Vertex coloring

Problem

Problem 1.1 (Vertex Coloring). Given an undirected graph $G=(V, E)$, assign a color c_{u} to each vertex $u \in V$ such that the following holds: $e=(v, w) \in$ $E \Rightarrow c_{v} \neq c_{w}$.

A non distributed solution

Assumption 1.2 (Node Identifiers). Each node has a unique identifier, e.g., its IP address. We usually assume that each identifier consists of only $\log n$ bits if the system has n nodes.

Algorithm 1 Greedy Sequential
1: while \exists uncolored vertex v do
2: color v with the minimal color (number) that does not conflict with the already colored neighbors
3: end while

Performance

Theorem 1.5 (Analysis of Algorithm 1). The algorithm is correct and terminates in n "steps". The algorithm uses $\Delta+1$ colors.

- Δ is the maximum degree of the graph
- The chromatic number $\equiv(G)$ of G is the minimum number of colours in a proper vertex coloring of G

A useful subroutine

Procedure 2 First Free

Require: Node Coloring \{e.g., node IDs as defined in Assumption 1.2\}
Give v the smallest admissible color \{i.e., the smallest node color not used by any neighbor\}

- Caveat: no two nodes are coloured at the same time

Algorithm for synchronous case

Algorithm 3 Reduce
1: Assume that initially all nodes have ID's (Assumption 1.2)
2: Each node v executes the following code
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends "undecided" to all neighbors
7: node v receives new decisions from neighbors
8: end while
9: node v chooses a free color using subroutine First Free (Procedure 2)
10: node v informs all its neighbors about its choice

- Thm.: algorithm is correct and has time complexity n . It uses $\Delta+1$ colours

Trees

Lemma 1.9.
 $\chi($ Tree $) \leq 2$

```
Algorithm 4 Slow Tree Coloring
    1: Color the root 0 , root sends 0 to its children
    2: Each node \(v\) concurrently executes the following code:
    3: if node \(v\) receives a message \(x\) (from parent) then
    4: node \(v\) chooses color \(c_{v}=1-x\)
    5: node \(v\) sends \(c_{v}\) to its children (all neighbors except parent)
    6: end if
```

- Caveat: how do we choose a root?

Trees/cont.

- The previous algorithm also works in the asynchronous case
- Time complexity is the tree height
- Message complexity is $\mathrm{n}-1$
- Is it possible to do better?
- log*n time is possible!

