Synchronizers

Overview

= Synchronizers: general simulation techniques
that allow to run synchronous algorithms in
asynchronous networks

Definition 12.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Synchronous vs asynchronous

= Given a synchronous algorithm A, A can be
turned into an asynchronous algorithm as
follows: as soon as v generates the i-th pulse, v
performs the action of the i-th round

Theorem 12.2. If all generated clock pulses are valid according to Definition
12.1, the above method provides an asynchronous algorithm that behaves exactly

the same way as the giwven synchronous algorithm.

Synchronous vs

asvnchronous/cont.

= How
= Special (signalling) messages
= Acks

= Complexity

= T(S)/M(S) = time/message complexity of
synchronizer S per pulse

: tht= Tlnlt(S) i T(A)(1 + T(S))
= M =M (S) + M(A) + T(AM(S)

Init

Synchronizer a

Definition 12.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived ot their destinations.

Algorithm 42 Synchronizer o (at node v)

wait until v is safe

send SAFE to all neighbors

wait until v receives SAFE messages from all neighbors
start new pulse

= Lo k3

Synchronizer a/cont.

= |n practice:

1. Send message to all neighbors, include round
information | and actual data of round i (if any)

2. Wait for message of round i from all
neighbors, and go to next round

Theorem 12.5. The time and message complexities of synchronizer v per syn-
chronous round are

T(a) = O(1) and M(a) = O(m).

Synchronizer

= Initialization: compute a spanning tree rooted at
some leader |

Algorithm 43 Synchronizer § (at node v)

. wait until v is safe
. wait until v receives SAFE messages from all its children in T

l

2

3: if v # { then
4: send SAFE message to parent in T

5: wait until PULSE message received from parent in T
6: end if

7. send PULSE message to children in T

g: start new pulse

Synchronizer 3/cont.

Theorem 12.6. The time and message complexities of synchronizer 5 per syn-
chronous round are

T'(8) = O(diameter(T)) < O(n) and M(B) = O(n).
The time and message complexities for the initialization are

Twit(8) = O(n) and My (B) = O(m + nlogn).

= Synchronizer a is time efficient

= Synchronizer 3 is message efficient
= Can we trade-off? Yes

Synchronizer y/cont.

Algorithm 44 Synchronizer v (at node v)

f:

1: wait until v is safe

2: wait until v receives SAFE messages from all children in intracluster tree
3
4
5

if v is not cluster leader then

send SAFE message to parent in intracluster tree

wait until CLUSTERSAFE message received from parent
end if

7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

10):
11:
12:
13:
14:
5. start new pulse

cluster edges and all children in intracluster tree

if v is not cluster leader then
send NEIGHBORSAFE message to parent in intracluster tree
wait until PULSE message received from parent

end if

send PULSE message to children in intracluster tree

Synchronizer y/cont.

Theorem 12.7. Let me be the number of intercluster edges and let k be the
mazimum cluster radius (i.e., the mazimum distance of o leaf to its clusler
leader). The time and message complexities of synchronizer v are

T(y) = O(k) and M(y) = O(n+me).

Building a partition

Algorithm 45 Cluster construction

1: while unprocessed nodes do

2. select an arbitrary unprocessed node v;

3 r:=0:

4 while |B{v,r +1)| > p|B(v,r)| do

: pi=r4]

i: end while

7. makeCluster(B(v,r)) /[all nodes in B(v,r) are now processed
& end while

= B(v, r): ball of radius r aroung v
= This Is a centralized algorithm

Building a partition/cont.

Theorem 12.8. Algorithm 45 computes a partition of the network graph info
clusters of radius af most log,n. The number of intercluster edges is af mosl

(p=1)-1.

= The trade-off between intracluster radius and
number of intercluster edges is asymptotically
optimal

= If p>= 2 it is possible to give a distributed
algorithm with time and msg complexities O(n)
and O(m + nlog n) respectively

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

