

Synchronizers

Overview

 Synchronizers: general simulation techniques
that allow to run synchronous algorithms in
asynchronous networks

Synchronous vs asynchronous

 Given a synchronous algorithm A, A can be
turned into an asynchronous algorithm as
follows: as soon as v generates the i-th pulse, v
performs the action of the i-th round

Synchronous vs
asynchronous/cont.

 How
 Special (signalling) messages
 Acks

 Complexity
 T(S)/M(S) = time/message complexity of

synchronizer S per pulse

 T
tct

= T
init

(S) + T(A)(1 + T(S))

 M
tct

= M
init

(S) + M(A) + T(A)M(S)

Synchronizer α

Synchronizer α/cont.

 In practice:

1. Send message to all neighbors, include round
information i and actual data of round i (if any)

2. Wait for message of round i from all
neighbors, and go to next round

Synchronizer β

 Initialization: compute a spanning tree rooted at
some leader l

Synchronizer β/cont.

 Synchronizer α is time efficient
 Synchronizer β is message efficient
 Can we trade-off? Yes

Synchronizer γ/cont.

Synchronizer γ/cont.

Building a partition

 B(v, r): ball of radius r aroung v
 This is a centralized algorithm

Building a partition/cont.

 The trade-off between intracluster radius and
number of intercluster edges is asymptotically
optimal

 If ρ >= 2 it is possible to give a distributed
algorithm with time and msg complexities O(n)
and O(m + nlog n) respectively

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

