Social matching and link prediction

Link prediction

- Given a snapshot of a social network
- **Question**: infer which new interactions among its members are likely to occur in the near future [Liben-Nowell and Kleinberg, 2004, 2007]

Link prediction in a nutshell

Why link prediction

- Social matching
 - See further in this presentation
- Inferring missing links
- Testing models of evolving networks
 - See discussion about in Nowell and Kleinberg's paper

Link prediction – formalizing the problem

Given

- Social network G = (V, E)
- Each edge e = (u, v) represents an interaction between two nodes u and v and comes with a timestamp t(e)
 - Parallel edges with possibly different timestamps possible
- G[t_1 , t_2]: graph consisting of all edges with timestamps between t_1 and t_2
- **Problem**: given $G[t_1, t_2]$ return a list of edges likely to belong to $G[t_3, t_4]$, with $t_3 > t_2$
 - Some caveats necessary

Performance

- We have a training graph $G[t_{_1},\,t_{_2}]$ and accordingly a set $\mathsf{E}_{_{old}}$ of edges
 - This is the training set
- We also have a test graph G[t_3, t_4] and accordingly a set E true of edges appeared in (t_3, t_4)
 - This is the test set
- Algorithm returns a list $\rm E_{new}$ of predicted edges for interval (t_3, t_4)
- We can use precision and recall

$$P = \frac{|E_{new} \cap E_{true}|}{|E_{new}|} \qquad R = \frac{|E_{new} \cap E_{true}|}{|E_{true}|}$$

Link prediction algorithms

- The general link predictor outputs a ranked list L_p of predicted edges taken from A x A, where $G[t_1, t_2] = (A, E_{old})$
- The i-th item of the list is the i-th most plausible new link (according to the algorithm)
 - So, list ranked according to decreasing algorithm's confidence
- How this is done in practice
 - Algorithm assigns a weight score(x, y) to each (x, y) $\in A \times A$
 - This is essentially a similarity score

Link prediction and user profiling

Collaborative filtering

- Given a collection of user-item pairs (u, i) summarizing past purchase history
- *Problem*: predict which users are going to buy which items in the near future

Link prediction and user profiling

Collaborative filtering

- Given a collection of user-item pairs (u, i) summarizing past purchase history
- Problem: predict which users are going to buy which items in the near future

Link prediction

- Given a collection of past user-user interaction (edges) (x, y)
- Problem: predict which user interaction are going to occur in the near future

Link prediction and user profiling/2

- Collaborative filtering (no ratings)
 - Each user u is a list $\mathbf{u} = \{a_1, a_2, ...\}$ of items she "purchased" in the past (whatever this means)

Link prediction and user profiling/2

• Collaborative filtering (no ratings)

- Each user u is a list $\mathbf{u} = \{a_1, a_2, ...\}$ of items she "purchased" in the past (whatever this means)

Link prediction

- Every node u is a list $\mathbf{u} = \{v_1, v_2, ...\}$ of nodes she interacted with in the past
 - Note that the same node might appear more than once
- Caveats
 - Many approaches/techniques carry over
 - Some differences at the application level
 - Privacy issues can be more important
 - Trust and reputation

Link predictors [Kleinberg, Liben-Nowell 2007]

Neighbourhood based

- Common neighbours
- Jaccard's coefficient
- Adamic/Adar coefficient
- Preferential attachment

Path-based

- Katz measure
- Hitting time
- Personalized Pagerank

Other techniques

- Low-rank matrix approximations
- Clustering

- ...

Neighbourhood based

Path based – Katz coefficient

 $K_{\beta}(u,v) = \sum_{i=1}^{\infty} \beta^{i} |paths^{(l)}(u,v)|$

Path based – Commute/Hitting time

- Perform a random walk on the graph
- H(u, v) = expected number of steps to go from u to v
- C(u, v) = expected number of steps to go from u to v and back
- Can be efficiently computed for all pairs (still expensive!)

- To compute score (v):
- Start a RW at v. At every node v:
- Jump u.a.r. with probability α . Jump to u with probability 1α
- score (v) is stationary probability of v
- This is PR with initial personalization vector e

- \mathbf{e}_{v} is v's canonical vector
- **P** is the transition matrix
- Easy to prove that this corresponds to an ergodic MC hence:
- For every u, here is a unique stationary distribution π_{μ}

 $\forall u$:

 $\begin{aligned} \pi_{u,u}(t+1) &= \frac{1-\alpha}{n} + \alpha \sum_{v \in N(u)} \frac{\pi_{u,v}(t)}{deg(v)} \\ \pi_{u,w}(t+1) &= \alpha \sum_{v \in N(u)} \frac{\pi_{u,v}(t)}{deg(v)} \text{ when } w \neq u. \end{aligned}$ $\boldsymbol{\pi}_{\boldsymbol{u}}^{T}(t+1) = \frac{1-\alpha}{n} \boldsymbol{e}_{\boldsymbol{u}} + \alpha \boldsymbol{\pi}_{\boldsymbol{u}}^{T}(t+1) \boldsymbol{P}$

• For every u, we have scores $score_u(v) = \pi_{u.v}$ for every v, including u itself

- Computational cost: we need to compute a Personalized Pagerank (PPR) vector for every node in the network
- Notice that, in expectation, the personalized RW starting at u returns to u after $\alpha/(1-\alpha)$ steps \rightarrow Prove!
- Intuitively, this means that most of the time the RW is visiting a neighbourhood of u at most $O(\alpha/(1 \alpha))$ hops away from it
- As a consequence, nodes with higher $\pi_{\mu\nu}$'s are "closer" to u

SimRank [Jeh, Widom 2002]

- SimRank is the fixed point of the following recursive definition:
- simrank(x, x) = 1. In general:

$$simrank(x, y) = \gamma \cdot \frac{\sum_{u \in \Gamma(x)} \sum_{v \in \Gamma(y)} simrank(u, v)}{|\Gamma(u)| \cdot |\Gamma(v)|}$$

• Where γ is a parameter in [0, 1]

Other approaches

- Use noise reduction techniques as low-rank matrix approximations
 - Then, view matrix A obtained this way as a (weighted) adjacency matrix and apply predictors to it
- Clustering
 - Use a clustering procedure to identify (and remove) more "tenuous" edges in the network

Performance

- In absolute terms, performance is not very high
- This follows since new links in a social network often form for reasons exogenous to the network itself
- Still, experimental analysis in [Liben-Nowell, Kleinberg 2007] shows improvements over random predictions by orders of magnitude

Bibliography

- [Liben-Nowell and Kleinberg, 2007] D. Liben-Nowell and Jon Kleinberg. "The link-prediction problem for social networks." Journal of the American society for information science and technology 58.7 (2007): 1019-1031.
 - Preliminary version on proceedings of CIKM 2003
 - http://dm.kaist.ac.kr/kse625/resources/Liben-Nowell_2007.pdf
- [Terveen, McDonald, 2005] L. Terveen, D. W. McDonald. "Social matching: A framework and research agenda." ACM transactions on computer-human interaction 12.3 (2005): 401-434.
 - Available at http://grouplens.org/system/files/Terveen-SocialMatching.pdf