the algorithm is about to send
- Nodes start in initial state that contains own IDs and input
- Nodes know nothing about network and initially cannot distinguish it from any other network

Basic problems

- Counting. Whenever executed on network with n nodes, all nodes eventually terminate with output n
- K-verification. Determine whether or not k <= n
- K-token dissemination. Each node u initially receives a set I(u) of tokens from some domain *T*. | U_uI(u) | = k. An algorithm solves the problem when all nodes eventually terminate and output U_uI(u)
- K-committee election. Nodes partition themselves into subsets, called *committees*, such that
 - The size of each committee is at most k
 - If k >= n then there is only one committee

Theorem 7.2. Assume that there is a single token in the network. Further assume that at time 0 at least one node knows the token and that once they know the token, all nodes broadcast it in every round. In a 1-interval connected graph G = (V, E) with n nodes, after $r \leq n-1$ rounds, at least r+1 nodes know the token. Hence, in particular after n-1 rounds, all nodes know the token.

Theorem 7.3. Counting is impossible in 1-interval connected graphs with asynchronous start.

 Result also applies to other basic problems as long as we do not assume knowledge of n or upper bound on it

$$A \leftarrow \{self\};$$

for $r = 1, 2, \dots$ do
broadcast $A;$
receive B_1, \dots, B_s from neighbors;
 $A \leftarrow A \cup B_1 \cup \dots \cup B_s;$
if $|A| \leq r$ then terminate and output $|A|;$
end

Algorithm 1: Counting in linear time using large messages

Lemma 7.4. Assume that we are given an 1-interval connected graph G = (V, E) and that all nodes in V execute Algorithm 1. If all nodes together start at time 0, we have $|A_u(r)| \ge r + 1$ for all $u \in V$ and r < n.

Theorem 7.5. In an 1-interval connected graph G, Algorithm 1 terminates at all nodes after n rounds and output n.

Lemma 7.6. Assume that we are given a 2-interval connected graph G = (V, E)and that all nodes in V execute Algorithm 1. If node u is waken up and starts the algorithm at time t, it holds that have $|A_u(t+2r)| \ge r+1$ for all $0 \le r < n$.

A non distributed solution

Assumption 1.2 (Node Identifiers). Each node has a unique identifier, e.g., its IP address. We usually assume that each identifier consists of only $\log n$ bits if the system has n nodes.

Algorithm 1 Greedy Sequential

- 1: while \exists uncolored vertex v do
- 2: color v with the minimal color (number) that does not conflict with the already colored neighbors
- 3: end while

Performance

Theorem 1.5 (Analysis of Algorithm 1). The algorithm is correct and terminates in n "steps". The algorithm uses $\Delta + 1$ colors.

- Δ is the maximum degree of the graph
- The chromatic number Ξ(G) of G is the minimum number of colours in a proper vertex coloring of G

A useful subroutine

Procedure 2 First Free

Require: Node Coloring {e.g., node IDs as defined in Assumption 1.2} Give v the smallest admissible color {i.e., the smallest node color not used by any neighbor}

Caveat: no two nodes are coloured at the same time

Algorithm for synchronous case

Algorithm 3 Reduce

- 1: Assume that initially all nodes have ID's (Assumption 1.2)
- 2: Each node v executes the following code
- 3: node v sends its ID to all neighbors
- 4: node v receives IDs of neighbors
- 5: while node v has an uncolored neighbor with higher ID \mathbf{do}
- 6: node v sends "undecided" to all neighbors
- 7: node v receives new decisions from neighbors

8: end while

9: node v chooses a free color using subroutine **First Free** (Procedure 2) 10: node v informs all its neighbors about its choice

Thm.: algorithm is correct and has time complexity n. It uses Δ + 1 colours

Trees

Lemma 1.9. $\chi(Tree) \leq 2$

Algorithm 4 Slow Tree Coloring

- 1: Color the root 0, root sends 0 to its children
- 2: Each node v concurrently executes the following code:
- 3: if node v receives a message x (from parent) then
- 4: node v chooses color $c_v = 1 x$
- 5: node v sends c_v to its children (all neighbors except parent)

6: end if

Caveat: how do we choose a root?

Trees/cont.

- The previous algorithm also works in the asynchronous case
 - Time complexity is the tree height
 - Message complexity is n-1
- Is it possible to do better?
- Iog*n time is possible!